A two dimensional cadmium(II)–imino­di­acetate polymer

(1)metal-organic papers A two-dimensional cadmium(II)–iminodiacetate polymer. Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Bing-Xin Liu‡ and Duan-Jun Xu* Department of Chemistry, Zhejiang University, People’s Republic of China ‡ Alternative address: Department of Chemistry Shanghai University People’s Republic of China. Correspondence e-mail: xudj@mail.hz.zj.cn. The title compound, poly[[aquatri-3-iminodiacetato-tricadmium(II)] trihydrate], {[Cd3(C4H5NO4)3(H2O)]3H2O}n, consists of a polymeric CdII–iminodiacetate network and uncoordinated water molecules. One Cd atom located on a general position is surrounded by three iminodiacetate (IDA) dianions, while a second Cd atom located on a mirror plane is coordinated by three IDA dianions and one water molecule. Both CdII atoms possess distorted octahedral coordination geometries. The iminodiacetate dianion bridges neighbouring CdII atoms to form polymeric sheets.. Received 16 May 2005 Accepted 18 May 2005 Online 28 May 2005. Key indicators Single-crystal X-ray study T = 295 K ˚ Mean (C–C) = 0.007 A H-atom completeness 92% Disorder in solvent or counterion R factor = 0.033 wR factor = 0.061 Data-to-parameter ratio = 12.4 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2005 International Union of Crystallography Printed in Great Britain – all rights reserved. m1218. Liu and Xu. . Comment The (C4H5NO4)2 iminodiacetate (IDA) dianion has shown various coordination modes in transition metal complexes. When it behaves as a tridentate chelating ligand, both the facial and meridional chelating configurations are possible in octahedral metal complexes, but IDA usually displays the fac configuration (Liu & Xu, 2004; Li et al., 2003; Su & Xu, 2004; Su et al., 2004). However, both fac and mer configurations appear simultaneously in the polymeric title compound, (I).. A segment of the polymeric structure of (I) is shown in Fig. 1. There are two independent CdII atoms in the crystal structure, atom Cd1 occupying a general position and atom Cd2 located on a mirror plane. Both CdII atoms display distorted octahedral coordination geometries, although they have different coordination environments. Atom Cd1 is surrounded by three IDA ligands, of which one is N-monodentate, one O,O-bidentate and one N,O,Otridentate. The IDA ligand containing atom N1 (N1-IDA) chelates in a tridentate fashion to atom Cd1 in the meridional. [Cd3(C4H5NO4)3(H2O)]3H2O. doi:10.1107/S1600536805015801. Acta Cryst. (2005). E61, m1218–m1220.

