2 Amino 4 (4 meth­oxy­phen­yl) 4H benzo[h]chromene 3 carbo­nitrile

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o3419–o3420 doi:10.1107/S160053680502982X Guet al. C

21H16N2O2

o3419

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Amino-4-(4-methoxyphenyl)-4

H

-benzo[

h

]-chromene-3-carbonitrile

Xi-Feng Gu,* Cheng Guo, Dong-Mei Zhang and Qing-Gang Tang

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No.5 Nanjing, Nanjing 210009, People’s Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.051

wRfactor = 0.202

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C21H16N2O2, was synthesized by the

reaction of 1-naphthol with malononitrile and 4-methoxy-benzaldehyde in ethanol under microwave irradiation. A weak intramolecular C—H interaction is found.

Comment

Benzopyrans and their derivatives are important in natural and synthetic organic chemistry owing to their biological and pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities (Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural units of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyamaet al., 1988).

We report here the crystal structure of the title compound, (I). The molecular structure of (I), shown in Fig. 1, exhibits a weak intramolecular C—H interaction (Table 2).

Experimental

Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with malononitrile (5 mmol) and 4-methoxybenzaldehyde (5 mmol) in ethanol (4 ml) using piperidine as catalyst under microwave irra-diation. Pure compound (I) was obtained by recrystallization from ethanol (m.p. 464–466 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectro-scopic analysis:1H NMR (CDCl

3,, p.p.m.): 8.23 (d, 1H), 7.88 (d, 1H),

7.55–7.65 (m, 3H), 7.16 (d, 2H), 7.08–7.10 (m, 3H), 6.87 (d, 2H), 4.84 (s, 1H), 3.71 (s, 3H).

Crystal data

C21H16N2O2 Mr= 328.36

Triclinic,P1 a= 6.4140 (13) A˚ b= 10.643 (2) A˚ c= 13.308 (3) A˚

= 108.59 (3) = 96.11 (3) = 96.95 (3)

V= 844.5 (3) A˚3

Z= 2

Dx= 1.291 Mg m

3 MoKradiation Cell parameters from 25

reflections

= 10–12 = 0.08 mm1 T= 293 (2) K Block, colourless 0.40.40.2 mm

(2)

Data collection

Enraf–Nonius CAD4 diffractometer

!/2scans

Absorption correction: none 3594 measured reflections 3287 independent reflections 2023 reflections withI> 2(I) Rint= 0.018

max= 26.0 h= 0!7 k=12!12 l=15!15 3 standard reflections

every 200 reflections intensity decay: none

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.051 wR(F2) = 0.202 S= 1.02 3287 reflections 235 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.130P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.22 e A˚

3 min=0.20 e A˚

3

Extinction correction:SHELXL97 Extinction coefficient: 0.051 (10)

Table 1

Selected geometric parameters (A˚ ,).

O1—C2 1.375 (3)

O1—C1 1.410 (4)

O2—C11 1.361 (2)

O2—C12 1.393 (3)

N1—C9 1.153 (3)

N2—C11 1.344 (3)

C5—C8 1.532 (3)

C9—C10 1.414 (3)

C2—O1—C1 118.5 (2)

C11—O2—C12 119.09 (16)

O1—C2—C3 116.3 (2)

O1—C2—C7 124.4 (2)

C6—C5—C8 121.15 (18)

C4—C5—C8 121.51 (19)

C21—C8—C5 111.38 (16)

C10—C8—C5 111.96 (17)

N1—C9—C10 177.3 (2)

C11—C10—C9 119.4 (2)

C9—C10—C8 117.47 (18)

N2—C11—C10 127.1 (2)

N2—C11—O2 110.26 (18)

C10—C11—O2 122.6 (2)

C21—C12—O2 122.50 (18)

O2—C12—C13 114.15 (18)

C14—C13—C12 123.1 (2)

C19—C18—C17 122.2 (2)

C20—C21—C8 120.52 (19)

Table 2

Hydrogen-bond geometry (A˚ ,).

Cg1 is the centroid of the O2/C11/C10/C8/C21/C12 ring.

D—H A D—H H A D A D—H A

C6—H6A Cg1 0.93 2.77 3.1243 104

The N-bound H atoms were located in a difference Fourier map and refined freely [N2—H2 = 0.96 (3) A˚ and N2—H1 = 0.90 (3) A˚].

