• No results found

catena Poly[[zinc(II) μ [2 (2 carboxyl­ato­phenyl­imino­meth­yl)phenolato 1κ3O,N,O′:1′κO′′]] methanol solvate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[zinc(II) μ [2 (2 carboxyl­ato­phenyl­imino­meth­yl)phenolato 1κ3O,N,O′:1′κO′′]] methanol solvate]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1427–m1428 doi:10.1107/S1600536805019823 Juet al. [Zn(C

14H9NO3)]CH4O

m1427

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[zinc(II)-

l

-[2-(2-carboxylatophenyl-iminomethyl)phenolato-1

j

3

O

,

N

,

O

000

:1

000

j

O

000000

]]

methanol solvate]

Wen-Zheng Ju,* Lei Shi, Kun Chen and Jia-Yu Xue

Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People’s Republic of China

Correspondence e-mail: wenzheng_ju@163.com

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.031

wRfactor = 0.086

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, {[Zn(C14H9NO3)]CH3OH}n, is a

poly-nuclear zinc(II) complex. Each ZnIIatom is coordinated by one N and two O atoms of a Schiff base ligand, and another O atom of another Schiff base ligand, forming a severely distorted square-planar geometry.

Comment

Zinc(II) complexes are of great interest in coordination chemistry (Vallee & Auld, 1993; Lipscomb & Stra¨ter, 1996; Hou, 2005). As an extension of work on the structural char-acterization of zinc compounds, the title polymeric zinc(II) compound, (I), is reported.

Compound (I) is a polynuclear zinc(II) complex (Fig. 1). Each ZnIIion is coordinated by one N and two O atoms of a Schiff base ligand, and another O atom of another Schiff base ligand, forming a severely distorted square-planar geometry; the transangles in the ZnO3N square plane are 153.10 (11)

and 162.82 (10) (Table 1). The Zn—N and Zn—O bond

lengths are comparable to the values observed in other zinc(II) complexes (Chisholmet al., 2001). There are no short contacts between the molecules in the crystal structure (Fig. 2).

Experimental

o-Aminobenzoic acid (0.1 mmol, 13.7 mg), salicylaldehyde (0.1 mmol, 12.2 mg) and Zn(CH3COO)22H2O (0.1 mmol, 22.0 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h and filtered. After leaving the filtrate to stand in air for 20 d, colorless block-shaped crystals were formed.

(2)

Crystal data

[Zn(C14H9NO3)]CH4O Mr= 336.63

Monoclinic,P21

a= 9.663 (2) A˚

b= 7.128 (2) A˚

c= 9.922 (2) A˚

= 98.42 (3)

V= 676.0 (3) A˚3

Z= 2

Dx= 1.654 Mg m

3

MoKradiation Cell parameters from 3124

reflections

= 2.7–28.2

= 1.83 mm1

T= 298 (2) K Block, colorless 0.330.280.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.583,Tmax= 0.689

3989 measured reflections

2753 independent reflections 2667 reflections withI> 2(I)

Rint= 0.016

max= 27.5

h=12!12

k=8!9

l=12!7

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.031

wR(F2) = 0.086 S= 1.05 2753 reflections 191 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0507P)2

+ 0.0457P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.58 e A˚

3

min=0.31 e A˚

3

Absolute structure: Flack (1983), 1076 Friedel pairs

Flack parameter: 0.076 (15)

Table 1

Selected geometric parameters (A˚ ,).

Zn1—O1 1.889 (2)

Zn1—N1 1.935 (2)

Zn1—O2 1.936 (2)

Zn1—O3i 1.944 (2)

O1—Zn1—N1 94.95 (10)

O1—Zn1—O2 153.10 (11)

N1—Zn1—O2 92.84 (10)

O1—Zn1—O3i

86.80 (9)

N1—Zn1—O3i 162.82 (10)

O2—Zn1—O3i

93.23 (10)

Symmetry code: (i)xþ2;yþ1 2;zþ1.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 A˚ and an O—H distance of 0.82 A˚, and withUiso(H) = 1.2 or 1.5Ueq(C,O).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank Nanjing University for research funding.