(2) metal-organic papers. Figure 1 A segment of the polymeric complex structure of (I), showing the coordination environments around atoms Cd1 and Cd2 and the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 32  x, 1  y, z  12; (ii) x, y, z  1; (iii) x, 32  y, z.]. Figure 2 The two-dimensional sheet structure of (I).. Experimental configuration, atom N1 deviating from the mean plane formed ˚ . The N1i-IDA by the other eight atoms of IDA by 0.425 (4) A ligand coordinates in an N-monodentate fashion to atom Cd1 [symmetry code: (i) 32  x, 1  y, z  12]. Finally, the C5carboxyl group of the N2-IDA ligand chelates in an O,Obidentate fashion to atom Cd1 to complete a CdO5N octahedral coordination. The Cd1—O4i bond distance is much shorter than the other Cd1—O bonds (Table 1). Atom Cd2 is coordinated by three IDA ligands (two Omonodentate and one N,O,O-tridentate) and one water molecule. The coordinated water molecule (O7) occupies the same mirror plane as atom Cd2. The N2ii-IDA ligand [symmetry code: (ii) x, y, z  1], with its N atom located on the same mirror plane, chelates to atom Cd2 in a facial configuration: the five-membered chelate ring adopts an envelope configuration, with atom N2ii lying in the flap position and deviating from the mean plane formed by the other four atoms ˚ . The symmetrically related N1-IDA and N1iiiby 0.349 (6) A IDA ligands coordinate in a monodentate fashion to atom Cd2 [symmetry code: (iii) x, 32  y, z], with a shorter Cd2—O2 bond distance than Cd2—O5. A distorted CdO5N octahedron results from these bonding modes. The N1-IDA and N2-IDA ligands each bridge three CdII atoms to form two-dimensional (010) polymeric sheets (Fig. 2). The uncoordinated water molecules are located between adjacent sheets and are hydrogen bonded to the polymeric complex (Table 2) to form the sandwich-like supramolecular structure (Fig. 3). Acta Cryst. (2005). E61, m1218–m1220. An aqueous solution (20 ml) of CdCl22H2O (0.22 g, 1 mmol) was mixed with another aqueous solution (10 ml) containing iminodiacetic acid (0.14 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 3 h. The solution was filtered after cooling to room temperature. Colourless single crystals of (I) were obtained from the filtrate after 5 d.. Crystal data [Cd3(C4H5NO4)3(H2O)]3H2O Mr = 802.54 Orthorhombic, Pnma ˚ a = 15.8286 (11) A ˚ b = 21.2483 (16) A ˚ c = 6.7247 (9) A ˚3 V = 2261.7 (4) A Z=4 Dx = 2.357 Mg m3. Mo K radiation Cell parameters from 9866 reflections  = 3.0–24.0  = 2.88 mm1 T = 295 (2) K Prism, colourless 0.32  0.30  0.22 mm. Data collection Rigaku R-AXIS RAPID diffractometer ! scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.410, Tmax = 0.525 11022 measured reflections. 2051 independent reflections 2012 reflections with I > 2(I) Rint = 0.026 max = 25.0 h = 18 ! 17 k = 24 ! 25 l = 7 ! 7. Refinement Refinement on F 2 R[F 2 > 2(F 2)] = 0.033 wR(F 2) = 0.061 S = 1.27 2051 reflections 166 parameters H-atom parameters constrained Liu and Xu. . w = 1/[ 2(Fo2) + (0.0119P)2 + 6.6406P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 ˚ 3 max = 0.67 e A ˚ 3 min = 0.53 e A. [Cd3(C4H5NO4)3(H2O)]3H2O. m1219.

(3) metal-organic papers. Figure 3 A molecular packing diagram for (I), viewed down [100], showing the polymeric sheets sandwiching uncoordinated water molecules. H atoms have been omitted for clarity.. Table 1 ˚ ). Selected bond lengths (A Cd1—N1 Cd1—O1 Cd1—O4i Cd1—O5 Cd1—O6 Cd2—N2ii. 2.296 2.377 2.232 2.371 2.378 2.331. (4) (3) (3) (3) (3) (5). Cd2—O2 Cd1—O3 Cd2—O2iii Cd2—O5ii Cd2—O7. 2.259 2.341 2.259 2.315 2.373. (3) (3) (3) (3) (5). The refinement showed that an uncoordinated water molecule located on a mirror plane is disordered over two sites, O2WA and O2WB. Their fractional site occupancies were refined freely and converged to 0.51 (3) and 0.59 (2), respectively. In the final cycles of refinement, the occupancies were fixed at 12. The H atoms bound to them were not located. H atoms on the other water molecules were located in a difference Fourier map and refined as riding in their asfound positions relative to their parent atoms, with a fixed isotropic ˚ 2. Other H atoms were placed in displacement parameter of 0.05 A ˚ and N—H = 0.91 A ˚ , and calculated positions, with C—H = 0.97 A included in the final cycles of refinement as riding, with Uiso(H) = 1.2Ueq of the parent atoms. Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).. This project was supported by the National Natural Science Foundation of China (grant No. 20443003).. Symmetry codes: (i) x þ 32; y þ 1; z  12; (ii) x; y; z  1; (iii) x; y þ 32; z.. References Table 2 ˚ ,  ). Hydrogen-bond geometry (A D—H  A. D—H. H  A. D  A. D—H  A. N1—H1  O1W iv O1W—H1A  O2 O1W—H1B  O4v N2—H2  O2WBvi O7—H7A  O2WA. 0.94 0.96 0.87 0.94 0.85. 2.04 1.79 2.08 2.30 1.89. 2.937 2.719 2.824 3.131 2.682. 159 160 142 147 155. (5) (5) (5) (15) (17). Symmetry codes: (iv) x; y; z þ 1; (v) x þ 1; y þ 1; z þ 1; (vi) x þ 12; y þ 32; z þ 32.. m1220. Liu and Xu. . [Cd3(C4H5NO4)3(H2O)]3H2O. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Li, H., Xu, D.-J. & Yin, K.-L. (2003). Acta Cryst. E59, m671-m673. Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137-m139. Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA. Sheldrick, G. M. (1997). SHELXL97. University of Go¨ttingen, Germany. Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229. Su, J.-R., Yin, K.-L. & Xu, D.-J. (2004). Acta Cryst. E60, m1020-m1022.. Acta Cryst. (2005). E61, m1218–m1220.

