• No results found

catena Poly­[[aqua­bis­(1H imidazole κN3)copper(II)] μ benzene 1,4 di­oxy­acetato κ2O:O′]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[aqua­bis­(1H imidazole κN3)copper(II)] μ benzene 1,4 di­oxy­acetato κ2O:O′]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1267±m1269 DOI: 10.1107/S1600536804019798 Shan Gaoet al. [Cu(C10H8O6)(C3H4N2)2(H2O)]

m1267

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[aquabis(1

H

-imidazole-

j

N

3

)copper(II)]-l

-benzene-1,4-dioxyacetato-

j

2

O

:

O

000

]

Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: [email protected]

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.054

wRfactor = 0.109

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title coordination polymer, also called catena -poly-[[aquabis(1H-imidazole-N3)copper(II)]-

-phenylenedioxy-diacetato-2O:O0], [Cu(1,4-BDOA)(C

3H4N2)2(H2O)]n(where

1,4-BDOA2ÿis benzene-1,4-dioxyacetate, C

10H8O6), the CuII

atom is ®ve-coordinate involving two O atoms of the 1,4-BDOA ligand, two N atoms of imidazole ligands and one water molecule, displaying a distorted square-pyramidal coordination geometry. The CuII atoms are bridged by

carboxylate groups, forming a one-dimensional zigzag chain. The adjacent Cu Cu distance is 12.656 (5) AÊ. Furthermore, such chains are linked by hydrogen-bond interactions, resulting in a three-dimensional network.

Comment

Phenylenedioxydiacetic acids (BDOAH2), biologically active

compounds that are widely used in agriculture, are a family of ¯exible multidentate carboxylate ligands, which could possess the multiple coordination modes and the capability of forming coordination architectures of diverse sizes and shapes. However, only a few complexes with BDOAH2ligands have

been structurally characterized thus far, and the majority of these contain 1,2-BDOAH2(Smithet al., 1991; McCannet al.,

1994). In particular, the coordination chemistry of (p -phenylenedioxy)diacetic acid (or benzene-1,4-dioxyacetic acid) has been documented very little to date. As a contrib-ution to this ®eld, we have previously reported the structures of two one-dimensional chain complexes containing the 1,3-BDOAH2 ligand, {[Zn(1,3-BDOA)(H2O)2]2H2O}n (Gao et

al., 2004) and {[Cu(1,3-BDOA)(bipy)]H2O}n, (II), in which

the CuIIatom shows a square-pyramidal con®guration (Liuet

al., 2004).

In the present report, we have used 1,4-BDOAH2 and

imidazole instead of 1,3±BDOAH2and 2,2-bipy in the

reac-tion and synthesized a new CuII polymer, viz.

[Cu(1,4-BDOA)(C3H4N2)2(H2O)]n, (I), the crystal structure of which

is described here.

(2)

As illustrated in Fig. 1, the carboxylate group is bound to the CuII atom in the monodentate fashion. Each CuII ion

displays a ®ve-coordinate distorted square-pyramidal con®g-uration, de®ned by two N atoms from two imidazole ligands [mean CuÐN = 1.990 (3) AÊ], two carboxyl O atoms from the 1,4-BDOA ligand and one water molecule. Atoms O1, O5, N1 and N3 de®ne a square plane [r.m.s. = 0.01(4) AÊ], in which the CuIIdeviates by 0.09 (5) AÊ from the plane, whilst the water

molecule (O1W) occupies the apical site, with a CuÐO1W

bond distance of 2.243 (2) AÊ. The CuÐOcarboxyldistances are

1.994 (2) and 2.005 (2) AÊ, which are longer than the corres-ponding CuÐO distances of 1.957 (3) and 1.941 (3) AÊ in (II). This is also re¯ected by the fact that the two oxyacetate groups are substantially twisted out the benzene ring plane in (I), with the C9ÐO3ÐC8ÐC7 and C12ÐO4ÐC15ÐC16 torsion angles beingÿ71.9 (4) and 74.8 (3), respectively, whereas the

torsion angles of the two oxyacetate groups and phenyl ring in (II) are 163.4 (3) andÿ82.0 (3), respectively, and suggest the

1,4-BDOA2ÿ ligand has more conformational ¯exibility than

that of the 1,3-BDOA2ÿligand.

