• No results found

Poly[[di­methano­lmagnesium(II)] μ p phenyl­ene­dioxy­di­acetato]: a three dimensional magnesium(II) coordination polymer

N/A
N/A
Protected

Academic year: 2020

Share "Poly[[di­methano­lmagnesium(II)] μ p phenyl­ene­dioxy­di­acetato]: a three dimensional magnesium(II) coordination polymer"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1117–m1119 doi:10.1107/S1600536805014625 Gaoet al. [Mg(C

11H14O6)(CH4O)2]

m1117

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Poly[[dimethanolmagnesium(II)]-

l

-

p

-phenylenedioxy-diacetato]: a three-dimensional magnesium(II)

coordination polymer

Shan Gao,a* Ji-Wei Liu,a,bLi-Hua Huoaand Hui Zhaoa

a

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People’s Republic of China, andbCollege of Chemistry and

Chemical Technology, Da Qing Petroleum Institute, Da Qing 163318, People’s Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.063

wRfactor = 0.166

Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The MgII ion and the 1,4-BDOA2 ligand in the title coordination polymer, [Mg(1,4-BDOA)(CH3OH)2]n (where 1,4-BDOA2 is the p-phenylenedioxydiacetate dianion, C10H8O6

2

), lie on inversion centers. The MgIIcenter has an octahedral coordination geometry defined by four carboxyl O atoms from four different 1,4-BDOA2 ligands and two hydroxy O atoms from two methanol molecules. The MgII atoms are bridged by 1,4-BDOA2ligands, leading to a three-dimensional infinite network structure.

Comment

The coordination chemistry of the alkaline earth metals has, until recently, remained a largely underdeveloped area (Senet al., 2003). Although transition metal carboxylates have been widely investigated (Reyeset al., 2003), reports on magnesium coordination polymers with carboxylate ligands are very rare (Wang et al., 1994). The flexible benzene-1,4-dioxydiacetic acid (1,4-BDOAH2) exhibits high symmetry and versatile

binding modes, and hence it could generate various supra-molecular architectures. Previously, our group has reported some one- and two-dimensional transition metal coordination polymers incorporating this ligand, in which the 1,4-BDOA2 group shows the capability of acting as a bridging ligand in various coordination modes, including bidentate (Gao et al., 2004a), tridentate (Gaoet al., 2004b), tetradentate (Gao, Liu, Huo, Xu & Zhao, 2005) and hexadentate (Gao, Liu, Huo, Zhao & Zhao, 2005). As part of our continuing investigations into the coordination behavior of this ligand, we report here the crystal structure of a new three-dimensional coordination polymer, [Mg(1,4-BDOA)(CH3OH)2]n, (I).

As shown in Fig. 1, the MgIIatom and 1,4-BDOA2ligand

lie on inversion centers, and the fully deprotonated

carboxylate groups are bonded to the MgIIions in a mono-dentate fashion. Each MgIIatom is covalently bonded to four carboxyl O atoms from four different 1,4-BDOA2 ligands and two hydroxy O atoms from two coordinated methanol molecules, displaying an approximate octahedral coordination

(2)

configuration. Methanol atom O4 not only engages in coor-dination but also forms an intramolecular hydrogen bond with the coordinated carboxyl atom O2, consolidating the structure (Table 2).

Two adjacent MgII atoms are linked through one bis-(monodentate) carboxyl group, with an Mg1 Mg1Adistance of 5.320 (3) A˚ [symmetry code: (A)x+ 1,y12,z+12]. Pairs

of MgIIatoms are further connectedviafour carboxyl O atoms

of one 1,4-BDOA2

ligand, with Mg1 Mg1B [symmetry code: (B)x,y+1

2,z+ 1

2] and Mg1 Mg1C[symmetry code:

(C)x1,y,z+ 1] distances of 13.273 (3) and 14.278 (3) A˚ , respectively. It can be seen from a perspective view of the title complex along thecaxis (Fig. 2) that each 1,4-BDOA2group acts as a tetrakis(monodentate) ligand to link four MgIIions, resulting in the formation of a regular three-dimensional open framework with a triangular channel, which holds the coor-dinated methanol.

Experimental

The 1,4-BDOAH2ligand was prepared by the reaction of chloro-acetic acid with hydroquinol (Mirci, 1990). The title complex was prepared by the addition of magnesium perchlorate hexahydrate (5.13 g, 20 mmol) to a methanol solution (20 ml) containing 1,4-BDOAH2(4.52 g, 20 mmol), and the pH value was adjusted to 7 with 0.1MNaOH solution. The resulting solution was stirred for 30 min at room temperature and then filtered. Colorless prismatic single crys-tals were isolated from the solution at room temperature over a period of several days. Analysis calculated for C12H16O8Mg: C 46.11, H 5.16%; found: C 46.13, H 5.12%.