(4) supporting information. supporting information Acta Cryst. (2005). E61, m1218–m1220. [https://doi.org/10.1107/S1600536805015801]. A two-dimensional cadmium(II)–iminodiacetate polymer Bing-Xin Liu and Duan-Jun Xu poly[[aquatri-µ3-iminodiacetato-cadmium(III)] trihydrate] Crystal data [Cd3(C4H5NO4)3(H2O)]·3H2O Mr = 802.54 Orthorhombic, Pnma Hall symbol: -P 2ac 2n a = 15.8286 (11) Å b = 21.2483 (16) Å c = 6.7247 (9) Å V = 2261.7 (4) Å3 Z=4. F(000) = 1552 Dx = 2.357 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9866 reflections θ = 3.0–24.0° µ = 2.88 mm−1 T = 295 K Prism, colourless 0.32 × 0.30 × 0.22 mm. Data collection Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.00 pixels mm-1 ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.410, Tmax = 0.525. 11022 measured reflections 2051 independent reflections 2012 reflections with I > 2σ(I) Rint = 0.026 θmax = 25.0°, θmin = 1.9° h = −18→17 k = −24→25 l = −7→7. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.033 wR(F2) = 0.061 S = 1.27 2051 reflections 166 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: difmap and geom H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0119P)2 + 6.6406P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.67 e Å−3 Δρmin = −0.53 e Å−3. Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.. Acta Cryst. (2005). E61, m1218–m1220. sup-1.