It should be noted that the O1ÐC7 [1.263 (4) AÊ] and O5Ð C16 [1.278 (4) AÊ] distances are longer than the O2ÐC7 [1.237 (4) AÊ] and O6ÐC16 [1.222 (4) AÊ] distances, in accord with greater double-bond character of the latter bonds. The dihedral angles between two imidazole molecules and benzene rings are 30.6 (3) and 83.4 (3), and the dihedral angle

between the two imidazole ligands is 81.9 (3).

Each 1,4-BDOA2ÿgroup serves as a bidentate ligand to link

two CuIIatoms, giving rise to a one-dimensional zigzag chain

structure. In the chain, the adjacent Cu Cu distance is

12.656 (5) AÊ, while the interval Cu Cu distance within the chain is 21.285 (5) AÊ. Furthermore, the chains are connected through intermolecular hydrogen bonds involving the unco-ordinated imidazole N atoms, the counco-ordinated water molecule, carboxyl O atoms and ether O atoms of the 1,4-BDOA2ÿ

groups, leading to a three-dimensional hydrogen-bonding network (for details, see Table 2 and Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoi-chiometric amount of Cu(acetate)2H2O (2.00 g, 10 mmol), NaOH

(0.80 g, 20 mmol) and imidazole (1.36 g, 20 mmol) to a hot aqueous solution of 1,4±BDOAH2(2.26 g, 10 mmol), with subsequent

®ltra-tion. Blue crystals were obtained at room temperature over several days. Analysis calculated for C16H18CuN4O7: C 43.49, H 4.11, N

12.68%; found: C 43.31, H 4.02, N 12.75%.

Crystal data

[Cu(C10H8O6)(C3H4N2)2(H2O)]

Mr= 441.89 Monoclinic,P21=n

a= 16.699 (3) AÊ

b= 6.0327 (12) AÊ

c= 18.977 (4) AÊ

= 107.06 (3) V= 1827.6 (7) AÊ3

Z= 4

Dx= 1.606 Mg mÿ3 MoKradiation

Cell parameters from 10508 re¯ections

= 3.2±27.5

= 1.24 mmÿ1

T= 293 (2) K Prism, blue

0.390.250.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.643,Tmax= 0.807

11517 measured re¯ections

4153 independent re¯ections 3177 re¯ections withI> 2(I)

Rint= 0.039

max= 27.5

h=ÿ21!21

k=ÿ7!7

l=ÿ24!24

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.054

wR(F2) = 0.109

S= 1.05 4153 re¯ections 265 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0548P)2 + 0.7112P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.42 e AÊÿ3

min=ÿ0.29 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). Cu1ÐN1 1.987 (3) Cu1ÐN3 1.994 (2) Cu1ÐO1 1.994 (2) Cu1ÐO5 2.005 (2) Cu1ÐO1W 2.243 (2)

O1ÐC7 1.263 (4) O2ÐC7 1.237 (4) O5ÐC16 1.278 (4) O6ÐC16 1.222 (4)

N1ÐCu1ÐN3 173.5 (1) N1ÐCu1ÐO1 91.9 (1) N1ÐCu1ÐO5 88.8 (1) N1ÐCu1ÐO1W 95.1 (1) N3ÐCu1ÐO1 88.2 (1)

N3ÐCu1ÐO5 90.6 (1) N3ÐCu1ÐO1W 91.4 (1) O1ÐCu1ÐO5 175.1 (1) O1ÐCu1ÐO1W 92.63 (9) O5ÐCu1ÐO1W 92.14 (9)

metal-organic papers

m1268

Shan Gaoet al. [Cu(C10H8O6)(C3H4N2)2(H2O)] Acta Cryst.(2004). E60, m1267±m1269 Figure 2

Packing diagram of the title complex. H bonds are indicated by dashed lines and all CÐH H atoms are omitted for clarity.