References

Bruker (1998).SMART(Version 5.628) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Chisholm, M. H., Gallucci, J. C. & Zhen, H. (2001).Inorg. Chem.40, 5051– 5054.

Flack, H. D. (1983).Acta Cryst.A39, 876–881. Hou, H.-N. (2005).Acta Cryst.E61, m1197–m1198.

Lipscomb, W. N. & Stra¨ter, N. (1996).Chem. Rev.96, 2375–2434. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[image:2.610.314.563.71.377.2]

Vallee, B. L. & Auld, D. S. (1993).Acc. Chem. Res.26, 543–551.

Figure 1

Two repeat units of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A and unlabelled atoms are at the symmetry position (2x,1

2+y, 1z).

Figure 2

[image:2.610.46.305.74.273.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m1427–m1428

supporting information

Acta Cryst. (2005). E61, m1427–m1428 [https://doi.org/10.1107/S1600536805019823]

catena

-Poly[[zinc(II)-

µ

-[2-(2-carboxylatophenyliminomethyl)-phenolato-1

κ

3

O

,

N

,

O

:1

κ

O

′′

]] methanol solvate]

Wen-Zheng Ju, Lei Shi, Kun Chen and Jia-Yu Xue

catena-Poly[[zinc(II)-µ-[2-(2-carboxylatophenyliminomethyl)phenolato- 1κ3O,N,O:1κO′′] methanol solvate]

Crystal data

[Zn(C14H9NO3)]·CH4O

Mr = 336.63

Monoclinic, P21

a = 9.663 (2) Å

b = 7.128 (2) Å

c = 9.922 (2) Å

β = 98.42 (3)°

V = 676.0 (3) Å3

Z = 2

F(000) = 344

Dx = 1.654 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3124 reflections

θ = 2.7–28.2°

µ = 1.83 mm−1

T = 298 K Block, colorless 0.33 × 0.28 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.583, Tmax = 0.689

3989 measured reflections 2753 independent reflections 2667 reflections with I > 2σ(I)

Rint = 0.016

θmax = 27.5°, θmin = 2.1°

h = −12→12

k = −8→9

l = −12→7

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.086

S = 1.05 2753 reflections 191 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0507P)2 + 0.0457P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.58 e Å−3

Δρmin = −0.31 e Å−3

Absolute structure: Flack (1983), 1076 Friedel pairs

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 1.05959 (3) 0.11358 (7) 0.67521 (3) 0.02928 (11)

O1 1.1961 (2) 0.1721 (3) 0.8258 (2) 0.0347 (5)

O2 0.9777 (2) −0.0458 (4) 0.5266 (2) 0.0361 (5)

O3 0.8220 (2) −0.2555 (3) 0.4365 (2) 0.0341 (5)

O4 0.3206 (5) 0.5352 (7) 0.8558 (5) 0.0939 (13)

H4 0.3826 0.4807 0.8230 0.141*

N1 0.9143 (2) 0.0555 (3) 0.7837 (3) 0.0252 (5)

C1 1.0690 (3) 0.0598 (4) 1.0006 (3) 0.0282 (6)

C2 1.1905 (3) 0.1256 (6) 0.9533 (3) 0.0296 (5)

C3 1.3152 (3) 0.1426 (6) 1.0501 (3) 0.0387 (8)

H3 1.3978 0.1833 1.0219 0.046*

C4 1.3130 (3) 0.0992 (7) 1.1844 (3) 0.0413 (7)

H4A 1.3954 0.1092 1.2454 0.050*

C5 1.1928 (4) 0.0410 (5) 1.2325 (3) 0.0436 (8)

H5 1.1938 0.0165 1.3247 0.052*

C6 1.0717 (3) 0.0201 (5) 1.1419 (3) 0.0340 (6)