(5) supporting information Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Cd1 Cd2 N1 H1 N2 H2 O1 O2 O3 O4 O5 O6 O7 H7A H7B O1W H1A H1B O2WA O2WB C1 C2 H2A H2B C3 H3A H3B C4 C5 C6 H6A H6B. x. y. z. Uiso*/Ueq. 0.76850 (2) 0.70140 (3) 0.6255 (2) 0.5993 0.8408 (3) 0.8371 0.7175 (2) 0.6158 (2) 0.7293 (2) 0.6285 (2) 0.7701 (2) 0.8827 (2) 0.6309 (4) 0.5782 0.6550 0.5106 (2) 0.5367 0.4827 0.4632 (10) 0.4087 (10) 0.6486 (3) 0.5994 (3) 0.5396 0.6079 0.6002 (3) 0.6017 0.5426 0.6571 (3) 0.8435 (3) 0.8838 (3) 0.8856 0.9417. 0.588818 (15) 0.7500 0.57427 (16) 0.6028 0.7500 0.7500 0.66130 (16) 0.67501 (15) 0.50758 (15) 0.44090 (16) 0.67141 (14) 0.61228 (15) 0.7500 0.7500 0.7500 0.63954 (19) 0.6512 0.6044 0.7500 0.7500 0.6465 (2) 0.5908 (2) 0.6009 0.5549 0.5112 (2) 0.4830 0.5126 0.4857 (2) 0.6569 (2) 0.6915 (2) 0.6637 0.7015. 0.69963 (5) 0.11197 (7) 0.6655 (5) 0.7520 1.2237 (7) 1.3636 0.4586 (5) 0.2388 (5) 0.9160 (5) 0.9933 (5) 0.9368 (5) 0.9172 (5) −0.1994 (8) −0.1789 −0.3257 −0.0606 (6) 0.0636 −0.0764 −0.256 (2) −0.161 (2) 0.3829 (7) 0.4633 (7) 0.4631 0.3766 0.7291 (7) 0.6156 0.7777 0.8906 (7) 0.9943 (7) 1.1654 (7) 1.2796 1.1297. 0.03077 (11) 0.03166 (13) 0.0293 (8) 0.050* 0.0276 (11) 0.050* 0.0436 (9) 0.0427 (8) 0.0402 (8) 0.0443 (9) 0.0387 (8) 0.0420 (8) 0.0621 (16) 0.050* 0.050* 0.0615 (11) 0.050* 0.050* 0.084 (4) 0.082 (4) 0.0328 (10) 0.0357 (11) 0.043* 0.043* 0.0346 (11) 0.042* 0.042* 0.0333 (10) 0.0305 (10) 0.0351 (11) 0.042* 0.042*. Occ. (<1). 0.50 0.50. Atomic displacement parameters (Å2). Cd1 Cd2 N1 N2. U11. U22. U33. U12. U13. U23. 0.02817 (18) 0.0286 (3) 0.031 (2) 0.035 (3). 0.03337 (19) 0.0282 (2) 0.0243 (18) 0.028 (3). 0.0308 (2) 0.0382 (3) 0.032 (2) 0.020 (3). −0.00499 (14) 0.000 −0.0010 (15) 0.000. −0.00198 (14) 0.0013 (2) 0.0027 (16) −0.007 (2). 0.00027 (14) 0.000 0.0078 (16) 0.000. Acta Cryst. (2005). E61, m1218–m1220. sup-2.

(6) supporting information O1 O2 O3 O4 O5 O6 O7 O1W O2WA O2WB C1 C2 C3 C4 C5 C6. 0.041 (2) 0.0386 (19) 0.0363 (19) 0.043 (2) 0.0392 (19) 0.043 (2) 0.059 (4) 0.058 (2) 0.086 (11) 0.078 (11) 0.033 (3) 0.030 (2) 0.031 (2) 0.036 (3) 0.033 (3) 0.034 (3). 0.046 (2) 0.0467 (19) 0.0432 (19) 0.0445 (19) 0.0362 (18) 0.0350 (18) 0.086 (4) 0.073 (3) 0.084 (10) 0.106 (11) 0.031 (2) 0.038 (3) 0.031 (2) 0.031 (2) 0.029 (2) 0.032 (2). 0.044 (2) 0.043 (2) 0.041 (2) 0.045 (2) 0.041 (2) 0.048 (2) 0.040 (3) 0.054 (3) 0.083 (11) 0.063 (10) 0.034 (3) 0.039 (3) 0.042 (3) 0.032 (3) 0.029 (2) 0.039 (3). −0.0154 (16) −0.0088 (16) −0.0042 (16) −0.0095 (16) 0.0046 (15) 0.0047 (15) 0.000 −0.019 (2) 0.000 0.000 0.001 (2) −0.004 (2) −0.004 (2) 0.001 (2) −0.003 (2) 0.006 (2). −0.0095 (16) −0.0092 (16) −0.0078 (15) −0.0053 (17) −0.0086 (15) 0.0016 (16) −0.012 (3) 0.003 (2) −0.028 (9) −0.009 (8) 0.006 (2) −0.007 (2) −0.001 (2) 0.001 (2) 0.000 (2) −0.013 (2). 0.0143 (17) 0.0210 (17) 0.0122 (16) 0.0232 (17) −0.0109 (15) −0.0122 (16) 0.000 −0.020 (2) 0.000 0.000 0.003 (2) 0.008 (2) 0.006 (2) 0.002 (2) 0.003 (2) −0.006 (2). Geometric parameters (Å, º) Cd1—N1 Cd1—O1 Cd1—O4i Cd1—O5 Cd1—O6 Cd2—N2ii Cd2—O2 Cd1—O3 Cd2—O2iii Cd2—O5ii Cd2—O5iv Cd2—O7 N1—C3 N1—C2 N1—H1 N2—C6iii N2—C6 N2—Cd2v N2—H2. 2.296 (4) 2.377 (3) 2.232 (3) 2.371 (3) 2.378 (3) 2.331 (5) 2.259 (3) 2.341 (3) 2.259 (3) 2.315 (3) 2.315 (3) 2.373 (5) 1.462 (5) 1.465 (6) 0.9373 1.470 (5) 1.470 (5) 2.331 (5) 0.9423. O1—C1 O2—C1 O3—C4 O4—C4 O5—C5 O6—C5 O7—H7A O7—H7B O1W—H1A O1W—H1B C1—C2 C2—H2A C2—H2B C3—C4 C3—H3A C3—H3B C5—C6 C6—H6A C6—H6B. 1.244 (5) 1.256 (5) 1.246 (5) 1.261 (5) 1.263 (5) 1.246 (5) 0.8451 0.9312 0.9637 0.8747 1.515 (6) 0.9700 0.9700 1.512 (6) 0.9700 0.9700 1.508 (6) 0.9700 0.9700. O4i—Cd1—N1 O4i—Cd1—O3 N1—Cd1—O3 O4i—Cd1—O5 N1—Cd1—O5 O3—Cd1—O5 O4i—Cd1—O1 N1—Cd1—O1 O3—Cd1—O1. 128.32 (13) 111.78 (13) 72.65 (11) 128.29 (11) 100.20 (12) 97.50 (12) 90.45 (13) 71.59 (11) 144.24 (11). C6iii—N2—H2 C6—N2—H2 Cd2v—N2—H2 C1—O1—Cd1 C1—O2—Cd2 C4—O3—Cd1 C4—O4—Cd1vi C5—O5—Cd2v C5—O5—Cd1. 107.2 107.2 105.3 114.4 (3) 112.5 (3) 115.6 (3) 106.9 (3) 116.9 (3) 92.0 (3). Acta Cryst. (2005). E61, m1218–m1220. sup-3.

