metal-organic papers
Acta Cryst.(2004). E60, m1267±m1269 DOI: 10.1107/S1600536804019798 Shan Gaoet al. [Cu(C10H8O6)(C3H4N2)2(H2O)]
m1267
Acta Crystallographica Section EStructure Reports Online
ISSN 1600-5368
catena
-Poly[[aquabis(1
H
-imidazole-
j
N
3)copper(II)]-l
-benzene-1,4-dioxyacetato-
j
2O
:
O
000]
Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
Correspondence e-mail: [email protected]
Key indicators Single-crystal X-ray study
T= 293 K
Mean(C±C) = 0.005 AÊ
Rfactor = 0.054
wRfactor = 0.109
Data-to-parameter ratio = 15.7
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved
In the title coordination polymer, also called catena -poly-[[aquabis(1H-imidazole-N3)copper(II)]-
-phenylenedioxy-diacetato-2O:O0], [Cu(1,4-BDOA)(C
3H4N2)2(H2O)]n(where
1,4-BDOA2ÿis benzene-1,4-dioxyacetate, C
10H8O6), the CuII
atom is ®ve-coordinate involving two O atoms of the 1,4-BDOA ligand, two N atoms of imidazole ligands and one water molecule, displaying a distorted square-pyramidal coordination geometry. The CuII atoms are bridged by
carboxylate groups, forming a one-dimensional zigzag chain. The adjacent Cu Cu distance is 12.656 (5) AÊ. Furthermore, such chains are linked by hydrogen-bond interactions, resulting in a three-dimensional network.
Comment
Phenylenedioxydiacetic acids (BDOAH2), biologically active
compounds that are widely used in agriculture, are a family of ¯exible multidentate carboxylate ligands, which could possess the multiple coordination modes and the capability of forming coordination architectures of diverse sizes and shapes. However, only a few complexes with BDOAH2ligands have
been structurally characterized thus far, and the majority of these contain 1,2-BDOAH2(Smithet al., 1991; McCannet al.,
1994). In particular, the coordination chemistry of (p -phenylenedioxy)diacetic acid (or benzene-1,4-dioxyacetic acid) has been documented very little to date. As a contrib-ution to this ®eld, we have previously reported the structures of two one-dimensional chain complexes containing the 1,3-BDOAH2 ligand, {[Zn(1,3-BDOA)(H2O)2]2H2O}n (Gao et
al., 2004) and {[Cu(1,3-BDOA)(bipy)]H2O}n, (II), in which
the CuIIatom shows a square-pyramidal con®guration (Liuet
al., 2004).
In the present report, we have used 1,4-BDOAH2 and
imidazole instead of 1,3±BDOAH2and 2,2-bipy in the
reac-tion and synthesized a new CuII polymer, viz.
[Cu(1,4-BDOA)(C3H4N2)2(H2O)]n, (I), the crystal structure of which
is described here.
As illustrated in Fig. 1, the carboxylate group is bound to the CuII atom in the monodentate fashion. Each CuII ion
displays a ®ve-coordinate distorted square-pyramidal con®g-uration, de®ned by two N atoms from two imidazole ligands [mean CuÐN = 1.990 (3) AÊ], two carboxyl O atoms from the 1,4-BDOA ligand and one water molecule. Atoms O1, O5, N1 and N3 de®ne a square plane [r.m.s. = 0.01(4) AÊ], in which the CuIIdeviates by 0.09 (5) AÊ from the plane, whilst the water
molecule (O1W) occupies the apical site, with a CuÐO1W
bond distance of 2.243 (2) AÊ. The CuÐOcarboxyldistances are
1.994 (2) and 2.005 (2) AÊ, which are longer than the corres-ponding CuÐO distances of 1.957 (3) and 1.941 (3) AÊ in (II). This is also re¯ected by the fact that the two oxyacetate groups are substantially twisted out the benzene ring plane in (I), with the C9ÐO3ÐC8ÐC7 and C12ÐO4ÐC15ÐC16 torsion angles beingÿ71.9 (4) and 74.8 (3), respectively, whereas the
torsion angles of the two oxyacetate groups and phenyl ring in (II) are 163.4 (3) andÿ82.0 (3), respectively, and suggest the
1,4-BDOA2ÿ ligand has more conformational ¯exibility than
that of the 1,3-BDOA2ÿligand.
