• No results found

A photodimer of a 4 phenyl 4H pyran

N/A
N/A
Protected

Academic year: 2020

Share "A photodimer of a 4 phenyl 4H pyran"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1951–o1953 doi:10.1107/S1600536806012980 Yanet al. C

38H44O10

o1951

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

A photodimer of a 4-phenyl-4

H

-pyran

Hong Yan,* Hui-Qin Wang, Cheng-Liang Ni and Xiu-Qing Song

College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, People’s Republic of China

Correspondence e-mail: hongyan@bjut.edu.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.047 wRfactor = 0.129

Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 20 February 2006 Accepted 10 April 2006

#2006 International Union of Crystallography All rights reserved

A new cage photodimer, tetraethyl 2,4,8,10-tetramethyl-6,12-diphenyl-3,9-dioxapentacyclo[6.4.0.02,7.04,11.05,10 ]dodecane-1,5,7,11-tetracarboxylate, C38H44O10, was prepared through

[2+2]-photocycloaddition of diethyl 2,6-dimethyl-4-phenyl-4H-pyran-3,5-dicarboxylate in the solid state. The molecular structure was elucidated by X-ray diffraction analysis,

1

H NMR, IR and mass spectroscopy, and elemental analysis. The molecule possesses a crystallographically imposed centre of symmetry. The crystal structure is stabilized by weak C— H O hydrogen-bond interactions.

Comment

The nature of the interaction between the double bonds in 4-pyrone and 1,4-dihydropyridine systems is currently of inter-est. They have yielded almost exclusively head-to-tail cage dimers in the solid state and follow a double [2+2]-cyclo-addition reaction pathway to give tetraasteranes (Hilgerothet al., 1998; Ahlgren & Akermark, 1974). The cage dimers of 1,4-dihydropyridine hold promise as a novel non-peptidic class of HIV protease inhibitors, and are playing an increasing role in the defeat of AIDS (Hilgeroth et al., 1999). Although the photochemistry of the 4H-pyran system has not received much attention in the literature to date, we have devoted consider-able effort to investigating its potential activity as an HIV protease inhibitor. In addition, there are no reports of photochemical reactions associated with a 4-phenyl-4H-pyran, especially in the solid state. Also, we wished to know whether there are steric differences between substituted 4-phenyl-4H -pyran and 1,4-dihydropyridine which would prevent dimer-ization, since 4-aryl-1,4-dihydropyridines are known to be remarkable inhibitors of photolysis when they are 2,6-di-methyl-substituted (Eisner et al., 1970). Differences in the dimerization of these compounds could also be related to

(2)

2,6-dimethyl-3,5-bis-[carboxylato(ethyl)]-4-phenyl-4H-pyran, (1), whose dimers could possibly be functionalized, was prepared.

Compound (1) was readily prepared by the cyclo-condensation of -dicarbonyl compounds or ,-unsaturated ketones with aldehydes under zinc chloride catalysis (Urbahns

et al., 1998). By irradiation of the solid monomer, (1), with a high-pressure Hg lamp, we obtained the title compound, (2), in a yield of ca 30% after 8 h. The same product was also obtained by similar irradiation of a solution of (1) in acetic acid, ethanol or benzene. However, the yield of (2) was considerably lower in these cases.

The dimer, (2), is sparingly soluble in most organic solvents, but can be readily crystallized from methanol and dichloro-methane. Single-crystal X-ray diffraction and other analytical data established the molecular structure of the new cage photodimer, (2), formed by a solid-state reaction (Fig. 1).

Compound (2) possesses a crystallographically imposed centre of symmetry. Bond distances and angles (Table 1) are within normal ranges (Allenet al., 1987). The crystal structure is stabilized by weak intra- and intermolecular C—H O hydrogen bonds (Table 2).

