• No results found

Hexa­aqua­nickel(II) bis­(p nitro­benzoate) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Hexa­aqua­nickel(II) bis­(p nitro­benzoate) dihydrate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1306

Quet al. [Ni(H2O)6](C7H4NO4)22H2O DOI: 10.1107/S1600536804017519 Acta Cryst.(2004). E60, m1306±m1307 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hexaaquanickel(II) bis(

p

-nitrobenzoate) dihydrate

Yang Qu,a,bZhao-Di Liu,a,b Hai-Liang Zhua* and Min-Yu Tana

aDepartment of Chemistry, Fuyang Normal

College, Fuyang Anhui 236041, People's Republic of China, andbDepartment of

Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.007 AÊ Rfactor = 0.053 wRfactor = 0.160

Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [Ni(H2O)6]L22H2O, where L is p -nitrobenzoate (C7H4NO4), each NiII cation lies on an inversion center and is octahedrally coordinated by six water molecules. TheLÿanions do not coordinate to the nickel, but

act as counter-anions. The crystal structure is composed of alternating layers of [Ni(H2O)6]2+cations andLanions. The [Ni(H2O)6]2+ cations, water molecules and Lÿ anions are connected through a complex pattern of hydrogen-bonding interactions, resulting in a three-dimensional network.

Comment

For many purposes, including catalysis, it is desirable to utilize transition metal complexes that contain anions which coord-inate weakly or not at all (Batsanov et al., 2001). We report here the structure of the nickel complex [Ni(H2O)6]L22H2O, whereLisp-nitrobenzoate. The single-crystal X-ray structure analysis indicates that the crystal structure is built up of [Ni(H2O)6]2+ cations, two uncoordinated L anions and two uncoordinated water molecules. Each NiII atom lies on an inversion center and is hexacoordinated by the six aqua ligands. The NiÐO distances range from 2.097 (3) to 2.137 (2) AÊ. The mean NiÐO distance of 2.117 (3) AÊ is longer than the values observed in other nickel compounds (Maet al., 2003). The three trans angles in the Ni octahedron are 177.40 (18), 173.82 (11) and 173.82 (11). The cis angles

around the NiIIatom deviate slightly from the ideal angle of 90 [85.02 (11)±93.97 (19)]; thus, the Ni coordination center

has a slightly distorted octahedral geometry. Selected bond lengths and angles are given in Table 1. The alternating layers of [Ni(H2O)6]2+cations andLanions in (I) are shown in Fig. 2. Selected hydrogen-bond parameters are listed in Table 1.

Experimental

All reagents and solvents were used as obtained without further puri®cation. Ni(OH)2 (0.3 mmol, 52 mg) and p-nitrobenzoic acid

(0.6 mmol, 86 mg) were dissolved in ammonia (15 ml). The mixture was stirred for about 1 h to obtain a clear blue solution. After allowing the solution to stand in air for two weeks with ammonia gas escaping, large light-blue crystals were formed, The product was isolated, washed three times with water, and dried in a vacuum desiccator using P4O10 (yield 56%). Elemental analysis found: C

31.36, H 4.66, N 5.30, Ni 10.84; calculated for C14H24NiN2O16: C 31.43,

H 4.52, N 5.24, Ni 10.97%.

(2)

Crystal data

[Ni(H2O)6](C7H4NO4)22H2O

Mr= 535.06 Monoclinic,C2=c a= 29.030 (6) AÊ

b= 7.0550 (14) AÊ

c= 11.916 (2) AÊ

= 112.85 (3)

V= 2249.0 (8) AÊ3

Z= 4

Dx= 1.580 Mg mÿ3 MoKradiation Cell parameters from 60

re¯ections

= 2.5±24.4

= 0.94 mmÿ1

T= 293 (2) K Block, light blue 0.420.270.26 mm

Data collection

Bruker SMART diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.744,Tmax= 0.782 4473 measured re¯ections 1986 independent re¯ections

1818 re¯ections withI> 2(I)

Rint= 0.021 max= 25.0

h=ÿ34!25

k=ÿ8!5

l=ÿ13!14

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.053

wR(F2) = 0.160

S= 1.08 1986 re¯ections 150 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1011P)2 + 4.0152P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.54 e AÊÿ3

min=ÿ0.46 e AÊÿ3

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O5ÐH5A O8i 0.85 2.23 2.777 (4) 122

O5ÐH5A O7ii 0.85 2.62 3.255 (5) 132

O5ÐH5B O2iii 0.85 1.88 2.680 (4) 156

O6ÐH6B O3iv 0.85 2.46 3.221 (5) 149

O6ÐH6C O4v 0.85 2.43 3.193 (5) 150

O7ÐH7B O3v 0.85 2.58 3.417 (5) 168

O7ÐH7C O8vi 0.85 2.31 3.092 (5) 154

O8ÐH8A O2vii 0.85 2.16 2.790 (4) 131

O8ÐH8B O1 0.85 2.14 2.710 (5) 125

Symmetry codes: (i) x;yÿ1;z; (ii) x;ÿy;zÿ1

2; (iii) ÿx;yÿ1;12ÿz; (iv) 1

2ÿx;12ÿy;1ÿz; (v)12ÿx;yÿ12;23ÿz; (vi)ÿx;y;12ÿz; (vii)x;1ÿy;zÿ12.