Figure 1

(3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH17 O2i 0.89 (4) 1.98 (4) 2.829 (4) 160 (4)

N4ÐH18 O5ii 0.89 (3) 1.98 (3) 2.874 (3) 173 (4)

O1WÐH1W1 O2iii 0.85 (3) 1.94 (3) 2.780 (3) 169 (3)

O1WÐH1W2 O6iii 0.85 (3) 1.91 (3) 2.745 (3) 167 (3)

Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii)3

2ÿx;yÿ12;12ÿz; (iii)x;1‡y;z.

C-bound H atoms were placed in calculated positions, with CÐH = 0.93 (aromatic) or 0.97 AÊ (aliphatic) and Uiso(H) = 1.2Ueq(C), and

were re®ned in the riding-model approximation. The water H atoms and the imidazole NÐH atoms were located in a difference Fourier map and re®ned with OÐH, H H and NÐH distance restraints of 0.85 (1), 1.39 (1) and 0.90 (1) AÊ, respectively, and with Uiso(H) =

1.5Ueq(O,N).

Data collection: RAPID-AUTO(Rigaku, 1998); cell re®nement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Scienti®c Fund of Remarkable Teachers of Heilongjiang Province, and Heilongjiang University for supporting this work.

References

Gao, S., Li, J. R., Liu, J. W. & Huo, L. H. (2004).Acta Cryst.E60, m113±m115. Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. & Zhao, J. G. (2004).Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.),20, 707±710.

McCann, M., Devereux, M., Cardin, C. & Convery, M. (1994).Polyhedron,13, 221±226.

Mirci, L. E. (1990). Rom. Patent No. 07 43 205.

Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure.Rigaku/MSC, 9009 New Trails Drive,

The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Smith, G., Bott, R. C., Sagatys, D. S. & Kennard, C. H. L. (1991).Polyhedron,

10, 1565±1568.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1267–m1269

supporting information

Acta Cryst. (2004). E60, m1267–m1269 [https://doi.org/10.1107/S1600536804019798]

catena

-Poly[[aquabis(1

H

-imidazole-

κ

N

3

)copper(II)]-

µ

-benzene-1,4-dioxy-acetato-

κ

2

O

:

O

]

Shan Gao, Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

′Catena-poly[aquabis(1H-imidazole-KN3)copper(II)-µ-benzene- phenylenedioxydiacetato-κ2O,O]

Crystal data

[Cu(C10H8O6)(C3H4N2)2(H2O)]

Mr = 441.89

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 16.699 (3) Å

b = 6.0327 (12) Å

c = 18.977 (4) Å

β = 107.06 (3)°

V = 1827.6 (7) Å3

Z = 4

F(000) = 908

Dx = 1.606 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 10508 reflections

θ = 3.2–27.5°

µ = 1.24 mm−1

T = 293 K Prism, blue

0.39 × 0.25 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.643, Tmax = 0.807

11517 measured reflections 4153 independent reflections 3177 reflections with I > 2σ(I)

Rint = 0.039

θmax = 27.5°, θmin = 3.2°

h = −21→21

k = −7→7

l = −24→24

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.054

wR(F2) = 0.109

S = 1.05 4153 reflections 265 parameters 5 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0548P)2 + 0.7112P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.42 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1267–m1269