Experimental

For the solid-state dimerization reaction of diethyl 2,6-dimethyl-4-phenyl-4H-pyran-3,5-dicarboxylate, (1), the compound (0.5 g) was dissolved in dichloromethane (5 ml) and poured into the photolysis unit. The solvent was vaporized, which caused (1) to adhere uniformly to the wall of the Pyrex vessel, where the material was irradiated by a high-pressure Hg lamp located at a distance of 20 cm from the reactant. The reaction was monitored by thin-layer chro-matography. After 8 h, the reactant was almost completely converted. Colourless single crystals of (2) suitable for X-ray analysis were obtained by slow evaporation of a methanol–dichloromethane solu-tion (3:1v/v) in a yield of 30% (0.15 g; m.p. 541–542 K).

Crystal data C38H44O10 Mr= 660.73

Monoclinic, P21=n a= 10.809 (2) A˚

b= 11.284 (2) A˚

c= 14.314 (3) A˚

= 99.18 (3)

V= 1723.5 (6) A˚3

Z= 2

Dx= 1.273 Mg m

3

MoKradiation

= 0.09 mm1 T= 293 (2) K Block, colourless 0.300.250.15 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.973,Tmax= 0.986

10246 measured reflections 3040 independent reflections 1876 reflections withI> 2(I)

Rint= 0.034

max= 25.0

Refinement Refinement onF2 R[F2> 2(F2)] = 0.047

wR(F2) = 0.129 S= 0.97 3040 reflections 219 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.073P)2]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.26 e A˚

3

min=0.25 e A˚

3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coefficient: 0.0123 (18)

Table 1

Selected geometric parameters (A˚ ,).

O1—C1 1.428 (2) O1—C5 1.439 (2) C1—C4i

1.572 (3) C1—C2 1.587 (3)

C2—C3 1.538 (3) C2—C5i

1.576 (3) C3—C4 1.552 (3) C4—C5 1.569 (3)

C1—O1—C5 118.56 (14) O1—C1—C4i 112.54 (15) O1—C1—C2 112.12 (15) C4i

—C1—C2 89.94 (14) C3—C2—C5i 114.62 (16) C3—C2—C1 111.40 (15) C5i

—C2—C1 89.35 (14)

C2—C3—C4 109.72 (15) C3—C4—C5 111.80 (16) C3—C4—C1i

114.21 (15) C5—C4—C1i

90.18 (14) O1—C5—C4 112.05 (15) O1—C5—C2i

112.04 (15) C4—C5—C2i

90.44 (14)

Symmetry code: (i)x;yþ1;z.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C16—H16A O5 0.97 2.24 2.656 (3) 105 C7—H7 O1i 0.93 2.36 3.080 (3) 135 C18—H18B O5i

0.96 2.36 2.802 (3) 107 C13—H13B O3ii

0.97 2.44 3.402 (3) 171

Symmetry codes: (i)x;yþ1;z; (ii)xþ1;yþ1;z.

All H atoms were positioned geometrically (C—H = 0.93–0.98 A˚ ) and included in the refinement in the riding-model approximation, withUiso(H) = 1.2Ueq(C) for aromatic, methylene and methine H

atoms, or 1.5Ueq(C) for methyl H atoms.

Data collection:RAPID-AUTO (Rigaku, 2000); cell refinement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC,

organic papers

o1952

Yanet al. C

[image:2.610.317.562.69.355.2]

38H44O10 Acta Cryst.(2006). E62, o1951–o1953

Figure 1

(3)

2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication:SHELXL97.

The authors thank Professor Zhang of Beijing University for the X-ray diffraction analysis and are grateful for financial support from the Scientific and Technical Research Key Item of the Ministry of Education and Development of the Education Commission of Beijing. We also thank Drs. Edmund F. and Rhoda E. Perozzi of Beijing University of Technology for extensive assistance in editing the manuscript.

References

Ahlgren, G. & Akermark, B. (1974).Tetrahedron Lett.12, 987–988.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Eisner, U., Williams, J. R., Matthews, B. W. & Ziffer, H. (1970).Tetrahedron,

26, 899–909.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Hilgeroth, A., Baumeister, U. & Heinemann, F. W. (1998).Eur. J. Org. Chem.

pp. 1213–1218.