It should be noted that the O1ÐC7 [1.263 (4) AÊ] and O5Ð C16 [1.278 (4) AÊ] distances are longer than the O2ÐC7 [1.237 (4) AÊ] and O6ÐC16 [1.222 (4) AÊ] distances, in accord with greater double-bond character of the latter bonds. The dihedral angles between two imidazole molecules and benzene rings are 30.6 (3) and 83.4 (3), and the dihedral angle
between the two imidazole ligands is 81.9 (3).
Each 1,4-BDOA2ÿgroup serves as a bidentate ligand to link
two CuIIatoms, giving rise to a one-dimensional zigzag chain
structure. In the chain, the adjacent Cu Cu distance is
12.656 (5) AÊ, while the interval Cu Cu distance within the chain is 21.285 (5) AÊ. Furthermore, the chains are connected through intermolecular hydrogen bonds involving the unco-ordinated imidazole N atoms, the counco-ordinated water molecule, carboxyl O atoms and ether O atoms of the 1,4-BDOA2ÿ
groups, leading to a three-dimensional hydrogen-bonding network (for details, see Table 2 and Fig. 2).
Experimental
Benzene-1,4-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoi-chiometric amount of Cu(acetate)2H2O (2.00 g, 10 mmol), NaOH
(0.80 g, 20 mmol) and imidazole (1.36 g, 20 mmol) to a hot aqueous solution of 1,4±BDOAH2(2.26 g, 10 mmol), with subsequent
®ltra-tion. Blue crystals were obtained at room temperature over several days. Analysis calculated for C16H18CuN4O7: C 43.49, H 4.11, N
12.68%; found: C 43.31, H 4.02, N 12.75%.
Crystal data
[Cu(C10H8O6)(C3H4N2)2(H2O)]
Mr= 441.89 Monoclinic,P21=n
a= 16.699 (3) AÊ
b= 6.0327 (12) AÊ
c= 18.977 (4) AÊ
= 107.06 (3) V= 1827.6 (7) AÊ3
Z= 4
Dx= 1.606 Mg mÿ3 MoKradiation
Cell parameters from 10508 re¯ections
= 3.2±27.5
= 1.24 mmÿ1
T= 293 (2) K Prism, blue
0.390.250.18 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
!scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
Tmin= 0.643,Tmax= 0.807
11517 measured re¯ections
4153 independent re¯ections 3177 re¯ections withI> 2(I)
Rint= 0.039
max= 27.5
h=ÿ21!21
k=ÿ7!7
l=ÿ24!24
Re®nement
Re®nement onF2
R[F2> 2(F2)] = 0.054
wR(F2) = 0.109
S= 1.05 4153 re¯ections 265 parameters
H atoms treated by a mixture of independent and constrained re®nement
w= 1/[2(F
o2) + (0.0548P)2 + 0.7112P]
whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001
max= 0.42 e AÊÿ3
min=ÿ0.29 e AÊÿ3
Table 1
Selected geometric parameters (AÊ,). Cu1ÐN1 1.987 (3) Cu1ÐN3 1.994 (2) Cu1ÐO1 1.994 (2) Cu1ÐO5 2.005 (2) Cu1ÐO1W 2.243 (2)
O1ÐC7 1.263 (4) O2ÐC7 1.237 (4) O5ÐC16 1.278 (4) O6ÐC16 1.222 (4)
N1ÐCu1ÐN3 173.5 (1) N1ÐCu1ÐO1 91.9 (1) N1ÐCu1ÐO5 88.8 (1) N1ÐCu1ÐO1W 95.1 (1) N3ÐCu1ÐO1 88.2 (1)
N3ÐCu1ÐO5 90.6 (1) N3ÐCu1ÐO1W 91.4 (1) O1ÐCu1ÐO5 175.1 (1) O1ÐCu1ÐO1W 92.63 (9) O5ÐCu1ÐO1W 92.14 (9)
metal-organic papers
m1268
Shan Gaoet al. [Cu(C10H8O6)(C3H4N2)2(H2O)] Acta Cryst.(2004). E60, m1267±m1269 Figure 2Packing diagram of the title complex. H bonds are indicated by dashed lines and all CÐH H atoms are omitted for clarity.