Crystal data

[Mg(C11H14O6)(CH4O)2] Mr= 312.56

Monoclinic, P21=c a= 12.070 (2) A˚

b= 7.7088 (15) A˚

c= 7.3332 (15) A˚

= 91.42 (3)

V= 682.1 (2) A˚3

Z= 2

Dx= 1.522 Mg m 3

MoKradiation Cell parameters from 4419

reflections

= 3.1–25.9

= 0.17 mm1

T= 295 (2) K Prism, colorless 0.230.180.08 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.962,Tmax= 0.987

4471 measured reflections

1328 independent reflections 1082 reflections withI> 2(I)

Rint= 0.069 max= 26.0

h=14!14

k=9!9

l=9!8

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.063 wR(F2) = 0.166 S= 1.08 1328 reflections 102 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.104P)2

+ 0.0721P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.38 e A˚

3

min=0.24 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Mg1—O1 2.033 (2)

Mg1—O2i

2.111 (2)

Mg1—O4 2.080 (3)

O1—C1 1.246 (4)

O2—C1 1.259 (4)

O1ii

—Mg1—O1 180

O1—Mg1—O4 88.22 (10)

O1ii

—Mg1—O4 91.78 (10)

O1ii

—Mg1—O2i

93.03 (10)

O1—Mg1—O2i 86.97 (10)

O2i

—Mg1—O2iii

180

O4—Mg1—O2i 90.92 (11)

O4ii

—Mg1—O2i

89.08 (11) O4—Mg1—O4ii

180

Symmetry codes: (i) 1x;yþ1 2;

1

2z; (ii) 1x;1y;z; (iii)x; 1 2y;z

1 2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O4—H7 O2 0.84 (3) 2.02 (2) 2.798 (3) 153 (4)

metal-organic papers

m1118

Gaoet al. [Mg(C

11H14O6)(CH4O)2] Acta Cryst.(2005). E61, m1117–m1119

Figure 2

[image:2.610.311.564.67.289.2] [image:2.610.44.292.74.207.2]

Packing diagram of the title complex, viewed along the c axis. The coordinated methanol molecules have been omitted for clarity; they occupy the apparent triangular channels.

Figure 1

ORTEPIIplot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dotted lines. [Symmetry codes: (i) 1x, 1y,z; (ii) 1x, 1

2+y, 1

2z; (iii)x, 1 2y,z

1

2; (A) 1x,y 1 2,

1

2z; (B) 1 +x, 3 2y,

(3)

C-bound H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.96 (CH3) or 0.97 A˚ (CH2) andUiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl), and were refined in the riding-model approxima-tion. The hydroxy H atom of the methanol molecule was located in a difference Fourier map and refined with O—H and H H distance restraints of 0.85 (1) and 1.39 (1) A˚ , respectively, and Uiso(H) = 1.5Ueq(O).

Data collection:RAPID-AUTO(Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure

(Rigaku/MSC, 2002); program(s) used to solve structure:SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable

Teachers of Heilongjiang Province (1054 G036) and

Heilongjiang University for supporting this work.

References

Gao, S., Liu, J. W., Huo, L. H., Xu, Y. M. & Zhao, H. (2005).Inorg. Chem. Commun.8, 361–364.

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004a).Acta Cryst.E60, m1242–m1244.

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004b).Acta Cryst.

E60, m1308–m1310.

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2005).Acta Cryst.C61, m25–m29.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mirci, L. E. (1990). Rom. Patent No. 07 43 205.

Reyes, G. Z., Jesu´s, R. Q. & Herbert, H. (2003).Inorg. Chem.42, 3835–3845. Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo,

Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sen, S., Choudhury, C. R., Karan, N. K., Datta, A., Mitra, S., Singh, R. K. B. & Gramlich, V. (2003).Inorg. Chem. Commun.6, 1311–1314.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Wang, J. L., Bo, L. & Miao, F. M. (1994).Chin. J. Struct. Chem.13, 304–306.

metal-organic papers

Acta Cryst.(2005). E61, m1117–m1119 Gaoet al. [Mg(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1117–m1119

supporting information

Acta Cryst. (2005). E61, m1117–m1119 [https://doi.org/10.1107/S1600536805014625]