H6 0.9906 −0.0205 1.1732 0.041*

C7 0.9376 (3) 0.0355 (4) 0.9148 (3) 0.0275 (6)

H7 0.8616 0.0022 0.9574 0.033*

C8 0.7727 (3) 0.0397 (4) 0.7173 (3) 0.0249 (5)

C9 0.7455 (3) −0.0423 (4) 0.5874 (3) 0.0249 (6)

C10 0.6067 (3) −0.0603 (4) 0.5258 (3) 0.0318 (6)

H10 0.5870 −0.1158 0.4403 0.038*

C11 0.4978 (3) 0.0033 (5) 0.5902 (4) 0.0365 (7)

H11 0.4058 −0.0096 0.5480 0.044*

C12 0.5260 (3) 0.0856 (5) 0.7168 (3) 0.0358 (8)

H12 0.4527 0.1290 0.7594 0.043*

C13 0.6629 (3) 0.1047 (7) 0.7815 (3) 0.0311 (5)

H13 0.6811 0.1603 0.8671 0.037*

C14 0.8564 (3) −0.1198 (4) 0.5137 (3) 0.0264 (6) C15 0.2736 (6) 0.6874 (8) 0.7739 (6) 0.0753 (15)

H15A 0.2063 0.7570 0.8160 0.113*

H15B 0.2307 0.6432 0.6863 0.113*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m1427–m1428

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.02567 (16) 0.03460 (17) 0.02814 (16) −0.00294 (15) 0.00584 (11) 0.00176 (17) O1 0.0281 (10) 0.0471 (14) 0.0290 (10) −0.0092 (8) 0.0045 (8) 0.0005 (9) O2 0.0278 (10) 0.0507 (14) 0.0316 (11) −0.0053 (10) 0.0106 (9) −0.0112 (10) O3 0.0226 (10) 0.0440 (13) 0.0360 (11) 0.0024 (9) 0.0050 (8) −0.0142 (10) O4 0.095 (3) 0.074 (3) 0.107 (3) −0.013 (2) −0.003 (2) 0.006 (3) N1 0.0227 (10) 0.0282 (12) 0.0252 (10) −0.0011 (8) 0.0054 (9) −0.0009 (9) C1 0.0353 (14) 0.0246 (14) 0.0240 (12) 0.0001 (10) 0.0022 (11) −0.0007 (10) C2 0.0314 (12) 0.0270 (13) 0.0297 (12) −0.0032 (15) 0.0022 (10) −0.0049 (17) C3 0.0322 (14) 0.042 (3) 0.0398 (15) 0.0011 (14) −0.0028 (12) −0.0037 (16) C4 0.0412 (14) 0.0423 (18) 0.0359 (14) 0.0021 (19) −0.0096 (11) −0.0050 (18) C5 0.069 (2) 0.0358 (16) 0.0240 (14) 0.0024 (16) −0.0014 (15) −0.0025 (14) C6 0.0416 (16) 0.0299 (16) 0.0301 (14) −0.0001 (13) 0.0033 (12) 0.0004 (13) C7 0.0303 (13) 0.0239 (12) 0.0298 (14) −0.0030 (11) 0.0087 (11) −0.0009 (12) C8 0.0219 (12) 0.0256 (12) 0.0277 (13) 0.0005 (10) 0.0057 (10) 0.0004 (12) C9 0.0224 (12) 0.0257 (14) 0.0269 (13) 0.0015 (10) 0.0046 (11) 0.0000 (11) C10 0.0299 (15) 0.0323 (15) 0.0314 (15) 0.0008 (12) −0.0016 (12) −0.0014 (13) C11 0.0266 (14) 0.0386 (18) 0.0438 (18) 0.0017 (13) 0.0031 (13) 0.0031 (15) C12 0.0270 (12) 0.039 (2) 0.0432 (15) 0.0053 (13) 0.0120 (11) 0.0011 (15) C13 0.0323 (12) 0.0313 (13) 0.0317 (12) 0.0022 (17) 0.0117 (10) −0.0029 (18) C14 0.0282 (13) 0.0305 (15) 0.0209 (12) 0.0044 (11) 0.0046 (10) 0.0005 (12) C15 0.098 (4) 0.051 (2) 0.082 (4) −0.010 (3) 0.032 (3) 0.001 (3)