The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 A˚ ) and refined as riding, withUiso(H) = 1.2Ueq(C).

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics:SHELXTL (Siemens, 1996); software used to prepare material for publication:SHELXTL.

References

Brooks, G. T. (1998).Pestic. Sci.22, 4l–50.

Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988).J. Chem. Soc.

Chem. Commun.pp. 1202–1024.

Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 62l 812 768. Morianka, Y. & Takahashi, K. (1977). Jpn Patent JP 521 090 00.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o3419–o3420

supporting information

Acta Cryst. (2005). E61, o3419–o3420 [doi:10.1107/S160053680502982X]

2-Amino-4-(4-methoxyphenyl)-4

H

-benzo[

h

]chromene-3-carbonitrile

Xi-Feng Gu, Cheng Guo, Dong-Mei Zhang and Qing-Gang Tang

S1. Comment

Benzopyrans and their derivatives are important in natural and synthetic organic chemistry owing to their biological and

pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities

(Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of

natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyama

et al., 1988). We report here the crystal structure of the title compound, (I).

The molecular structure of (I), shown in Fig. 1, exhibits weak intramolecular C—H···π interactions (Fig.2, Table 2),

which generate a three-dimensional network.

S2. Experimental

Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with malononitrile (5 mmol) and

4-methoxy-benzaldehyde (5 mmol) in ethanol (4 ml) using piperidine as catalyst under microwave irradiation. Pure compound (I)

was obtained by recrystallization from ethanol (m.p. 464–466 K). Crystals of (I) suitable for X-ray diffraction were

obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: 1H NMR (CDCl

3, δ, p.p.m.): 8.23 (d, 1H), 7.88 (d, 1H), 7.55–7.65 (m, 3H), 7.16 (d, 2H), 7.08–7.10 (m, 3H), 6.87 (d, 2H), 4.84 (s, 1H), 3.71(s, 3H).

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were placed in

calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Cg1 is the centroid of atoms

(4)

Figure 1

The molecular structure of (I).

Figure 2

The C—H···π interactions in (I), shown as dashed lines.

2-amino-4-(4-methoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile

Crystal data

C21H16N2O2

Mr = 328.36 Triclinic, P1 Hall symbol: -p 1 a = 6.4140 (13) Å b = 10.643 (2) Å c = 13.308 (3) Å α = 108.59 (3)° β = 96.11 (3)° γ = 96.95 (3)° V = 844.5 (3) Å3

Z = 2 F(000) = 344 Dx = 1.291 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10–12°

µ = 0.08 mm−1

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o3419–o3420

Data collection

Nonius CAD4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

3594 measured reflections 3287 independent reflections 2023 reflections with I > 2σ(I)

Rint = 0.018

θmax = 26.0°, θmin = 1.6°

h = 0→7 k = −12→12 l = −15→15

3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.202

S = 1.02 3287 reflections 235 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.130P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.22 e Å−3 Δρmin = −0.20 e Å−3

Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.051 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.3695 (3) 0.29973 (17) 0.88148 (15) 0.0798 (6)

O2 0.3768 (2) 0.96617 (15) 0.76767 (12) 0.0596 (5)

N1 1.0298 (3) 0.8649 (2) 0.90388 (17) 0.0732 (6)

N2 0.6335 (4) 1.0832 (2) 0.90233 (19) 0.0730 (7)

C1 0.1913 (6) 0.2915 (3) 0.9340 (3) 0.0948 (10)

H1A 0.1838 0.2138 0.9562 0.142*

H1B 0.0644 0.2843 0.8858 0.142*

H1C 0.2044 0.3708 0.9958 0.142*

C2 0.4087 (4) 0.4050 (2) 0.84362 (18) 0.0575 (6)

C3 0.5833 (4) 0.4082 (2) 0.7921 (2) 0.0662 (7)

H3A 0.6680 0.3418 0.7854 0.079*

C4 0.6333 (4) 0.5090 (2) 0.75041 (18) 0.0596 (6)

H4A 0.7515 0.5095 0.7156 0.072*

C5 0.5112 (3) 0.6098 (2) 0.75921 (16) 0.0489 (5)

(6)