Poly[[dimethanolmagnesium(II)]-

µ

-

p

-phenylenedioxydiacetato]: a

three-dimensional magnesium(II) coordination polymer

Shan Gao, Ji-Wei Liu, Li-Hua Huo and Hui Zhao

Poly[[dimethanolmagnesium(II)]-µ-p-phenylenedioxydiacetato]

Crystal data

[Mg(C11H14O6)(CH4O)2]

Mr = 312.56

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 12.070 (2) Å b = 7.7088 (15) Å c = 7.3332 (15) Å β = 91.42 (3)° V = 682.1 (2) Å3

Z = 2

F(000) = 328 Dx = 1.522 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4419 reflections θ = 3.1–25.9°

µ = 0.17 mm−1

T = 295 K Prism, colorless 0.23 × 0.18 × 0.08 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.962, Tmax = 0.987

4471 measured reflections 1328 independent reflections 1082 reflections with I > 2σ(I) Rint = 0.069

θmax = 26.0°, θmin = 3.1°

h = −14→14 k = −9→9 l = −9→8

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.063

wR(F2) = 0.166

S = 1.08 1328 reflections 102 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.104P)2 + 0.0721P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.38 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1117–m1119

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Mg1 0.5000 0.5000 0.0000 0.0427 (5) O1 0.39720 (19) 0.4564 (3) 0.2107 (3) 0.0488 (7) O2 0.46913 (18) 0.2463 (3) 0.3838 (3) 0.0526 (7) O3 0.19968 (19) 0.4225 (4) 0.3396 (3) 0.0525 (7) O4 0.6278 (2) 0.3916 (3) 0.1577 (4) 0.0547 (7) C1 0.3919 (3) 0.3474 (4) 0.3356 (5) 0.0429 (8) C2 0.2849 (3) 0.3374 (5) 0.4409 (5) 0.0481 (9) C3 0.1010 (3) 0.4576 (5) 0.4257 (5) 0.0477 (9) C4 0.0726 (3) 0.3898 (5) 0.5930 (5) 0.0539 (9) C5 0.0284 (3) 0.5654 (5) 0.3338 (6) 0.0567 (10) C6 0.7304 (3) 0.3264 (6) 0.0986 (7) 0.0720 (12) H2A 0.2951 0.3926 0.5590 0.058* H2B 0.2649 0.2171 0.4604 0.058* H4 0.1207 0.3152 0.6556 0.065* H5 0.0472 0.6093 0.2206 0.068* H6A 0.7198 0.2123 0.0487 0.108* H6B 0.7820 0.3209 0.2002 0.108* H6C 0.7590 0.4017 0.0068 0.108* H7 0.596 (3) 0.321 (4) 0.227 (5) 0.066 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Mg1 0.0378 (9) 0.0473 (10) 0.0433 (9) −0.0019 (6) 0.0056 (7) −0.0012 (6) O1 0.0413 (13) 0.0542 (15) 0.0513 (15) 0.0033 (10) 0.0093 (11) 0.0086 (11) O2 0.0423 (14) 0.0537 (14) 0.0623 (16) 0.0087 (11) 0.0091 (12) 0.0099 (11) O3 0.0391 (13) 0.0685 (17) 0.0502 (15) 0.0091 (11) 0.0076 (10) 0.0080 (12) O4 0.0399 (13) 0.0686 (18) 0.0559 (15) 0.0009 (12) 0.0065 (11) 0.0106 (13) C1 0.0396 (18) 0.0417 (18) 0.0477 (18) −0.0008 (14) 0.0067 (14) −0.0004 (14) C2 0.0379 (18) 0.056 (2) 0.0505 (19) 0.0059 (15) 0.0066 (15) 0.0048 (15) C3 0.0380 (18) 0.055 (2) 0.050 (2) 0.0026 (15) 0.0031 (15) 0.0033 (15) C4 0.0406 (19) 0.064 (2) 0.058 (2) 0.0102 (16) 0.0053 (16) 0.0130 (17) C5 0.045 (2) 0.074 (3) 0.052 (2) 0.0050 (18) 0.0073 (16) 0.0135 (18) C6 0.064 (3) 0.073 (3) 0.080 (3) 0.016 (2) 0.008 (2) 0.005 (2)

Geometric parameters (Å, º)

Mg1—O1 2.033 (2) C1—C2 1.523 (4)

Mg1—O2i 2.111 (2) C2—H2A 0.970

Mg1—O4 2.080 (3) C2—H2B 0.970

O1—C1 1.246 (4) C3—C4 1.384 (5)