Geometric parameters (Å, º)

Zn1—O1 1.889 (2) C4—H4A 0.9300

Zn1—N1 1.935 (2) C5—C6 1.375 (5)

Zn1—O2 1.936 (2) C5—H5 0.9300

Zn1—O3i 1.944 (2) C6—H6 0.9300

O1—C2 1.316 (4) C7—H7 0.9300

O2—C14 1.275 (4) C8—C13 1.395 (4)

O3—C14 1.248 (4) C8—C9 1.405 (4)

O3—Zn1ii 1.944 (2) C9—C10 1.396 (4)

O4—C15 1.391 (7) C9—C14 1.489 (4)

O4—H4 0.8200 C10—C11 1.384 (5)

N1—C7 1.295 (4) C10—H10 0.9300

N1—C8 1.434 (4) C11—C12 1.377 (5)

C1—C2 1.407 (4) C11—H11 0.9300

C1—C6 1.427 (4) C12—C13 1.390 (4)

C1—C7 1.432 (4) C12—H12 0.9300

C2—C3 1.432 (4) C13—H13 0.9300

C3—C4 1.371 (5) C15—H15A 0.9600

C3—H3 0.9300 C15—H15B 0.9600

C4—C5 1.382 (5) C15—H15C 0.9600

(6)

O1—Zn1—O2 153.10 (11) N1—C7—H7 116.8

N1—Zn1—O2 92.84 (10) C1—C7—H7 116.8

O1—Zn1—O3i 86.80 (9) C13—C8—C9 120.3 (2)

N1—Zn1—O3i 162.82 (10) C13—C8—N1 120.2 (3)

O2—Zn1—O3i 93.23 (10) C9—C8—N1 119.5 (2)

C2—O1—Zn1 125.60 (18) C10—C9—C8 118.6 (3)

C14—O2—Zn1 125.88 (19) C10—C9—C14 117.8 (3)

C14—O3—Zn1ii 126.57 (19) C8—C9—C14 123.6 (2)

C15—O4—H4 109.5 C11—C10—C9 121.0 (3)

C7—N1—C8 117.8 (2) C11—C10—H10 119.5

C7—N1—Zn1 123.3 (2) C9—C10—H10 119.5

C8—N1—Zn1 118.83 (19) C12—C11—C10 119.9 (3)

C2—C1—C6 119.8 (3) C12—C11—H11 120.1

C2—C1—C7 123.5 (3) C10—C11—H11 120.1

C6—C1—C7 116.6 (3) C11—C12—C13 120.7 (3)

O1—C2—C1 124.0 (2) C11—C12—H12 119.6

O1—C2—C3 118.3 (3) C13—C12—H12 119.6

C1—C2—C3 117.8 (3) C12—C13—C8 119.5 (3)

C4—C3—C2 120.1 (3) C12—C13—H13 120.2

C4—C3—H3 120.0 C8—C13—H13 120.2

C2—C3—H3 120.0 O3—C14—O2 122.7 (3)

C3—C4—C5 122.5 (3) O3—C14—C9 116.3 (3)

C3—C4—H4A 118.8 O2—C14—C9 121.0 (3)

C5—C4—H4A 118.8 O4—C15—H15A 109.5

C6—C5—C4 118.9 (3) O4—C15—H15B 109.5

C6—C5—H5 120.5 H15A—C15—H15B 109.5

C4—C5—H5 120.5 O4—C15—H15C 109.5

C5—C6—C1 120.8 (3) H15A—C15—H15C 109.5

C5—C6—H6 119.6 H15B—C15—H15C 109.5

C1—C6—H6 119.6

N1—Zn1—O1—C2 17.1 (3) Zn1—N1—C7—C1 2.8 (4)