Hilgeroth, A., Wiese, M. & Billich, A. (1999). J. Med. Chem. 42, 4729– 4732.

Rigaku (2000).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New

Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1999).SHELXTL. Version 5.10. University of Go¨ttingen, Germany.

Urbahns, K., Heine, H.-G., Junge, B., Mauler, F., Glaser, B., Wittka, R. & De Vry, J.-M. (1998). US Patent No. C07D309/32, 5760073, 1998-06-02. Yates, P. & Jorgenson, M. J. (1963).J. Am. Chem. Soc.85, 2956–2967.

organic papers

Acta Cryst.(2006). E62, o1951–o1953 Yanet al. C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o1951–o1953

supporting information

Acta Cryst. (2006). E62, o1951–o1953 [https://doi.org/10.1107/S1600536806012980]

A photodimer of a 4-phenyl-4

H

-pyran

Hong Yan, Hui-Qin Wang, Cheng-Liang Ni and Xiu-Qing Song

tetraethyl 2,4,8,10-tetramethyl-6,12-diphenyl- 3,9-dioxapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5,7,11-

tetracarboxylate

Crystal data

C38H44O10

Mr = 660.73 Monoclinic, P21/n Hall symbol: -P 2yn

a = 10.809 (2) Å

b = 11.284 (2) Å

c = 14.314 (3) Å

β = 99.18 (3)°

V = 1723.5 (6) Å3

Z = 2

F(000) = 704

Dx = 1.273 Mg m−3

Melting point = 268–269 K

Mo radiation, λ = 0.71073 Å

Cell parameters from 10246 reflections

θ = 2.2–25.0°

µ = 0.09 mm−1

T = 293 K

Block, colourless 0.30 × 0.25 × 0.15 mm

Data collection

Rigaku RAXIS RAPID IP diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10.0 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.973, Tmax = 0.986

10246 measured reflections 3040 independent reflections 1876 reflections with I > 2σ(I)

Rint = 0.034

θmax = 25.0°, θmin = 2.2°

h = −12→12

k = −13→13

l = −17→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.129

S = 0.97

3040 reflections 219 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.073P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.26 e Å−3 Δρmin = −0.25 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997)

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o1951–o1953 Special details

Experimental. Spectrscopic analysis: IR (Medium?, ν, cm-1): 2983, 1736, 1261, 1199, 1035; 1H NMR (CDCl

3, 400 MHz,

δ, p.p.m.): 1.12 (t, J = 8 Hz, 12H, CH2CH3), 1.70 (s, 12H, CH3), 3.90 (m, 8H, CH2), 4.26 (s, 2H, CH), 7.14–7.54 (m, 10H,

Ar—H); MS: m/z (%): 683 [M+Na+], 699.3 [M+K+]. Elemental analysis, calculated for C

38H44O10: C 69.07, H 6.71%; found: C 69.09, H 6.68%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.04041 (12) 0.37996 (12) 0.08696 (9) 0.0370 (4)

O2 0.34453 (13) 0.54974 (14) 0.11659 (10) 0.0500 (4)

O3 0.34671 (15) 0.60841 (17) −0.03133 (12) 0.0687 (5)

O4 −0.02344 (15) 0.64145 (15) 0.24493 (10) 0.0605 (5)

O5 −0.1995 (2) 0.6957 (2) 0.15614 (13) 0.1028 (8)

C1 −0.07135 (17) 0.44772 (18) 0.08581 (13) 0.0353 (5)

C2 −0.04534 (18) 0.58613 (18) 0.08510 (13) 0.0363 (5)

C3 0.09552 (18) 0.61258 (17) 0.09318 (13) 0.0356 (5)

H3 0.1340 0.5774 0.1534 0.043*

C4 0.15084 (18) 0.54289 (18) 0.01592 (13) 0.0356 (5)

C5 0.12048 (18) 0.40708 (17) 0.01862 (13) 0.0366 (5)