(7) supporting information O5—Cd1—O1 O4i—Cd1—O6 N1—Cd1—O6 O3—Cd1—O6 O5—Cd1—O6 O1—Cd1—O6 O4i—Cd1—C5 N1—Cd1—C5 O3—Cd1—C5 O5—Cd1—C5 O1—Cd1—C5 O6—Cd1—C5 O2—Cd2—O2iii O2—Cd2—O5ii O2iii—Cd2—O5ii O2—Cd2—O5iv O2iii—Cd2—O5iv O5ii—Cd2—O5iv O2—Cd2—N2ii O2iii—Cd2—N2ii O5ii—Cd2—N2ii O5iv—Cd2—N2ii O2—Cd2—O7 O2iii—Cd2—O7 O5ii—Cd2—O7 O5iv—Cd2—O7 N2ii—Cd2—O7 C3—N1—C2 C3—N1—Cd1 C2—N1—Cd1 C3—N1—H1 C2—N1—H1 Cd1—N1—H1 C6iii—N2—C6 C6iii—N2—Cd2v C6—N2—Cd2v. 89.00 (12) 83.48 (12) 147.03 (13) 88.48 (11) 54.78 (11) 122.80 (11) 106.50 (13) 124.98 (13) 93.13 (12) 27.59 (12) 107.45 (12) 27.19 (12) 89.71 (18) 88.00 (12) 169.33 (11) 169.33 (11) 88.00 (12) 92.34 (17) 116.50 (11) 116.50 (11) 73.72 (11) 73.72 (11) 92.92 (14) 92.92 (13) 76.80 (13) 76.80 (13) 136.9 (2) 114.5 (4) 111.4 (3) 109.8 (3) 106.9 107.2 106.7 115.4 (5) 110.6 (3) 110.6 (3). Cd2v—O5—Cd1 C5—O6—Cd1 Cd2—O7—H7A Cd2—O7—H7B H7A—O7—H7B H1A—O1W—H1B O1—C1—O2 O1—C1—C2 O2—C1—C2 N1—C2—C1 N1—C2—H2A C1—C2—H2A N1—C2—H2B C1—C2—H2B H2A—C2—H2B N1—C3—C4 N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B O3—C4—O4 O3—C4—C3 O4—C4—C3 O6—C5—O5 O6—C5—C6 O5—C5—C6 O6—C5—Cd1 O5—C5—Cd1 C6—C5—Cd1 N2—C6—C5 N2—C6—H6A C5—C6—H6A N2—C6—H6B C5—C6—H6B H6A—C6—H6B. 150.61 (15) 92.1 (3) 108.7 127.8 123.5 122.8 123.8 (4) 120.1 (4) 116.0 (4) 111.9 (4) 109.2 109.2 109.2 109.2 107.9 112.0 (4) 109.2 109.2 109.2 109.2 107.9 122.5 (4) 120.8 (4) 116.8 (4) 121.1 (4) 118.5 (4) 120.3 (4) 60.7 (2) 60.4 (2) 176.8 (3) 114.8 (4) 108.6 108.6 108.6 108.6 107.5. O4i—Cd1—N1—C3 O3—Cd1—N1—C3 O5—Cd1—N1—C3 O1—Cd1—N1—C3 O6—Cd1—N1—C3 C5—Cd1—N1—C3 O4i—Cd1—N1—C2 O3—Cd1—N1—C2 O5—Cd1—N1—C2 O1—Cd1—N1—C2 O6—Cd1—N1—C2. 81.9 (3) −22.5 (3) −117.3 (3) 157.2 (3) −80.3 (4) −104.0 (3) −46.0 (3) −150.4 (3) 114.9 (3) 29.4 (3) 151.8 (3). N1—Cd1—O6—C5 O3—Cd1—O6—C5 O5—Cd1—O6—C5 O1—Cd1—O6—C5 Cd1—O1—C1—O2 Cd1—O1—C1—C2 Cd2—O2—C1—O1 Cd2—O2—C1—C2 C3—N1—C2—C1 Cd1—N1—C2—C1 O1—C1—C2—N1. −45.9 (4) −99.9 (3) 0.4 (2) 61.7 (3) −172.3 (4) 7.4 (6) 5.8 (6) −173.8 (3) −162.5 (4) −36.4 (4) 19.9 (6). Acta Cryst. (2005). E61, m1218–m1220. sup-4.