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.63669 (2) 0.81765 (6) 0.372445 (19) 0.02824 (12) N1 0.63381 (17) 0.8530 (5) 0.47578 (14) 0.0365 (6) N2 0.6012 (2) 0.8028 (6) 0.57825 (15) 0.0477 (8) N3 0.64017 (15) 0.7450 (4) 0.27090 (13) 0.0309 (6) N4 0.66744 (19) 0.5956 (5) 0.17547 (15) 0.0407 (7) O1 0.51205 (13) 0.8041 (4) 0.33480 (12) 0.0370 (5) O2 0.50512 (14) 0.4429 (4) 0.35913 (13) 0.0412 (6) O3 0.34521 (14) 0.4211 (4) 0.26329 (12) 0.0389 (5) O4 0.42301 (14) 0.0426 (4) 0.02567 (12) 0.0409 (6) O5 0.76199 (13) 0.8028 (4) 0.40997 (11) 0.0362 (5) O6 0.75911 (15) 0.4467 (4) 0.44132 (14) 0.0477 (6) O1W 0.63894 (14) 1.1822 (4) 0.34993 (13) 0.0393 (5) C1 0.5808 (2) 0.7593 (7) 0.50618 (18) 0.0498 (10) C2 0.6716 (2) 0.9278 (6) 0.59623 (19) 0.0447 (9) C3 0.6911 (2) 0.9615 (6) 0.53256 (19) 0.0423 (8) C4 0.5926 (2) 0.8475 (6) 0.20746 (17) 0.0385 (8) C5 0.6091 (2) 0.7551 (6) 0.14872 (17) 0.0397 (8) C6 0.6849 (2) 0.5936 (6) 0.24909 (18) 0.0374 (7) C7 0.47468 (19) 0.6206 (5) 0.33111 (16) 0.0308 (7) C8 0.3812 (2) 0.6311 (5) 0.28965 (19) 0.0383 (8) C9 0.36731 (18) 0.3315 (5) 0.20443 (16) 0.0313 (7) C10 0.4250 (2) 0.4251 (6) 0.17340 (18) 0.0365 (7) C11 0.44057 (19) 0.3224 (6) 0.11384 (16) 0.0356 (7) C12 0.40035 (18) 0.1291 (5) 0.08443 (16) 0.0303 (7) C13 0.34308 (19) 0.0348 (6) 0.11569 (16) 0.0336 (7) C14 0.32729 (18) 0.1363 (5) 0.17548 (17) 0.0336 (7) C15 0.38411 (19) −0.1563 (6) −0.00764 (18) 0.0375 (7) C16 0.79387 (19) 0.6261 (5) 0.44384 (16) 0.0311 (7) H1W1 0.5939 (11) 1.247 (5) 0.350 (2) 0.059* H1W2 0.6806 (12) 1.246 (5) 0.3794 (17) 0.059*

H1 0.5351 0.6739 0.4807 0.060*

H2 0.7008 0.9799 0.6428 0.054*

H3 0.7361 1.0449 0.5279 0.051*

H4 0.5549 0.9626 0.2056 0.046*

H5 0.5852 0.7930 0.0995 0.048*

H6 0.7231 0.4988 0.2804 0.045*

H8B 0.3516 0.6926 0.3221 0.046*

H8A 0.3730 0.7310 0.2481 0.046*

H10 0.4527 0.5553 0.1925 0.044*

H11 0.4792 0.3850 0.0930 0.043*

H13 0.3156 −0.0957 0.0966 0.040*

H14 0.2892 0.0726 0.1967 0.040*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1267–m1269