C6 0.13597 (18) 0.74236 (19) 0.09895 (14) 0.0393 (5)

C7 0.1013 (2) 0.82379 (19) 0.02669 (16) 0.0482 (6)

H7 0.0456 0.8017 −0.0268 0.058*

C8 0.1497 (2) 0.9381 (2) 0.03413 (17) 0.0567 (7)

H8 0.1258 0.9918 −0.0147 0.068*

C9 0.2317 (2) 0.9730 (2) 0.11193 (19) 0.0620 (7)

H9 0.2639 1.0496 0.1159 0.074*

C10 0.2664 (2) 0.8929 (2) 0.18506 (18) 0.0615 (7)

H10 0.3224 0.9153 0.2383 0.074*

C11 0.2173 (2) 0.7798 (2) 0.17808 (16) 0.0510 (6)

H11 0.2394 0.7272 0.2280 0.061*

C12 0.29060 (19) 0.57084 (19) 0.02781 (15) 0.0407 (5)

C13 0.4770 (2) 0.5799 (3) 0.14118 (17) 0.0675 (8)

H13A 0.4898 0.6630 0.1281 0.081*

H13B 0.5262 0.5328 0.1038 0.081*

C14 0.5168 (3) 0.5552 (3) 0.2436 (2) 0.0956 (11)

H14A 0.6035 0.5761 0.2615 0.143*

H14B 0.5060 0.4724 0.2555 0.143*

H14C 0.4667 0.6011 0.2799 0.143*

C15 −0.0994 (2) 0.6502 (2) 0.16262 (16) 0.0467 (6)

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o1951–o1953

H16A −0.1410 0.7392 0.3092 0.093*

H16B 0.0000 0.7519 0.3567 0.093*

C17 −0.0810 (4) 0.6013 (3) 0.3961 (2) 0.1199 (14)

H17A −0.1073 0.6358 0.4510 0.180*

H17B −0.0034 0.5598 0.4145 0.180*

H17C −0.1438 0.5468 0.3670 0.180*

C18 0.22742 (19) 0.31999 (19) 0.04144 (15) 0.0453 (6)

H18A 0.2629 0.3266 0.1071 0.068*

H18B 0.2905 0.3372 0.0032 0.068*

H18C 0.1967 0.2409 0.0285 0.068*

C19 −0.1279 (2) 0.3974 (2) 0.16777 (14) 0.0474 (6)

H19A −0.0664 0.3986 0.2241 0.071*

H19B −0.1544 0.3173 0.1537 0.071*

H19C −0.1988 0.4445 0.1774 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0379 (8) 0.0384 (8) 0.0346 (7) 0.0028 (6) 0.0052 (6) 0.0045 (6)

O2 0.0343 (8) 0.0666 (11) 0.0476 (9) −0.0031 (7) 0.0017 (7) −0.0003 (7)

O3 0.0459 (10) 0.1054 (15) 0.0563 (10) −0.0097 (9) 0.0129 (8) 0.0119 (10)

O4 0.0589 (10) 0.0860 (13) 0.0371 (9) 0.0146 (9) 0.0091 (8) −0.0148 (8)

O5 0.0809 (14) 0.166 (2) 0.0596 (12) 0.0662 (14) 0.0049 (10) −0.0301 (12)

C1 0.0346 (11) 0.0389 (12) 0.0335 (11) 0.0013 (9) 0.0084 (9) 0.0012 (9)

C2 0.0382 (11) 0.0404 (13) 0.0304 (10) 0.0048 (9) 0.0057 (9) −0.0008 (9)

C3 0.0371 (11) 0.0390 (13) 0.0302 (10) 0.0018 (9) 0.0040 (9) −0.0010 (9)

C4 0.0377 (11) 0.0367 (12) 0.0325 (11) 0.0028 (9) 0.0061 (9) 0.0002 (9)

C5 0.0385 (12) 0.0378 (13) 0.0339 (11) 0.0022 (9) 0.0069 (9) 0.0018 (9)