O2—Zn1—O1—C2 −89.2 (3) C2—C1—C7—N1 5.7 (5)

O3i—Zn1—O1—C2 180.0 (3) C6—C1—C7—N1 −176.6 (3)

O1—Zn1—O2—C14 118.2 (3) C7—N1—C8—C13 35.1 (4)

N1—Zn1—O2—C14 11.4 (3) Zn1—N1—C8—C13 −142.8 (3)

O3i—Zn1—O2—C14 −152.5 (3) C7—N1—C8—C9 −144.6 (3)

O1—Zn1—N1—C7 −11.5 (2) Zn1—N1—C8—C9 37.4 (3)

O2—Zn1—N1—C7 142.8 (2) C13—C8—C9—C10 −1.2 (5)

O3i—Zn1—N1—C7 −106.7 (4) N1—C8—C9—C10 178.5 (3)

O1—Zn1—N1—C8 166.4 (2) C13—C8—C9—C14 −178.2 (3)

O2—Zn1—N1—C8 −39.4 (2) N1—C8—C9—C14 1.5 (4)

O3i—Zn1—N1—C8 71.2 (4) C8—C9—C10—C11 0.8 (5)

Zn1—O1—C2—C1 −14.0 (5) C14—C9—C10—C11 178.0 (3)

Zn1—O1—C2—C3 166.0 (3) C9—C10—C11—C12 0.0 (5)

C6—C1—C2—O1 −177.5 (3) C10—C11—C12—C13 −0.4 (6)

C7—C1—C2—O1 0.2 (6) C11—C12—C13—C8 0.1 (6)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m1427–m1428

C7—C1—C2—C3 −179.8 (3) N1—C8—C13—C12 −179.0 (3)

O1—C2—C3—C4 178.7 (4) Zn1ii—O3—C14—O2 1.5 (4)

C1—C2—C3—C4 −1.3 (6) Zn1ii—O3—C14—C9 179.22 (19)

C2—C3—C4—C5 −1.1 (7) Zn1—O2—C14—O3 −161.8 (2)

C3—C4—C5—C6 2.1 (7) Zn1—O2—C14—C9 20.6 (4)

C4—C5—C6—C1 −0.8 (5) C10—C9—C14—O3 −28.4 (4)

C2—C1—C6—C5 −1.5 (5) C8—C9—C14—O3 148.7 (3)

C7—C1—C6—C5 −179.4 (3) C10—C9—C14—O2 149.4 (3)

C8—N1—C7—C1 −175.1 (3) C8—C9—C14—O2 −33.6 (4)

Figure

Figure 2The crystal packing of (I), viewed along the b axis.

References

Related documents

SUMMARY: REHs and tectorial membrane injuries are rare complications of pediatric head and neck injuries. We aim to describe the neuroimaging findings in pediatric REHs, to

The component items of this general index are groups of national indices aggregated according to a harmonized classification confonning to the ESA (European System of

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

F) Evaluation of radiation risks and optimisation of protection. Radiation dosimetry provides the concepts, procedures and methods for the determination of the amount of

In vivo in an MCDS mouse model, which expresses the MCDS-causing N617K mutation in collagen X, CBZ induced a reduction in ER stress and enabled hypertrophic chondrocytes to

We show (i) using GEN (the same training words as Densifier), REG ( § 3.4 ) induces generic lexicons in comparable quality; (ii) using PBC+ ZS lexicons, the induced generic DA

We identify online obituaries as a new data source and propose a special named entity recognition and relation extraction solution to extract names and kinships

SB − AGR is the agricultural material prices, and SB − M ET is the metal, SB − F OO is the food prices, and SB − ST O is the stock market factors estimated by the Dynamic