Figure 1
Table 2
Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
N2ÐH17 O2i 0.89 (4) 1.98 (4) 2.829 (4) 160 (4)
N4ÐH18 O5ii 0.89 (3) 1.98 (3) 2.874 (3) 173 (4)
O1WÐH1W1 O2iii 0.85 (3) 1.94 (3) 2.780 (3) 169 (3)
O1WÐH1W2 O6iii 0.85 (3) 1.91 (3) 2.745 (3) 167 (3)
Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii)3
2ÿx;yÿ12;12ÿz; (iii)x;1y;z.
C-bound H atoms were placed in calculated positions, with CÐH = 0.93 (aromatic) or 0.97 AÊ (aliphatic) and Uiso(H) = 1.2Ueq(C), and
were re®ned in the riding-model approximation. The water H atoms and the imidazole NÐH atoms were located in a difference Fourier map and re®ned with OÐH, H H and NÐH distance restraints of 0.85 (1), 1.39 (1) and 0.90 (1) AÊ, respectively, and with Uiso(H) =
1.5Ueq(O,N).
Data collection: RAPID-AUTO(Rigaku, 1998); cell re®nement:
RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.
The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Scienti®c Fund of Remarkable Teachers of Heilongjiang Province, and Heilongjiang University for supporting this work.
References
Gao, S., Li, J. R., Liu, J. W. & Huo, L. H. (2004).Acta Cryst.E60, m113±m115. Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. & Zhao, J. G. (2004).Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.),20, 707±710.
McCann, M., Devereux, M., Cardin, C. & Convery, M. (1994).Polyhedron,13, 221±226.
Mirci, L. E. (1990). Rom. Patent No. 07 43 205.
Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure.Rigaku/MSC, 9009 New Trails Drive,
The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.
Smith, G., Bott, R. C., Sagatys, D. S. & Kennard, C. H. L. (1991).Polyhedron,
10, 1565±1568.
metal-organic papers
supporting information
sup-1
Acta Cryst. (2004). E60, m1267–m1269
supporting information
Acta Cryst. (2004). E60, m1267–m1269 [https://doi.org/10.1107/S1600536804019798]
catena
-Poly[[aquabis(1
H
-imidazole-
κ
N
3)copper(II)]-
µ
-benzene-1,4-dioxy-acetato-
κ
2O
:
O
′
]
Shan Gao, Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao
′Catena-poly[aquabis(1H-imidazole-KN3)copper(II)-µ-benzene- phenylenedioxydiacetato-κ2O,O′]′
Crystal data
[Cu(C10H8O6)(C3H4N2)2(H2O)]
Mr = 441.89
Monoclinic, P21/n
Hall symbol: -P 2yn
a = 16.699 (3) Å
b = 6.0327 (12) Å
c = 18.977 (4) Å
β = 107.06 (3)°