C6 0.0367 (12) 0.0425 (13) 0.0398 (12) 0.0038 (9) 0.0100 (9) −0.0044 (10)

C7 0.0520 (14) 0.0411 (14) 0.0501 (14) −0.0019 (11) 0.0032 (11) 0.0034 (11)

C8 0.0599 (15) 0.0465 (15) 0.0622 (16) −0.0010 (12) 0.0050 (13) 0.0069 (12)

C9 0.0642 (17) 0.0429 (15) 0.0781 (18) −0.0098 (12) 0.0089 (14) −0.0066 (14)

C10 0.0628 (16) 0.0543 (17) 0.0629 (16) −0.0072 (13) −0.0040 (13) −0.0157 (13)

C11 0.0591 (15) 0.0460 (14) 0.0467 (13) 0.0001 (11) 0.0051 (12) −0.0051 (11)

C12 0.0385 (12) 0.0449 (13) 0.0392 (12) 0.0007 (10) 0.0081 (10) −0.0006 (10)

C13 0.0351 (13) 0.101 (2) 0.0649 (17) −0.0051 (13) 0.0031 (12) −0.0066 (15)

C14 0.0602 (18) 0.144 (3) 0.075 (2) −0.0086 (19) −0.0119 (16) −0.012 (2)

C15 0.0476 (13) 0.0499 (14) 0.0433 (13) 0.0072 (11) 0.0093 (11) −0.0030 (10)

C16 0.081 (2) 0.114 (2) 0.0408 (15) 0.0082 (17) 0.0174 (14) −0.0257 (15)

C17 0.171 (4) 0.123 (3) 0.079 (2) 0.021 (3) 0.062 (2) 0.004 (2)

C18 0.0425 (13) 0.0430 (13) 0.0492 (13) 0.0093 (10) 0.0033 (10) −0.0013 (10)

C19 0.0524 (14) 0.0525 (15) 0.0394 (12) −0.0023 (11) 0.0133 (10) 0.0064 (10)

Geometric parameters (Å, º)

O1—C1 1.428 (2) C8—C9 1.366 (3)

O1—C5 1.439 (2) C8—H8 0.9300

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o1951–o1953

O2—C13 1.459 (3) C9—H9 0.9300

O3—C12 1.195 (2) C10—C11 1.380 (3)

O4—C15 1.328 (3) C10—H10 0.9300

O4—C16 1.461 (3) C11—H11 0.9300

O5—C15 1.188 (3) C13—C14 1.487 (4)

C1—C19 1.517 (3) C13—H13A 0.9700

C1—C4i 1.572 (3) C13—H13B 0.9700

C1—C2 1.587 (3) C14—H14A 0.9600

C2—C15 1.517 (3) C14—H14B 0.9600

C2—C3 1.538 (3) C14—H14C 0.9600

C2—C5i 1.576 (3) C16—C17 1.485 (4)

C3—C6 1.527 (3) C16—H16A 0.9700

C3—C4 1.552 (3) C16—H16B 0.9700

C3—H3 0.9800 C17—H17A 0.9600

C4—C12 1.526 (3) C17—H17B 0.9600

C4—C5 1.569 (3) C17—H17C 0.9600

C4—C1i 1.572 (3) C18—H18A 0.9600

C5—C18 1.513 (3) C18—H18B 0.9600

C5—C2i 1.576 (3) C18—H18C 0.9600

C6—C11 1.384 (3) C19—H19A 0.9600

C6—C7 1.389 (3) C19—H19B 0.9600

C7—C8 1.389 (3) C19—H19C 0.9600

C7—H7 0.9300

C1—O1—C5 118.56 (14) C9—C10—H10 120.2

C12—O2—C13 116.85 (18) C10—C11—C6 121.9 (2)

C15—O4—C16 117.93 (19) C10—C11—H11 119.1

O1—C1—C19 103.61 (15) C6—C11—H11 119.1

O1—C1—C4i 112.54 (15) O3—C12—O2 123.01 (19)

C19—C1—C4i 120.89 (16) O3—C12—C4 126.84 (18)

