organic papers
Acta Cryst.(2005). E61, o3419–o3420 doi:10.1107/S160053680502982X Guet al. C
21H16N2O2
o3419
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
2-Amino-4-(4-methoxyphenyl)-4
H
-benzo[
h
]-chromene-3-carbonitrile
Xi-Feng Gu,* Cheng Guo, Dong-Mei Zhang and Qing-Gang Tang
Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No.5 Nanjing, Nanjing 210009, People’s Republic of China
Correspondence e-mail: guocheng@njut.edu.cn
Key indicators
Single-crystal X-ray study
T= 293 K
Mean(C–C) = 0.003 A˚
Rfactor = 0.051
wRfactor = 0.202
Data-to-parameter ratio = 14.0
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography Printed in Great Britain – all rights reserved
The title compound, C21H16N2O2, was synthesized by the
reaction of 1-naphthol with malononitrile and 4-methoxy-benzaldehyde in ethanol under microwave irradiation. A weak intramolecular C—H interaction is found.
Comment
Benzopyrans and their derivatives are important in natural and synthetic organic chemistry owing to their biological and pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities (Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural units of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyamaet al., 1988).
We report here the crystal structure of the title compound, (I). The molecular structure of (I), shown in Fig. 1, exhibits a weak intramolecular C—H interaction (Table 2).
Experimental
Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with malononitrile (5 mmol) and 4-methoxybenzaldehyde (5 mmol) in ethanol (4 ml) using piperidine as catalyst under microwave irra-diation. Pure compound (I) was obtained by recrystallization from ethanol (m.p. 464–466 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectro-scopic analysis:1H NMR (CDCl
3,, p.p.m.): 8.23 (d, 1H), 7.88 (d, 1H),
7.55–7.65 (m, 3H), 7.16 (d, 2H), 7.08–7.10 (m, 3H), 6.87 (d, 2H), 4.84 (s, 1H), 3.71 (s, 3H).
Crystal data
C21H16N2O2 Mr= 328.36
Triclinic,P1 a= 6.4140 (13) A˚ b= 10.643 (2) A˚ c= 13.308 (3) A˚
= 108.59 (3) = 96.11 (3) = 96.95 (3)
V= 844.5 (3) A˚3
Z= 2
Dx= 1.291 Mg m
3 MoKradiation Cell parameters from 25
reflections
= 10–12 = 0.08 mm1 T= 293 (2) K Block, colourless 0.40.40.2 mm
Data collection
Enraf–Nonius CAD4 diffractometer
!/2scans
Absorption correction: none 3594 measured reflections 3287 independent reflections 2023 reflections withI> 2(I) Rint= 0.018
max= 26.0 h= 0!7 k=12!12 l=15!15 3 standard reflections
every 200 reflections intensity decay: none
Refinement
Refinement onF2 R[F2> 2(F2)] = 0.051 wR(F2) = 0.202 S= 1.02 3287 reflections 235 parameters
H atoms treated by a mixture of independent and constrained refinement
w= 1/[2
(Fo2) + (0.130P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001
max= 0.22 e A˚
3 min=0.20 e A˚
3
Extinction correction:SHELXL97 Extinction coefficient: 0.051 (10)
Table 1
Selected geometric parameters (A˚ ,).
O1—C2 1.375 (3)
O1—C1 1.410 (4)
O2—C11 1.361 (2)
O2—C12 1.393 (3)
N1—C9 1.153 (3)
N2—C11 1.344 (3)
C5—C8 1.532 (3)
C9—C10 1.414 (3)
C2—O1—C1 118.5 (2)
C11—O2—C12 119.09 (16)
O1—C2—C3 116.3 (2)
O1—C2—C7 124.4 (2)
C6—C5—C8 121.15 (18)
C4—C5—C8 121.51 (19)
C21—C8—C5 111.38 (16)
C10—C8—C5 111.96 (17)
N1—C9—C10 177.3 (2)
C11—C10—C9 119.4 (2)
C9—C10—C8 117.47 (18)
N2—C11—C10 127.1 (2)
N2—C11—O2 110.26 (18)
C10—C11—O2 122.6 (2)
C21—C12—O2 122.50 (18)
O2—C12—C13 114.15 (18)
C14—C13—C12 123.1 (2)
C19—C18—C17 122.2 (2)
C20—C21—C8 120.52 (19)
Table 2
Hydrogen-bond geometry (A˚ ,).