(8) supporting information C5—Cd1—N1—C2 O4i—Cd1—O1—C1 N1—Cd1—O1—C1 O3—Cd1—O1—C1 O5—Cd1—O1—C1 O6—Cd1—O1—C1 C5—Cd1—O1—C1 O2iii—Cd2—O2—C1 O5ii—Cd2—O2—C1 O5iv—Cd2—O2—C1 N2ii—Cd2—O2—C1 O7—Cd2—O2—C1 O4i—Cd1—O3—C4 N1—Cd1—O3—C4 O5—Cd1—O3—C4 O1—Cd1—O3—C4 O6—Cd1—O3—C4 C5—Cd1—O3—C4 O4i—Cd1—O5—C5 N1—Cd1—O5—C5 O3—Cd1—O5—C5 O1—Cd1—O5—C5 O6—Cd1—O5—C5 O4i—Cd1—O5—Cd2v N1—Cd1—O5—Cd2v O3—Cd1—O5—Cd2v O1—Cd1—O5—Cd2v O6—Cd1—O5—Cd2v C5—Cd1—O5—Cd2v O4i—Cd1—O6—C5. 128.2 (3) 110.0 (3) −20.7 (3) −20.3 (4) −121.8 (3) −167.5 (3) −142.6 (3) −108.9 (3) 81.5 (3) 173.5 (6) 10.8 (4) 158.2 (3) −112.4 (3) 12.7 (3) 111.1 (3) 12.3 (4) 165.2 (3) 138.4 (3) −43.2 (3) 156.0 (3) 82.4 (3) −132.9 (3) −0.4 (2) 147.1 (3) −13.7 (3) −87.4 (3) 57.4 (3) −170.1 (4) −169.7 (5) 148.0 (3). O2—C1—C2—N1 C2—N1—C3—C4 Cd1—N1—C3—C4 Cd1—O3—C4—O4 Cd1—O3—C4—C3 Cd1vi—O4—C4—O3 Cd1vi—O4—C4—C3 N1—C3—C4—O3 N1—C3—C4—O4 Cd1—O6—C5—O5 Cd1—O6—C5—C6 Cd2v—O5—C5—O6 Cd1—O5—C5—O6 Cd2v—O5—C5—C6 Cd1—O5—C5—C6 Cd2v—O5—C5—Cd1 O4i—Cd1—C5—O6 N1—Cd1—C5—O6 O3—Cd1—C5—O6 O5—Cd1—C5—O6 O1—Cd1—C5—O6 O4i—Cd1—C5—O5 N1—Cd1—C5—O5 O3—Cd1—C5—O5 O1—Cd1—C5—O5 O6—Cd1—C5—O5 C6iii—N2—C6—C5 Cd2v—N2—C6—C5 O6—C5—C6—N2 O5—C5—C6—N2. −160.5 (4) 155.3 (4) 30.0 (5) 178.4 (4) −0.1 (6) −2.4 (6) 176.1 (3) −20.7 (6) 160.8 (4) −0.8 (4) 176.4 (4) 175.1 (3) 0.8 (4) −2.0 (5) −176.4 (4) 174.4 (3) −33.3 (3) 151.5 (2) 80.5 (3) −179.2 (4) −129.1 (3) 146.0 (3) −29.3 (3) −100.2 (3) 50.1 (3) 179.2 (4) −106.0 (5) 20.6 (5) 169.5 (4) −13.3 (6). Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x, y, z−1; (iii) x, −y+3/2, z; (iv) x, −y+3/2, z−1; (v) x, y, z+1; (vi) −x+3/2, −y+1, z+1/2.. Hydrogen-bond geometry (Å, º) D—H···A v. N1—H1···O1W O1W—H1A···O2 O1W—H1B···O4vii N2—H2···O2WBviii O7—H7A···O2WA. D—H. H···A. D···A. D—H···A. 0.94 0.96 0.87 0.94 0.85. 2.04 1.79 2.08 2.30 1.89. 2.937 (5) 2.719 (5) 2.824 (5) 3.131 (15) 2.682 (17). 159 160 142 147 155. Symmetry codes: (v) x, y, z+1; (vii) −x+1, −y+1, −z+1; (viii) x+1/2, −y+3/2, −z+3/2.. Acta Cryst. (2005). E61, m1218–m1220. sup-5.