O1—C1—C2 112.12 (15) O2—C12—C4 110.13 (18)

C19—C1—C2 117.84 (17) O2—C13—C14 108.2 (2)

C4i—C1—C2 89.94 (14) O2—C13—H13A 110.1

C15—C2—C3 110.16 (16) C14—C13—H13A 110.1

C15—C2—C5i 117.70 (16) O2—C13—H13B 110.1

C3—C2—C5i 114.62 (16) C14—C13—H13B 110.1

C15—C2—C1 112.03 (17) H13A—C13—H13B 108.4

C3—C2—C1 111.40 (15) C13—C14—H14A 109.5

C5i—C2—C1 89.35 (14) C13—C14—H14B 109.5

C6—C3—C2 117.50 (16) H14A—C14—H14B 109.5

C6—C3—C4 112.64 (16) C13—C14—H14C 109.5

C2—C3—C4 109.72 (15) H14A—C14—H14C 109.5

C6—C3—H3 105.3 H14B—C14—H14C 109.5

C2—C3—H3 105.3 O5—C15—O4 121.9 (2)

C4—C3—H3 105.3 O5—C15—C2 127.0 (2)

C12—C4—C3 107.63 (16) O4—C15—C2 110.96 (18)

C12—C4—C5 113.98 (16) O4—C16—C17 108.3 (3)

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o1951–o1953

C12—C4—C1i 118.33 (17) C17—C16—H16A 110.0

C3—C4—C1i 114.21 (15) O4—C16—H16B 110.0

C5—C4—C1i 90.18 (14) C17—C16—H16B 110.0

O1—C5—C18 103.70 (15) H16A—C16—H16B 108.4

O1—C5—C4 112.05 (15) C16—C17—H17A 109.5

C18—C5—C4 118.96 (17) C16—C17—H17B 109.5

O1—C5—C2i 112.04 (15) H17A—C17—H17B 109.5

C18—C5—C2i 119.75 (17) C16—C17—H17C 109.5

C4—C5—C2i 90.44 (14) H17A—C17—H17C 109.5

C11—C6—C7 117.9 (2) H17B—C17—H17C 109.5

C11—C6—C3 118.41 (18) C5—C18—H18A 109.5

C7—C6—C3 123.58 (18) C5—C18—H18B 109.5

C8—C7—C6 120.2 (2) H18A—C18—H18B 109.5

C8—C7—H7 119.9 C5—C18—H18C 109.5

C6—C7—H7 119.9 H18A—C18—H18C 109.5

C9—C8—C7 121.1 (2) H18B—C18—H18C 109.5

C9—C8—H8 119.4 C1—C19—H19A 109.5

C7—C8—H8 119.4 C1—C19—H19B 109.5

C8—C9—C10 119.3 (2) H19A—C19—H19B 109.5

C8—C9—H9 120.3 C1—C19—H19C 109.5

C10—C9—H9 120.3 H19A—C19—H19C 109.5

C11—C10—C9 119.5 (2) H19B—C19—H19C 109.5

C11—C10—H10 120.2

C5—O1—C1—C19 −178.37 (15) C12—C4—C5—C2i −119.08 (17)

C5—O1—C1—C4i 49.4 (2) C3—C4—C5—C2i 118.59 (16)

C5—O1—C1—C2 −50.3 (2) C1i—C4—C5—C2i 2.30 (14)

O1—C1—C2—C15 −128.06 (17) C2—C3—C6—C11 120.2 (2)

C19—C1—C2—C15 −7.9 (2) C4—C3—C6—C11 −110.8 (2)

C4i—C1—C2—C15 117.52 (17) C2—C3—C6—C7 −63.6 (3)

O1—C1—C2—C3 −4.2 (2) C4—C3—C6—C7 65.4 (2)

C19—C1—C2—C3 115.97 (19) C11—C6—C7—C8 1.2 (3)

C4i—C1—C2—C3 −118.57 (16) C3—C6—C7—C8 −175.0 (2)