H18 0.688 (2) 0.495 (5) 0.1508 (19) 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0303 (2) 0.0320 (2) 0.02456 (18) −0.00087 (17) 0.01142 (13) 0.00066 (17) N1 0.0411 (16) 0.0410 (16) 0.0301 (13) −0.0076 (12) 0.0147 (12) −0.0038 (12) N2 0.0582 (19) 0.061 (2) 0.0309 (14) −0.0131 (16) 0.0235 (13) −0.0010 (15) N3 0.0342 (14) 0.0324 (14) 0.0276 (12) 0.0031 (11) 0.0114 (11) 0.0014 (11) N4 0.0481 (17) 0.0457 (17) 0.0339 (15) −0.0028 (14) 0.0209 (13) −0.0098 (13) O1 0.0335 (12) 0.0421 (13) 0.0364 (12) −0.0045 (10) 0.0117 (9) −0.0031 (11) O2 0.0358 (13) 0.0451 (14) 0.0422 (13) 0.0027 (11) 0.0105 (10) 0.0038 (11) O3 0.0327 (12) 0.0479 (14) 0.0391 (12) −0.0073 (10) 0.0151 (10) −0.0099 (11) O4 0.0356 (13) 0.0537 (15) 0.0358 (12) −0.0101 (11) 0.0141 (10) −0.0132 (11) O5 0.0347 (12) 0.0444 (14) 0.0312 (11) 0.0042 (10) 0.0127 (9) 0.0104 (11) O6 0.0452 (14) 0.0422 (15) 0.0493 (15) −0.0099 (12) 0.0037 (11) −0.0022 (12) O1W 0.0372 (12) 0.0297 (12) 0.0511 (14) −0.0013 (10) 0.0133 (11) −0.0037 (11) C1 0.055 (2) 0.066 (3) 0.0315 (17) −0.0239 (19) 0.0181 (16) −0.0038 (17) C2 0.052 (2) 0.052 (2) 0.0319 (17) −0.0062 (18) 0.0145 (16) −0.0127 (16) C3 0.0435 (19) 0.044 (2) 0.0433 (19) −0.0104 (16) 0.0185 (16) −0.0101 (16) C4 0.0390 (18) 0.042 (2) 0.0336 (16) 0.0021 (15) 0.0084 (14) 0.0058 (15) C5 0.0440 (19) 0.051 (2) 0.0261 (15) −0.0080 (16) 0.0128 (14) 0.0031 (15) C6 0.0429 (19) 0.0381 (18) 0.0339 (17) 0.0074 (15) 0.0154 (14) 0.0001 (15) C7 0.0291 (16) 0.0420 (19) 0.0253 (14) 0.0033 (13) 0.0142 (12) −0.0041 (13) C8 0.0320 (17) 0.0371 (19) 0.0453 (19) 0.0028 (13) 0.0104 (14) −0.0097 (15) C9 0.0270 (15) 0.0383 (17) 0.0281 (14) 0.0010 (13) 0.0072 (12) −0.0004 (14) C10 0.0364 (18) 0.0374 (18) 0.0360 (17) −0.0115 (14) 0.0112 (14) −0.0046 (15) C11 0.0332 (16) 0.0423 (18) 0.0332 (16) −0.0087 (15) 0.0129 (13) 0.0021 (15) C12 0.0253 (15) 0.0371 (18) 0.0270 (14) 0.0012 (12) 0.0054 (12) 0.0012 (13) C13 0.0309 (17) 0.0367 (18) 0.0314 (17) −0.0063 (13) 0.0066 (13) −0.0027 (14) C14 0.0266 (16) 0.0372 (19) 0.0380 (17) −0.0019 (13) 0.0112 (13) 0.0081 (14) C15 0.0332 (17) 0.043 (2) 0.0350 (16) 0.0009 (15) 0.0077 (13) −0.0064 (15) C16 0.0309 (16) 0.0410 (19) 0.0235 (14) −0.0001 (13) 0.0112 (12) −0.0015 (13)

Geometric parameters (Å, º)

Cu1—N1 1.987 (3) C1—H1 0.9300

Cu1—N3 1.994 (2) C2—C3 1.355 (5)

Cu1—O1 1.994 (2) C2—H2 0.9300

Cu1—O5 2.005 (2) C3—H3 0.9300

Cu1—O1W 2.243 (2) C4—C5 1.345 (5)

O1—C7 1.263 (4) C4—H4 0.9300

O2—C7 1.237 (4) C5—H5 0.9300

O5—C16 1.278 (4) C6—H6 0.9300

O6—C16 1.222 (4) C7—C8 1.530 (4)

N1—C1 1.317 (4) C8—H8A 0.9700

N1—C3 1.378 (4) C8—H8B 0.9700

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1267–m1269

N2—C2 1.354 (5) C9—C14 1.385 (4)

N2—H17 0.89 (4) C10—C11 1.379 (4)

N3—C4 1.379 (4) C10—H10 0.9300

N3—C6 1.321 (4) C11—C12 1.379 (4)

N4—C5 1.358 (5) C11—H11 0.9300

N4—C6 1.341 (4) C12—C13 1.387 (4)