V = 1827.6 (7) Å3
Z = 4
F(000) = 908
Dx = 1.606 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 10508 reflections
θ = 3.2–27.5°
µ = 1.24 mm−1
T = 293 K Prism, blue
0.39 × 0.25 × 0.18 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 10 pixels mm-1
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
Tmin = 0.643, Tmax = 0.807
11517 measured reflections 4153 independent reflections 3177 reflections with I > 2σ(I)
Rint = 0.039
θmax = 27.5°, θmin = 3.2°
h = −21→21
k = −7→7
l = −24→24
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.054
wR(F2) = 0.109
S = 1.05 4153 reflections 265 parameters 5 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0548P)2 + 0.7112P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001
Δρmax = 0.42 e Å−3
supporting information
sup-2
Acta Cryst. (2004). E60, m1267–m1269
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Cu1 0.63669 (2) 0.81765 (6) 0.372445 (19) 0.02824 (12) N1 0.63381 (17) 0.8530 (5) 0.47578 (14) 0.0365 (6) N2 0.6012 (2) 0.8028 (6) 0.57825 (15) 0.0477 (8) N3 0.64017 (15) 0.7450 (4) 0.27090 (13) 0.0309 (6) N4 0.66744 (19) 0.5956 (5) 0.17547 (15) 0.0407 (7) O1 0.51205 (13) 0.8041 (4) 0.33480 (12) 0.0370 (5) O2 0.50512 (14) 0.4429 (4) 0.35913 (13) 0.0412 (6) O3 0.34521 (14) 0.4211 (4) 0.26329 (12) 0.0389 (5) O4 0.42301 (14) 0.0426 (4) 0.02567 (12) 0.0409 (6) O5 0.76199 (13) 0.8028 (4) 0.40997 (11) 0.0362 (5) O6 0.75911 (15) 0.4467 (4) 0.44132 (14) 0.0477 (6) O1W 0.63894 (14) 1.1822 (4) 0.34993 (13) 0.0393 (5) C1 0.5808 (2) 0.7593 (7) 0.50618 (18) 0.0498 (10) C2 0.6716 (2) 0.9278 (6) 0.59623 (19) 0.0447 (9) C3 0.6911 (2) 0.9615 (6) 0.53256 (19) 0.0423 (8) C4 0.5926 (2) 0.8475 (6) 0.20746 (17) 0.0385 (8) C5 0.6091 (2) 0.7551 (6) 0.14872 (17) 0.0397 (8) C6 0.6849 (2) 0.5936 (6) 0.24909 (18) 0.0374 (7) C7 0.47468 (19) 0.6206 (5) 0.33111 (16) 0.0308 (7) C8 0.3812 (2) 0.6311 (5) 0.28965 (19) 0.0383 (8) C9 0.36731 (18) 0.3315 (5) 0.20443 (16) 0.0313 (7) C10 0.4250 (2) 0.4251 (6) 0.17340 (18) 0.0365 (7) C11 0.44057 (19) 0.3224 (6) 0.11384 (16) 0.0356 (7) C12 0.40035 (18) 0.1291 (5) 0.08443 (16) 0.0303 (7) C13 0.34308 (19) 0.0348 (6) 0.11569 (16) 0.0336 (7) C14 0.32729 (18) 0.1363 (5) 0.17548 (17) 0.0336 (7) C15 0.38411 (19) −0.1563 (6) −0.00764 (18) 0.0375 (7) C16 0.79387 (19) 0.6261 (5) 0.44384 (16) 0.0311 (7) H1W1 0.5939 (11) 1.247 (5) 0.350 (2) 0.059* H1W2 0.6806 (12) 1.246 (5) 0.3794 (17) 0.059*