O1—C1—C2—C5i 112.14 (16) C6—C7—C8—C9 0.0 (4)

C19—C1—C2—C5i −127.73 (17) C7—C8—C9—C10 −0.5 (4)

C4i—C1—C2—C5i −2.27 (14) C8—C9—C10—C11 −0.3 (4)

C15—C2—C3—C6 −51.7 (2) C9—C10—C11—C6 1.5 (4)

C5i—C2—C3—C6 83.7 (2) C7—C6—C11—C10 −2.0 (3)

C1—C2—C3—C6 −176.70 (16) C3—C6—C11—C10 174.4 (2)

C15—C2—C3—C4 177.89 (16) C13—O2—C12—O3 2.8 (3)

C5i—C2—C3—C4 −46.6 (2) C13—O2—C12—C4 −175.94 (18)

C1—C2—C3—C4 52.94 (19) C3—C4—C12—O3 −125.2 (2)

C6—C3—C4—C12 47.8 (2) C5—C4—C12—O3 110.2 (3)

C2—C3—C4—C12 −179.26 (16) C1i—C4—C12—O3 6.1 (3)

C6—C3—C4—C5 173.71 (15) C3—C4—C12—O2 53.4 (2)

C2—C3—C4—C5 −53.4 (2) C5—C4—C12—O2 −71.2 (2)

C6—C3—C4—C1i −85.7 (2) C1i—C4—C12—O2 −175.30 (16)

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o1951–o1953

C1—O1—C5—C18 179.56 (15) C16—O4—C15—O5 −3.7 (4)

C1—O1—C5—C4 50.0 (2) C16—O4—C15—C2 −178.7 (2)

C1—O1—C5—C2i −49.9 (2) C3—C2—C15—O5 142.3 (3)

C12—C4—C5—O1 126.84 (17) C5i—C2—C15—O5 8.3 (4)

C3—C4—C5—O1 4.5 (2) C1—C2—C15—O5 −93.1 (3)

C1i—C4—C5—O1 −111.78 (15) C3—C2—C15—O4 −43.1 (2)

C12—C4—C5—C18 5.8 (2) C5i—C2—C15—O4 −177.06 (17)

C3—C4—C5—C18 −116.57 (19) C1—C2—C15—O4 81.5 (2)

C1i—C4—C5—C18 127.15 (18) C15—O4—C16—C17 115.7 (3)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C16—H16A···O5 0.97 2.24 2.656 (3) 105

C7—H7···O1i 0.93 2.36 3.080 (3) 135

C18—H18B···O5i 0.96 2.36 2.802 (3) 107

C13—H13B···O3ii 0.97 2.44 3.402 (3) 171

Figure

Figure 1The molecular structure of (2), showing 50% probability displacementellipsoids and the atom-numbering scheme

References

Related documents

Different configurations of hybrid model combining wavelet analysis and artificial neural network for time series forecasting of monthly precipitation have been developed and

For the poorest farmers in eastern India, then, the benefits of groundwater irrigation have come through three routes: in large part, through purchased pump irrigation and, in a

Se trata del saber absoluto como saber de lo otro o naturaleza, donde por tanto el retorno de la idea en sí misma se supone pero no aparece explícitamente, pues solo se presenta

This paper provides outcomes from an evaluation of a federally funded program combining HIV prevention services with an integrated mental health and substance abuse treatment

Figure 6: With series demand sharing, the modulating boiler's firing rate increases until the load requires an additional boiler. Then the additional boiler starts and becomes

_ommissioned jointly by the Barlow Endowment for Music Composition at Brigham Young University and the Buffalo Philharmonic Orchestra, Lukas Foss's flute concerto

Zero Error and Zero Correction in a Screw Gauge: Usually, in a Screw Gauge, the zero of the circular scale, coincides with the base line of the main scale as shown below and we

Objetivo: Caracterização das espécies de Candida, na flora oral de crianças infectadas pelo HIV-1, identificadas antes e após a introdução da terapêutica com inibidores