H6A 0.2543 0.6721 0.8188 0.077*

C7 0.2859 (4) 0.5047 (2) 0.8542 (2) 0.0663 (7)

H7A 0.1686 0.5045 0.8896 0.080*

C8 0.5679 (3) 0.7229 (2) 0.71396 (17) 0.0522 (5)

H8A 0.6749 0.6973 0.6672 0.063*

C9 0.8644 (3) 0.8632 (2) 0.85951 (17) 0.0552 (6)

C10 0.6619 (3) 0.8549 (2) 0.80195 (17) 0.0511 (5)

C11 0.5645 (3) 0.9638 (2) 0.82482 (18) 0.0518 (6)

C12 0.2888 (3) 0.8560 (2) 0.67716 (17) 0.0500 (5)

C13 0.0966 (3) 0.8720 (2) 0.62116 (17) 0.0515 (6)

C14 0.0004 (4) 0.9869 (3) 0.6559 (2) 0.0654 (7)

H14A 0.0648 1.0587 0.7165 0.079*

C15 −0.1895 (4) 0.9931 (3) 0.6002 (2) 0.0802 (8)

H15A −0.2534 1.0689 0.6241 0.096*

C16 −0.2875 (4) 0.8869 (4) 0.5082 (2) 0.0853 (9)

H16A −0.4164 0.8923 0.4719 0.102*

C17 −0.1960 (4) 0.7764 (3) 0.4717 (2) 0.0747 (8)

H17A −0.2616 0.7068 0.4098 0.090*

C18 −0.0010 (4) 0.7655 (3) 0.52681 (18) 0.0601 (6)

C19 0.0974 (4) 0.6512 (3) 0.49201 (19) 0.0688 (7)

H19A 0.0391 0.5827 0.4281 0.083*

C20 0.2775 (4) 0.6397 (3) 0.55075 (19) 0.0671 (7)

H20A 0.3371 0.5621 0.5268 0.081*

C21 0.3760 (3) 0.7425 (2) 0.64717 (17) 0.0520 (5)

H2 0.545 (5) 1.150 (3) 0.907 (2) 0.085 (8)*

H1 0.736 (4) 1.093 (3) 0.957 (2) 0.075 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0924 (14) 0.0657 (11) 0.0920 (13) 0.0153 (9) 0.0074 (11) 0.0424 (10)

O2 0.0426 (8) 0.0589 (9) 0.0726 (10) 0.0102 (7) −0.0128 (7) 0.0216 (8)

N1 0.0501 (12) 0.0875 (15) 0.0769 (14) 0.0247 (10) −0.0083 (10) 0.0216 (11)

N2 0.0623 (13) 0.0573 (13) 0.0858 (15) 0.0123 (10) −0.0251 (12) 0.0164 (11)

C1 0.109 (2) 0.086 (2) 0.101 (2) 0.0000 (17) 0.0209 (19) 0.0514 (18)

C2 0.0616 (14) 0.0521 (13) 0.0582 (13) 0.0104 (10) −0.0039 (11) 0.0214 (10)

C3 0.0668 (15) 0.0629 (14) 0.0730 (15) 0.0296 (12) 0.0022 (12) 0.0245 (12)

C4 0.0497 (13) 0.0691 (15) 0.0632 (13) 0.0242 (11) 0.0089 (10) 0.0211 (11)

C5 0.0405 (11) 0.0539 (12) 0.0522 (12) 0.0138 (9) 0.0019 (9) 0.0170 (9)

C6 0.0600 (14) 0.0611 (14) 0.0860 (16) 0.0296 (11) 0.0237 (13) 0.0340 (12)

C7 0.0616 (15) 0.0667 (15) 0.0806 (16) 0.0169 (12) 0.0223 (12) 0.0325 (13)

C8 0.0390 (11) 0.0617 (13) 0.0571 (12) 0.0113 (9) 0.0057 (9) 0.0211 (10)

C9 0.0466 (12) 0.0604 (13) 0.0609 (13) 0.0148 (10) 0.0042 (10) 0.0227 (11)

C10 0.0355 (10) 0.0590 (13) 0.0612 (13) 0.0075 (9) −0.0015 (9) 0.0265 (10)

C11 0.0369 (11) 0.0558 (13) 0.0629 (13) 0.0024 (9) −0.0050 (9) 0.0263 (11)