N4—H18 0.89 (3) C13—C14 1.381 (4)

O3—C9 1.385 (4) C13—H13 0.9300

O3—C8 1.428 (4) C14—H14 0.9300

O4—C12 1.381 (4) C15—C16i 1.529 (4)

O4—C15 1.421 (4) C15—H15A 0.9700

O1W—H1W1 0.85 (3) C15—H15B 0.9700

O1W—H1W2 0.85 (3) C16—C15ii 1.529 (4)

N1—Cu1—N3 173.5 (1) C2—C3—N1 109.5 (3)

N1—Cu1—O1 91.9 (1) C2—C3—H3 125.3

N1—Cu1—O5 88.8 (1) C3—N1—Cu1 127.6 (2)

N1—Cu1—O1W 95.1 (1) C3—C2—H2 127.0

N3—Cu1—O1 88.2 (1) C4—N3—Cu1 124.9 (2) N3—Cu1—O5 90.6 (1) C4—C5—N4 106.4 (3)

N3—Cu1—O1W 91.4 (1) C4—C5—H5 126.8

O1—Cu1—O5 175.1 (1) C5—N4—H18 129 (3) O1—Cu1—O1W 92.63 (9) C5—C4—N3 109.4 (3)

O5—Cu1—O1W 92.14 (9) C5—C4—H4 125.3

Cu1—O1W—H1W1 113 (3) C6—N3—C4 105.7 (3) Cu1—O1W—H1W2 112 (3) C6—N3—Cu1 129.4 (2) N1—C1—N2 111.2 (3) C6—N4—C5 108.0 (3)

N1—C1—H1 124.4 C6—N4—H18 123 (3)

N1—C3—H3 125.3 C7—O1—Cu1 120.2 (2)

N2—C1—H1 124.4 C7—C8—H8A 108.8

N2—C2—C3 106.0 (3) C7—C8—H8B 108.8

N2—C2—H2 127.0 C9—O3—C8 116.4 (2)

N3—C4—H4 125.3 C9—C10—H10 120.4

N3—C6—N4 110.5 (3) C9—C14—H14 119.4

N3—C6—H6 124.8 C10—C11—H11 119.2

N4—C5—H5 126.8 C11—C10—C9 119.1 (3)

N4—C6—H6 124.8 C11—C10—H10 120.4

O1—C7—C8 113.9 (3) C11—C12—O4 115.5 (3) O2—C7—O1 127.0 (3) C11—C12—C13 119.3 (3) O2—C7—C8 119.0 (3) C12—O4—C15 118.7 (2) O3—C8—C7 113.8 (3) C12—C11—C10 121.7 (3)

O3—C8—H8A 108.8 C12—C11—H11 119.2

O3—C8—H8B 108.8 C12—C13—H13 120.3

O3—C9—C10 124.5 (3) C13—C14—C9 121.1 (3) O4—C12—C13 125.2 (3) C13—C14—H14 119.4 O4—C15—C16i 114.1 (3) C14—C9—O3 116.1 (3)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m1267–m1269

O5—C16—C15ii 113.3 (3) C14—C13—H13 120.3

O6—C16—O5 126.6 (3) C16—O5—Cu1 117.0 (2) O6—C16—C15ii 120.1 (3) C16i—C15—H15A 108.7

C1—N1—Cu1 126.9 (2) C16i—C15—H15B 108.7

C1—N1—C3 105.2 (3) H1W1—O1W—H1W2 110 (2)

C1—N2—C2 108.0 (3) H8B—C8—H8A 107.7

C1—N2—H17 122 (3) H15A—C15—H15B 107.6 C2—N2—H17 130 (3)