H1 0.5351 0.6739 0.4807 0.060*
H2 0.7008 0.9799 0.6428 0.054*
H3 0.7361 1.0449 0.5279 0.051*
H4 0.5549 0.9626 0.2056 0.046*
H5 0.5852 0.7930 0.0995 0.048*
H6 0.7231 0.4988 0.2804 0.045*
H8B 0.3516 0.6926 0.3221 0.046*
H8A 0.3730 0.7310 0.2481 0.046*
H10 0.4527 0.5553 0.1925 0.044*
H11 0.4792 0.3850 0.0930 0.043*
H13 0.3156 −0.0957 0.0966 0.040*
H14 0.2892 0.0726 0.1967 0.040*
supporting information
sup-3
Acta Cryst. (2004). E60, m1267–m1269
H18 0.688 (2) 0.495 (5) 0.1508 (19) 0.061*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Cu1 0.0303 (2) 0.0320 (2) 0.02456 (18) −0.00087 (17) 0.01142 (13) 0.00066 (17) N1 0.0411 (16) 0.0410 (16) 0.0301 (13) −0.0076 (12) 0.0147 (12) −0.0038 (12) N2 0.0582 (19) 0.061 (2) 0.0309 (14) −0.0131 (16) 0.0235 (13) −0.0010 (15) N3 0.0342 (14) 0.0324 (14) 0.0276 (12) 0.0031 (11) 0.0114 (11) 0.0014 (11) N4 0.0481 (17) 0.0457 (17) 0.0339 (15) −0.0028 (14) 0.0209 (13) −0.0098 (13) O1 0.0335 (12) 0.0421 (13) 0.0364 (12) −0.0045 (10) 0.0117 (9) −0.0031 (11) O2 0.0358 (13) 0.0451 (14) 0.0422 (13) 0.0027 (11) 0.0105 (10) 0.0038 (11) O3 0.0327 (12) 0.0479 (14) 0.0391 (12) −0.0073 (10) 0.0151 (10) −0.0099 (11) O4 0.0356 (13) 0.0537 (15) 0.0358 (12) −0.0101 (11) 0.0141 (10) −0.0132 (11) O5 0.0347 (12) 0.0444 (14) 0.0312 (11) 0.0042 (10) 0.0127 (9) 0.0104 (11) O6 0.0452 (14) 0.0422 (15) 0.0493 (15) −0.0099 (12) 0.0037 (11) −0.0022 (12) O1W 0.0372 (12) 0.0297 (12) 0.0511 (14) −0.0013 (10) 0.0133 (11) −0.0037 (11) C1 0.055 (2) 0.066 (3) 0.0315 (17) −0.0239 (19) 0.0181 (16) −0.0038 (17) C2 0.052 (2) 0.052 (2) 0.0319 (17) −0.0062 (18) 0.0145 (16) −0.0127 (16) C3 0.0435 (19) 0.044 (2) 0.0433 (19) −0.0104 (16) 0.0185 (16) −0.0101 (16) C4 0.0390 (18) 0.042 (2) 0.0336 (16) 0.0021 (15) 0.0084 (14) 0.0058 (15) C5 0.0440 (19) 0.051 (2) 0.0261 (15) −0.0080 (16) 0.0128 (14) 0.0031 (15) C6 0.0429 (19) 0.0381 (18) 0.0339 (17) 0.0074 (15) 0.0154 (14) 0.0001 (15) C7 0.0291 (16) 0.0420 (19) 0.0253 (14) 0.0033 (13) 0.0142 (12) −0.0041 (13) C8 0.0320 (17) 0.0371 (19) 0.0453 (19) 0.0028 (13) 0.0104 (14) −0.0097 (15) C9 0.0270 (15) 0.0383 (17) 0.0281 (14) 0.0010 (13) 0.0072 (12) −0.0004 (14) C10 0.0364 (18) 0.0374 (18) 0.0360 (17) −0.0115 (14) 0.0112 (14) −0.0046 (15) C11 0.0332 (16) 0.0423 (18) 0.0332 (16) −0.0087 (15) 0.0129 (13) 0.0021 (15) C12 0.0253 (15) 0.0371 (18) 0.0270 (14) 0.0012 (12) 0.0054 (12) 0.0012 (13) C13 0.0309 (17) 0.0367 (18) 0.0314 (17) −0.0063 (13) 0.0066 (13) −0.0027 (14) C14 0.0266 (16) 0.0372 (19) 0.0380 (17) −0.0019 (13) 0.0112 (13) 0.0081 (14) C15 0.0332 (17) 0.043 (2) 0.0350 (16) 0.0009 (15) 0.0077 (13) −0.0064 (15) C16 0.0309 (16) 0.0410 (19) 0.0235 (14) −0.0001 (13) 0.0112 (12) −0.0015 (13)
Geometric parameters (Å, º)
Cu1—N1 1.987 (3) C1—H1 0.9300
Cu1—N3 1.994 (2) C2—C3 1.355 (5)
Cu1—O1 1.994 (2) C2—H2 0.9300
Cu1—O5 2.005 (2) C3—H3 0.9300
Cu1—O1W 2.243 (2) C4—C5 1.345 (5)
O1—C7 1.263 (4) C4—H4 0.9300
O2—C7 1.237 (4) C5—H5 0.9300
O5—C16 1.278 (4) C6—H6 0.9300
O6—C16 1.222 (4) C7—C8 1.530 (4)
N1—C1 1.317 (4) C8—H8A 0.9700
N1—C3 1.378 (4) C8—H8B 0.9700
supporting information
sup-4
Acta Cryst. (2004). E60, m1267–m1269
N2—C2 1.354 (5) C9—C14 1.385 (4)
N2—H17 0.89 (4) C10—C11 1.379 (4)
N3—C4 1.379 (4) C10—H10 0.9300
N3—C6 1.321 (4) C11—C12 1.379 (4)
N4—C5 1.358 (5) C11—H11 0.9300
N4—C6 1.341 (4) C12—C13 1.387 (4)
N4—H18 0.89 (3) C13—C14 1.381 (4)
O3—C9 1.385 (4) C13—H13 0.9300
O3—C8 1.428 (4) C14—H14 0.9300
O4—C12 1.381 (4) C15—C16i 1.529 (4)
O4—C15 1.421 (4) C15—H15A 0.9700
O1W—H1W1 0.85 (3) C15—H15B 0.9700
O1W—H1W2 0.85 (3) C16—C15ii 1.529 (4)
N1—Cu1—N3 173.5 (1) C2—C3—N1 109.5 (3)
N1—Cu1—O1 91.9 (1) C2—C3—H3 125.3
N1—Cu1—O5 88.8 (1) C3—N1—Cu1 127.6 (2)
N1—Cu1—O1W 95.1 (1) C3—C2—H2 127.0
N3—Cu1—O1 88.2 (1) C4—N3—Cu1 124.9 (2) N3—Cu1—O5 90.6 (1) C4—C5—N4 106.4 (3)
N3—Cu1—O1W 91.4 (1) C4—C5—H5 126.8
O1—Cu1—O5 175.1 (1) C5—N4—H18 129 (3) O1—Cu1—O1W 92.63 (9) C5—C4—N3 109.4 (3)
O5—Cu1—O1W 92.14 (9) C5—C4—H4 125.3
Cu1—O1W—H1W1 113 (3) C6—N3—C4 105.7 (3) Cu1—O1W—H1W2 112 (3) C6—N3—Cu1 129.4 (2) N1—C1—N2 111.2 (3) C6—N4—C5 108.0 (3)
N1—C1—H1 124.4 C6—N4—H18 123 (3)
N1—C3—H3 125.3 C7—O1—Cu1 120.2 (2)
N2—C1—H1 124.4 C7—C8—H8A 108.8
N2—C2—C3 106.0 (3) C7—C8—H8B 108.8
N2—C2—H2 127.0 C9—O3—C8 116.4 (2)
N3—C4—H4 125.3 C9—C10—H10 120.4
N3—C6—N4 110.5 (3) C9—C14—H14 119.4
N3—C6—H6 124.8 C10—C11—H11 119.2
N4—C5—H5 126.8 C11—C10—C9 119.1 (3)
N4—C6—H6 124.8 C11—C10—H10 120.4