O2—C1 1.259 (4) C3—C5 1.373 (6)

Mg1—O1ii 2.033 (2) C4—C5v 1.387 (5)

Mg1—O2iii 2.111 (2) C4—H4 0.930

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1117–m1119

O2—Mg1iv 2.111 (2) C5—H5 0.930

O3—C2 1.415 (4) C6—H6A 0.960

O3—C3 1.389 (4) C6—H6B 0.960

O4—C6 1.415 (5) C6—H6C 0.960

O4—H7 0.84 (3)

O1ii—Mg1—O1 180 O4—C6—H6B 109.5

O1—Mg1—O4 88.22 (10) O4—C6—H6C 109.5 O1ii—Mg1—O4 91.78 (10) C1—O1—Mg1 135.5 (2)

O1ii—Mg1—O2i 93.03 (10) C1—O2—Mg1iv 142.4 (2)

O1—Mg1—O2i 86.97 (10) C1—C2—H2A 109.9

O2i—Mg1—O2iii 180 C1—C2—H2B 109.9

O4—Mg1—O2i 90.92 (11) C3—O3—C2 118.2 (3)

O4ii—Mg1—O2i 89.08 (11) C3—C4—C5v 119.2 (4)

O4—Mg1—O4ii 180 C3—C4—H4 120.4

Mg1—O4—H7 105 (3) C3—C5—C4v 121.1 (4)

O1ii—Mg1—O2iii 86.97 (10) C3—C5—H5 119.4

O1—Mg1—O2iii 93.03 (10) C4—C3—O3 124.3 (3)

O1ii—Mg1—O4ii 88.22 (10) C4v—C5—H5 119.4

O1—Mg1—O4ii 91.78 (10) C5—C3—O3 116.0 (3)

O1—C1—O2 124.9 (3) C5—C3—C4 119.7 (3) O1—C1—C2 117.8 (3) C5v—C4—H4 120.4

O2—C1—C2 117.2 (3) C6—O4—Mg1 127.9 (3) O3—C2—C1 108.9 (3) C6—O4—H7 112 (3)

O3—C2—H2B 109.9 H2B—C2—H2A 108.3

O3—C2—H2A 109.9 H6A—C6—H6B 109.5

O4—Mg1—O2iii 89.08 (11) H6A—C6—H6C 109.5

O4ii—Mg1—O2iii 90.92 (11) H6B—C6—H6C 109.5

O4—C6—H6A 109.5

Mg1—O1—C1—O2 15.0 (6) O2iii—Mg1—O4—C6 68.7 (3)

Mg1—O1—C1—C2 −166.2 (2) O3—C3—C5—C4v −179.7 (4)

Mg1iv—O2—C1—O1 −151.1 (3) O3—C3—C4—C5v 179.8 (4)

Mg1iv—O2—C1—C2 30.1 (5) O4—Mg1—O1—C1 −29.9 (3)

O1ii—Mg1—O4—C6 −18.2 (3) O4ii—Mg1—O1—C1 150.1 (3)

O1—Mg1—O4—C6 161.8 (3) C2—O3—C3—C4 −11.5 (5) O1—C1—C2—O3 16.9 (5) C2—O3—C3—C5 169.3 (3) O2i—Mg1—O1—C1 −120.9 (3) C3—O3—C2—C1 −167.9 (3)

O2iii—Mg1—O1—C1 59.1 (3) C4—C3—C5—C4v 1.0 (7)

O2i—Mg1—O4—C6 −111.3 (3) C5—C3—C4—C5v −1.0 (7)

O2—C1—C2—O3 −164.2 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 1ORTEPII plot (Johnson, 1976) of the title complex, with displacementellipsoids drawn at the 30% probability level

References

Related documents

This publication shows quarterly and, for comparison, annual growth rates for the main aggregates of national accounts, in volume and price terms, for some Member States (Federal

Corporate Social Responsibility and the role of Rural Women in Sustainable Agricultural Development in sub-Saharan Africa: Evidence from the Niger Delta

MCC, JHS, and DCA conceived the project; MCC performed experiments on mitochondrial trafficking, chemotaxis, tumor cell invasion, the xenograft mouse model of localized and

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

Therefore, this study was designed to assess knowledge, attitude and practices of mothers regarding infant feeding practices (breast feeding and initiation of complementary

5 In the following section (§ 2 ), we introduce the schema and query language used in GrapAL and discuss how users can connect to the database.. In § 3 , we show how GrapAL can be

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 2 (Short Papers) ,