C12 0.0390 (11) 0.0576 (13) 0.0551 (12) 0.0010 (9) −0.0013 (9) 0.0264 (10)

C13 0.0374 (11) 0.0680 (14) 0.0565 (12) 0.0018 (10) 0.0007 (9) 0.0356 (11)

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o3419–o3420

C15 0.0526 (14) 0.105 (2) 0.098 (2) 0.0235 (14) −0.0020 (14) 0.0545 (18)

C16 0.0439 (14) 0.125 (3) 0.100 (2) 0.0134 (15) −0.0094 (14) 0.061 (2)

C17 0.0486 (14) 0.107 (2) 0.0709 (16) −0.0033 (14) −0.0101 (12) 0.0456 (15)

C18 0.0449 (12) 0.0793 (16) 0.0620 (14) −0.0005 (11) −0.0013 (10) 0.0387 (12)

C19 0.0595 (15) 0.0812 (17) 0.0556 (14) −0.0027 (13) −0.0064 (12) 0.0191 (12)

C20 0.0644 (15) 0.0715 (16) 0.0592 (14) 0.0120 (12) 0.0015 (12) 0.0157 (12)

C21 0.0420 (11) 0.0615 (13) 0.0555 (12) 0.0058 (9) 0.0036 (10) 0.0261 (10)

Geometric parameters (Å, º)

O1—C2 1.375 (3) C8—C21 1.515 (3)

O1—C1 1.410 (4) C8—C10 1.518 (3)

O2—C11 1.361 (2) C8—H8A 0.9800

O2—C12 1.393 (3) C9—C10 1.414 (3)

N1—C9 1.153 (3) C10—C11 1.348 (3)

N2—C11 1.344 (3) C12—C21 1.354 (3)

N2—H2 0.96 (3) C12—C13 1.429 (3)

N2—H1 0.90 (3) C13—C14 1.405 (3)

C1—H1A 0.9600 C13—C18 1.417 (3)

C1—H1B 0.9600 C14—C15 1.377 (3)

C1—H1C 0.9600 C14—H14A 0.9300

C2—C3 1.376 (3) C15—C16 1.398 (4)

C2—C7 1.377 (3) C15—H15A 0.9300

C3—C4 1.378 (3) C16—C17 1.352 (4)

C3—H3A 0.9300 C16—H16A 0.9300

C4—C5 1.385 (3) C17—C18 1.417 (3)

C4—H4A 0.9300 C17—H17A 0.9300

C5—C6 1.374 (3) C18—C19 1.407 (4)

C5—C8 1.532 (3) C19—C20 1.365 (3)

C6—C7 1.387 (3) C19—H19A 0.9300

C6—H6A 0.9300 C20—C21 1.417 (3)

C7—H7A 0.9300 C20—H20A 0.9300

C2—O1—C1 118.5 (2) C11—C10—C9 119.4 (2)

C11—O2—C12 119.09 (16) C11—C10—C8 123.13 (18)

C11—N2—H2 116.3 (17) C9—C10—C8 117.47 (18)

C11—N2—H1 121.3 (16) N2—C11—C10 127.1 (2)

H2—N2—H1 120 (2) N2—C11—O2 110.26 (18)

O1—C1—H1A 109.5 C10—C11—O2 122.6 (2)

O1—C1—H1B 109.5 C21—C12—O2 122.50 (18)

H1A—C1—H1B 109.5 C21—C12—C13 123.3 (2)

O1—C1—H1C 109.5 O2—C12—C13 114.15 (18)

H1A—C1—H1C 109.5 C14—C13—C18 119.1 (2)

H1B—C1—H1C 109.5 C14—C13—C12 123.1 (2)

O1—C2—C3 116.3 (2) C18—C13—C12 117.8 (2)

O1—C2—C7 124.4 (2) C15—C14—C13 119.9 (2)

C3—C2—C7 119.3 (2) C15—C14—H14A 120.0

(8)

C2—C3—H3A 119.8 C14—C15—C16 120.9 (3)

C4—C3—H3A 119.8 C14—C15—H15A 119.5

C3—C4—C5 121.4 (2) C16—C15—H15A 119.5

C3—C4—H4A 119.3 C17—C16—C15 120.4 (2)