O1—C7—C8 113.9 (3) C11—C12—O4 115.5 (3) O2—C7—O1 127.0 (3) C11—C12—C13 119.3 (3) O2—C7—C8 119.0 (3) C12—O4—C15 118.7 (2) O3—C8—C7 113.8 (3) C12—C11—C10 121.7 (3)
O3—C8—H8A 108.8 C12—C11—H11 119.2
O3—C8—H8B 108.8 C12—C13—H13 120.3
O3—C9—C10 124.5 (3) C13—C14—C9 121.1 (3) O4—C12—C13 125.2 (3) C13—C14—H14 119.4 O4—C15—C16i 114.1 (3) C14—C9—O3 116.1 (3)
supporting information
sup-5
Acta Cryst. (2004). E60, m1267–m1269
O5—C16—C15ii 113.3 (3) C14—C13—H13 120.3
O6—C16—O5 126.6 (3) C16—O5—Cu1 117.0 (2) O6—C16—C15ii 120.1 (3) C16i—C15—H15A 108.7
C1—N1—Cu1 126.9 (2) C16i—C15—H15B 108.7
C1—N1—C3 105.2 (3) H1W1—O1W—H1W2 110 (2)
C1—N2—C2 108.0 (3) H8B—C8—H8A 107.7
C1—N2—H17 122 (3) H15A—C15—H15B 107.6 C2—N2—H17 130 (3)
Cu1—N1—C1—N2 174.4 (3) O1W—Cu1—N1—C1 129.0 (3) Cu1—N1—C3—C2 −173.4 (2) O1W—Cu1—N1—C3 −58.0 (3) Cu1—N3—C4—C5 −178.7 (2) O1W—Cu1—N3—C4 −44.7 (3) Cu1—N3—C6—N4 178.7 (2) O1W—Cu1—N3—C6 136.5 (3) Cu1—O1—C7—O2 12.3 (4) O1W—Cu1—O1—C7 176.3 (2) Cu1—O1—C7—C8 −170.45 (19) O1W—Cu1—O5—C16 167.4 (2) Cu1—O5—C16—O6 18.5 (4) C1—N1—C3—C2 0.8 (4) Cu1—O5—C16—C15ii −160.3 (2) C1—N2—C2—C3 1.5 (5)
N1—Cu1—O1—C7 −88.5 (2) C2—N2—C1—N1 −1.1 (5) N1—Cu1—O5—C16 72.3 (2) C3—N1—C1—N2 0.2 (4) N2—C2—C3—N1 −1.4 (4) C4—N3—C6—N4 −0.3 (4) N3—Cu1—O1—C7 84.9 (2) C5—N4—C6—N3 0.0 (4) N3—Cu1—O5—C16 −101.1 (2) C6—N3—C4—C5 0.4 (4) N3—C4—C5—N4 −0.4 (4) C6—N4—C5—C4 0.2 (4) O1—Cu1—N1—C1 36.2 (3) C8—O3—C9—C10 4.1 (4) O1—Cu1—N1—C3 −150.8 (3) C8—O3—C9—C14 −175.2 (3) O1—Cu1—N3—C4 47.9 (3) C9—O3—C8—C7 −71.9 (4) O1—Cu1—N3—C6 −131.0 (3) C9—C10—C11—C12 0.0 (5) O1—C7—C8—O3 159.6 (3) C10—C9—C14—C13 −0.8 (5) O2—C7—C8—O3 −22.9 (4) C10—C11—C12—O4 −179.0 (3) O3—C9—C10—C11 −178.7 (3) C10—C11—C12—C13 −0.4 (5) O3—C9—C14—C13 178.6 (3) C11—C12—C13—C14 0.2 (5) O4—C12—C13—C14 178.7 (3) C12—O4—C15—C16i 74.8 (3)
O5—Cu1—N1—C1 −138.9 (3) C12—C13—C14—C9 0.4 (5) O5—Cu1—N1—C3 34.0 (3) C14—C9—C10—C11 0.6 (5) O5—Cu1—N3—C4 −136.9 (3) C15—O4—C12—C11 −179.9 (3) O5—Cu1—N3—C6 44.3 (3) C15—O4—C12—C13 1.6 (4)
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N2—H17···O2iii 0.89 (4) 1.98 (4) 2.829 (4) 160 (4)
N2—H17···O3iii 0.89 (4) 2.65 (4) 3.177 (4) 118 (3)
N4—H18···O5iv 0.89 (3) 1.98 (3) 2.874 (3) 173 (4)
O1W—H1W1···O2v 0.85 (3) 1.94 (3) 2.780 (3) 169 (3)
O1W—H1W2···O6v 0.85 (3) 1.91 (3) 2.745 (3) 167 (3)