The H atoms bonded to C and O atoms were placed in calculated positions, with CÐH = 0.96 AÊ and OÐH = 0.85 AÊ. TheUiso(H) values

were ®xed at 0.08 AÊ2.

Data collection: SMART (Siemens, 1996); cell re®nement:

SMART; data reduction:SAINT(Siemens, 1996); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997a); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank the Education Of®ce of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Batsanov, A. S., Howard, J. A. K., Moore, N. S. & Kilner, M.(2001).Acta Cryst.

E57, m485±m487.

Ma, J. F., Yang, J. & Liu, J. F. (2003).Acta Cryst.E59, m483±m484. Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Figure 1

View of the asymmetric unit of (I), expanded to show the complete coordination of NiII, with the atomic numbering scheme. Displacement

ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) ÿx, y,1

2ÿz2.]

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, m1306–m1307

supporting information

Acta Cryst. (2004). E60, m1306–m1307 [https://doi.org/10.1107/S1600536804017519]

Hexaaquanickel(II) bis(

p

-nitrobenzoate) dihydrate

Yang Qu, Zhao-Di Liu, Hai-Liang Zhu and Min-Yu Tan

Hexaaquanickel(II) bis(p-nitrobenzoate) dihydrate

Crystal data

[Ni(H2O)6](C7H4NO4)2·2H2O

Mr = 535.06 Monoclinic, C2/c

Hall symbol: -C 2yc

a = 29.030 (6) Å

b = 7.0550 (14) Å

c = 11.916 (2) Å

β = 112.85 (3)°

V = 2249.0 (8) Å3

Z = 4

F(000) = 1112

Dx = 1.580 Mg m−3 Melting point: 433 K

Mo radiation, λ = 0.71073 Å Cell parameters from 60 reflections

θ = 2.5–24.4°

µ = 0.94 mm−1

T = 293 K Block, light blue 0.42 × 0.27 × 0.26 mm

Data collection

Siemens SMART diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.744, Tmax = 0.782

4473 measured reflections 1986 independent reflections 1818 reflections with I > 2σ(I)

Rint = 0.021

θmax = 25.0°, θmin = 1.5°

h = −34→25

k = −8→5

l = −13→14

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.053

wR(F2) = 0.160

S = 1.08 1986 reflections 150 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1011P)2 + 4.0152P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.54 e Å−3 Δρmin = −0.46 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.0000 0.02951 (9) 0.2500 0.0362 (3) N1 0.32598 (12) 0.6403 (5) 0.9123 (3) 0.0516 (8) O1 0.13392 (13) 0.6545 (7) 0.4125 (3) 0.0951 (14) O2 0.09600 (10) 0.6403 (6) 0.5404 (3) 0.0730 (10) O3 0.36321 (11) 0.6421 (7) 0.8916 (3) 0.0881 (12) O4 0.32782 (14) 0.6452 (10) 1.0143 (3) 0.1172 (19) O5 −0.01378 (9) −0.1893 (4) 0.1170 (2) 0.0463 (6) H5A 0.0098 −0.2290 0.0977 0.080* H5B −0.0429 −0.2367 0.0835 0.080* O6 0.07419 (12) 0.0217 (5) 0.2586 (3) 0.0681 (9) H6B 0.0819 −0.0556 0.2141 0.080* H6C 0.0962 0.0956 0.3065 0.080* O7 0.02114 (13) 0.2325 (5) 0.3896 (3) 0.0713 (9) H7B 0.0503 0.2293 0.4456 0.080* H7C 0.0006 0.3181 0.3901 0.080* O8 0.06118 (11) 0.5394 (4) 0.2008 (3) 0.0599 (8) H8A 0.0680 0.5558 0.1383 0.080* H8B 0.0668 0.6274 0.2532 0.080* C1 0.13388 (15) 0.6396 (6) 0.5165 (4) 0.0507 (10) C2 0.18449 (13) 0.6362 (5) 0.6223 (3) 0.0391 (8) C3 0.22744 (17) 0.6343 (11) 0.6016 (4) 0.088 (2) H3A 0.2252 0.6313 0.5191 0.080* C4 0.27409 (15) 0.6374 (10) 0.6952 (4) 0.0787 (18) H4A 0.3039 0.6403 0.6787 0.080* C5 0.27698 (13) 0.6377 (5) 0.8107 (3) 0.0403 (8) C6 0.23512 (17) 0.6380 (11) 0.8345 (4) 0.0856 (19) H6A 0.2377 0.6419 0.9173 0.080* C7 0.18860 (15) 0.6375 (9) 0.7394 (4) 0.0724 (15) H7A 0.1589 0.6365 0.7564 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, m1306–m1307