Cu1—N1—C1—N2 174.4 (3) O1W—Cu1—N1—C1 129.0 (3) Cu1—N1—C3—C2 −173.4 (2) O1W—Cu1—N1—C3 −58.0 (3) Cu1—N3—C4—C5 −178.7 (2) O1W—Cu1—N3—C4 −44.7 (3) Cu1—N3—C6—N4 178.7 (2) O1W—Cu1—N3—C6 136.5 (3) Cu1—O1—C7—O2 12.3 (4) O1W—Cu1—O1—C7 176.3 (2) Cu1—O1—C7—C8 −170.45 (19) O1W—Cu1—O5—C16 167.4 (2) Cu1—O5—C16—O6 18.5 (4) C1—N1—C3—C2 0.8 (4) Cu1—O5—C16—C15ii −160.3 (2) C1—N2—C2—C3 1.5 (5)

N1—Cu1—O1—C7 −88.5 (2) C2—N2—C1—N1 −1.1 (5) N1—Cu1—O5—C16 72.3 (2) C3—N1—C1—N2 0.2 (4) N2—C2—C3—N1 −1.4 (4) C4—N3—C6—N4 −0.3 (4) N3—Cu1—O1—C7 84.9 (2) C5—N4—C6—N3 0.0 (4) N3—Cu1—O5—C16 −101.1 (2) C6—N3—C4—C5 0.4 (4) N3—C4—C5—N4 −0.4 (4) C6—N4—C5—C4 0.2 (4) O1—Cu1—N1—C1 36.2 (3) C8—O3—C9—C10 4.1 (4) O1—Cu1—N1—C3 −150.8 (3) C8—O3—C9—C14 −175.2 (3) O1—Cu1—N3—C4 47.9 (3) C9—O3—C8—C7 −71.9 (4) O1—Cu1—N3—C6 −131.0 (3) C9—C10—C11—C12 0.0 (5) O1—C7—C8—O3 159.6 (3) C10—C9—C14—C13 −0.8 (5) O2—C7—C8—O3 −22.9 (4) C10—C11—C12—O4 −179.0 (3) O3—C9—C10—C11 −178.7 (3) C10—C11—C12—C13 −0.4 (5) O3—C9—C14—C13 178.6 (3) C11—C12—C13—C14 0.2 (5) O4—C12—C13—C14 178.7 (3) C12—O4—C15—C16i 74.8 (3)

O5—Cu1—N1—C1 −138.9 (3) C12—C13—C14—C9 0.4 (5) O5—Cu1—N1—C3 34.0 (3) C14—C9—C10—C11 0.6 (5) O5—Cu1—N3—C4 −136.9 (3) C15—O4—C12—C11 −179.9 (3) O5—Cu1—N3—C6 44.3 (3) C15—O4—C12—C13 1.6 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H17···O2iii 0.89 (4) 1.98 (4) 2.829 (4) 160 (4)

N2—H17···O3iii 0.89 (4) 2.65 (4) 3.177 (4) 118 (3)

N4—H18···O5iv 0.89 (3) 1.98 (3) 2.874 (3) 173 (4)

O1W—H1W1···O2v 0.85 (3) 1.94 (3) 2.780 (3) 169 (3)

O1W—H1W2···O6v 0.85 (3) 1.91 (3) 2.745 (3) 167 (3)

References

Related documents

deviation increase in high-school value added increases the average test score of its students by 6.6% of a.. student-level

F) Evaluation of radiation risks and optimisation of protection. Radiation dosimetry provides the concepts, procedures and methods for the determination of the amount of

In this research, correlation is used to determine the data correlation between the dependent variables (ROA) and independent variables (CGI, Current Ratio, Credit Risk,

Our data suggest that ERAD of nascent POMC proteins, presumably in the misfolded confor- mation, is a prerequisite for maturation and exit of other POMC molecules from the ER,

De: im (in+dem) internationalen , these words often remain unaligned resulting in gaps in the sequences, and so fragmented paral- lel segments are formed. To allow a small num- ber

This study aims to study impact of personality traits- Openness, Conscientiousness, Extraversion, Agreeableness ad Neuroticism- on Impulse Buying

3.1 Vanilla Transformer Language Models In order to apply Transformer or self-attention to language modeling, the central problem is how to train a Transformer to effectively encode

These features define six aspectual classes: Only dynamic predicates can be bounded or not, and only bounded predicates can be extended or punctual, and introduce an explicit change