C5—C4—H4A 119.3 C17—C16—H16A 119.8

C6—C5—C4 117.3 (2) C15—C16—H16A 119.8

C6—C5—C8 121.15 (18) C16—C17—C18 120.6 (3)

C4—C5—C8 121.51 (19) C16—C17—H17A 119.7

C5—C6—C7 122.0 (2) C18—C17—H17A 119.7

C5—C6—H6A 119.0 C19—C18—C13 118.7 (2)

C7—C6—H6A 119.0 C19—C18—C17 122.2 (2)

C2—C7—C6 119.6 (2) C13—C18—C17 119.0 (2)

C2—C7—H7A 120.2 C20—C19—C18 120.9 (2)

C6—C7—H7A 120.2 C20—C19—H19A 119.6

C21—C8—C10 109.44 (17) C18—C19—H19A 119.6

C21—C8—C5 111.38 (16) C19—C20—C21 121.9 (2)

C10—C8—C5 111.96 (17) C19—C20—H20A 119.1

C21—C8—H8A 108.0 C21—C20—H20A 119.1

C10—C8—H8A 108.0 C12—C21—C20 117.2 (2)

C5—C8—H8A 108.0 C12—C21—C8 122.2 (2)

N1—C9—C10 177.3 (2) C20—C21—C8 120.52 (19)

C1—O1—C2—C3 −179.5 (2) C11—O2—C12—C13 −177.54 (17)

C1—O1—C2—C7 0.5 (4) C21—C12—C13—C14 176.3 (2)

O1—C2—C3—C4 179.2 (2) O2—C12—C13—C14 −2.0 (3)

C7—C2—C3—C4 −0.8 (4) C21—C12—C13—C18 −3.0 (3)

C2—C3—C4—C5 0.3 (4) O2—C12—C13—C18 178.74 (17)

C3—C4—C5—C6 0.2 (3) C18—C13—C14—C15 1.9 (3)

C3—C4—C5—C8 179.3 (2) C12—C13—C14—C15 −177.4 (2)

C4—C5—C6—C7 −0.2 (3) C13—C14—C15—C16 −0.8 (4)

C8—C5—C6—C7 −179.3 (2) C14—C15—C16—C17 −0.6 (4)

O1—C2—C7—C6 −179.2 (2) C15—C16—C17—C18 0.9 (4)

C3—C2—C7—C6 0.8 (4) C14—C13—C18—C19 179.4 (2)

C5—C6—C7—C2 −0.3 (4) C12—C13—C18—C19 −1.2 (3)

C6—C5—C8—C21 −49.6 (3) C14—C13—C18—C17 −1.6 (3)

C4—C5—C8—C21 131.3 (2) C12—C13—C18—C17 177.71 (19)

C6—C5—C8—C10 73.3 (2) C16—C17—C18—C19 179.2 (2)

C4—C5—C8—C10 −105.8 (2) C16—C17—C18—C13 0.2 (4)

N1—C9—C10—C11 −176 (100) C13—C18—C19—C20 3.4 (4)

N1—C9—C10—C8 2 (5) C17—C18—C19—C20 −175.5 (2)

C21—C8—C10—C11 9.8 (3) C18—C19—C20—C21 −1.7 (4)

C5—C8—C10—C11 −114.2 (2) O2—C12—C21—C20 −177.11 (19)

C21—C8—C10—C9 −168.21 (18) C13—C12—C21—C20 4.7 (3)

C5—C8—C10—C9 67.8 (2) O2—C12—C21—C8 4.3 (3)

C9—C10—C11—N2 −3.5 (4) C13—C12—C21—C8 −173.90 (18)

C8—C10—C11—N2 178.5 (2) C19—C20—C21—C12 −2.4 (3)

C9—C10—C11—O2 175.18 (19) C19—C20—C21—C8 176.3 (2)

(9)

supporting information

sup-7

Acta Cryst. (2005). E61, o3419–o3420

C12—O2—C11—N2 174.00 (18) C5—C8—C21—C12 113.9 (2)

C12—O2—C11—C10 −4.9 (3) C10—C8—C21—C20 170.99 (19)

C11—O2—C12—C21 4.2 (3) C5—C8—C21—C20 −64.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Table 2
Table 2. View in document p.2
Figure 1
Figure 1. View in document p.4

References

Updating...