O6 0.0480 (18) 0.086 (2) 0.070 (2) −0.0077 (15) 0.0220 (16) −0.0153 (16) O7 0.070 (2) 0.072 (2) 0.0609 (19) 0.0039 (17) 0.0141 (16) −0.0131 (16) O8 0.0428 (16) 0.077 (2) 0.0542 (18) 0.0015 (13) 0.0120 (13) −0.0139 (14) C1 0.044 (2) 0.054 (2) 0.043 (2) −0.0024 (17) 0.0048 (17) 0.0051 (17) C2 0.0367 (18) 0.0373 (18) 0.0389 (18) −0.0010 (14) 0.0096 (15) 0.0011 (14) C3 0.045 (2) 0.182 (6) 0.037 (2) −0.008 (3) 0.0157 (19) −0.025 (3) C4 0.032 (2) 0.155 (6) 0.050 (3) −0.006 (3) 0.0176 (18) −0.028 (3) C5 0.0336 (17) 0.0410 (19) 0.0407 (18) 0.0022 (14) 0.0082 (15) 0.0026 (14) C6 0.042 (2) 0.179 (6) 0.033 (2) −0.001 (3) 0.0128 (18) 0.021 (3) C7 0.032 (2) 0.139 (5) 0.043 (2) 0.002 (2) 0.0124 (17) 0.017 (3)

Geometric parameters (Å, º)

Ni1—O7 2.098 (3) O7—H7B 0.8501 Ni1—O7i 2.098 (3) O7—H7C 0.8500 Ni1—O6i 2.117 (3) O8—H8A 0.8499 Ni1—O6 2.117 (3) O8—H8B 0.8500 Ni1—O5 2.136 (2) C1—C2 1.520 (5) Ni1—O5i 2.136 (2) C2—C7 1.353 (6) N1—O4 1.196 (5) C2—C3 1.362 (6) N1—O3 1.198 (5) C3—C4 1.380 (6) N1—C5 1.467 (5) C3—H3A 0.9600 O1—C1 1.245 (5) C4—C5 1.346 (6) O2—C1 1.238 (5) C4—H4A 0.9599 O5—H5A 0.8502 C5—C6 1.351 (6) O5—H5B 0.8499 C6—C7 1.385 (6) O6—H6B 0.8501 C6—H6A 0.9599 O6—H6C 0.8500 C7—H7A 0.9601

(6)

Ni1—O5—H5B 119.9 C5—C6—H6A 119.8 H5A—O5—H5B 120.0 C7—C6—H6A 120.2 Ni1—O6—H6B 119.8 C2—C7—C6 120.7 (4) Ni1—O6—H6C 120.2 C2—C7—H7A 119.4 H6B—O6—H6C 120.0 C6—C7—H7A 119.9 Ni1—O7—H7B 120.0

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5A···O8ii 0.85 2.23 2.777 (4) 122 O5—H5A···O7iii 0.85 2.62 3.255 (5) 132 O5—H5B···O2iv 0.85 1.88 2.680 (4) 156 O6—H6B···O3v 0.85 2.46 3.221 (5) 149 O6—H6C···O4vi 0.85 2.43 3.193 (5) 150 O7—H7B···O3vi 0.85 2.58 3.417 (5) 168 O7—H7C···O8i 0.85 2.31 3.092 (5) 154 O8—H8A···O2vii 0.85 2.16 2.790 (4) 131 O8—H8B···O1 0.85 2.14 2.710 (5) 125

References

Related documents

Results obtained from this research indicate ranking of the criteria, and also reveal the importance of the organizational factors with the most weight (0.686), and then

CTA overlay demonstrates a plaque with a large lipid core, small calcifications, and an ulceration, making it a VIa lesion according to the AHA classification, in agreement with

An example of the reconstructed super-resolution images for 4× magnification in a benign case (Breast composition category: d; Final assessment category: 2; Shape:

We have examined the relationship between two measures of egocentric network centrality, degree centrality and transitivity, and willingness to pay for improvements in a set

European security aad the Gulf crisis; Consequenes of the invasion of Kuwait: continuing operations in the Gulf te$ot (Resumed joint debate on the reports of the

Disamping itu orang tua dapat melihat kegiatan anak di laboratorium, di bengkel, dan di kebun (Soetopo, dan Soemanto 1989, hlm. Kunjungan orang tua siswa ke sekolah

Global Climate Change, Human Activity, Future Reality, Environment, Solar Activity, Supermoon, Earthquakes and Volcanic Eruptions, Fire Farming,

The records listed in Part 6 of the Health Act 2007 (Care and Support of Residents in Designated Centres for Persons (Children and Adults) with Disabilities) Regulations 2013