(9)

New documents

– Make plans and ideally let the clinic/doctor/nurse know in advance that you wish to talk about your future care plans, so they can be prepared and make time for it... tAlKinG About

1Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hang- zhou, Zhejiang, China; 2Department of Thyroid and Breast Surgery, Changhai

2016, with some minor differences: Be- cause all data for the shared task was parallel, a constrained model was built by employing a source side matching approach inspired by stan- dard

Resident Care Plan Audit An audit of ten residents’ dying domain page care plans and medical charts from Le Chéile was carried out to determine the range and level of information

The system uses three types of features: the features based on the target-language model estimates provided by the baseline system, linguistic features concerning the source word

Table 1: The final best BLEU score after the runs of the inner loop for PSO without and with the termination condition with 16 and 64 threads respectively and standard Moses MERT

In the present study, results showed the VEGF expression in the adjacent normal endometrial tissues of EP patients was significantly lower than in normal endometrial tissues of mid-

When you have an advancing neurological illness, planning for the future may also include talking with your family and healthcare team about your wishes and preferences in case you

The system-level correlation of metrics on evaluation translation out of English on WMT15 Metrics task.. Metrics de-en cs-en fr-en fi-en ru-en

Lifestyle intervention refers to patients with glucose tolerance reduce stage for planned, systems guidance and control such as diet and exercise, and to establish and maintain healthy