Cg1 is the centroid of the O2/C11/C10/C8/C21/C12 ring.
D—H A D—H H A D A D—H A
C6—H6A Cg1 0.93 2.77 3.1243 104
The N-bound H atoms were located in a difference Fourier map and refined freely [N2—H2 = 0.96 (3) A˚ and N2—H1 = 0.90 (3) A˚].
The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 A˚ ) and refined as riding, withUiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97
(Sheldrick, 1997); program(s) used to refine structure:SHELXL97
(Sheldrick, 1997); molecular graphics:SHELXTL (Siemens, 1996); software used to prepare material for publication:SHELXTL.
References
Brooks, G. T. (1998).Pestic. Sci.22, 4l–50.
Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988).J. Chem. Soc.
Chem. Commun.pp. 1202–1024.
Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 62l 812 768. Morianka, Y. & Takahashi, K. (1977). Jpn Patent JP 521 090 00.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Figure 1
supporting information
sup-1
Acta Cryst. (2005). E61, o3419–o3420
supporting information
Acta Cryst. (2005). E61, o3419–o3420 [doi:10.1107/S160053680502982X]
2-Amino-4-(4-methoxyphenyl)-4
H
-benzo[
h
]chromene-3-carbonitrile
Xi-Feng Gu, Cheng Guo, Dong-Mei Zhang and Qing-Gang Tang
S1. Comment
Benzopyrans and their derivatives are important in natural and synthetic organic chemistry owing to their biological and
pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities
(Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of
natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyama
et al., 1988). We report here the crystal structure of the title compound, (I).
The molecular structure of (I), shown in Fig. 1, exhibits weak intramolecular C—H···π interactions (Fig.2, Table 2),
which generate a three-dimensional network.
S2. Experimental
Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with malononitrile (5 mmol) and
4-methoxy-benzaldehyde (5 mmol) in ethanol (4 ml) using piperidine as catalyst under microwave irradiation. Pure compound (I)
was obtained by recrystallization from ethanol (m.p. 464–466 K). Crystals of (I) suitable for X-ray diffraction were
obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: 1H NMR (CDCl
3, δ, p.p.m.): 8.23 (d, 1H), 7.88 (d, 1H), 7.55–7.65 (m, 3H), 7.16 (d, 2H), 7.08–7.10 (m, 3H), 6.87 (d, 2H), 4.84 (s, 1H), 3.71(s, 3H).
S3. Refinement
The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were placed in
calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Cg1 is the centroid of atoms
Figure 1
The molecular structure of (I).
Figure 2
The C—H···π interactions in (I), shown as dashed lines.
2-amino-4-(4-methoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile
Crystal data
C21H16N2O2
Mr = 328.36 Triclinic, P1 Hall symbol: -p 1 a = 6.4140 (13) Å b = 10.643 (2) Å c = 13.308 (3) Å α = 108.59 (3)° β = 96.11 (3)° γ = 96.95 (3)° V = 844.5 (3) Å3
Z = 2 F(000) = 344 Dx = 1.291 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10–12°
µ = 0.08 mm−1
supporting information
sup-3
Acta Cryst. (2005). E61, o3419–o3420
Data collection
Nonius CAD4 diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω/2θ scans
3594 measured reflections 3287 independent reflections 2023 reflections with I > 2σ(I)
Rint = 0.018
θmax = 26.0°, θmin = 1.6°
h = 0→7 k = −12→12 l = −15→15
3 standard reflections every 200 reflections intensity decay: none
Refinement
Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051
wR(F2) = 0.202
S = 1.02 3287 reflections 235 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.130P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001
Δρmax = 0.22 e Å−3 Δρmin = −0.20 e Å−3
Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.051 (10)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
O1 0.3695 (3) 0.29973 (17) 0.88148 (15) 0.0798 (6)
O2 0.3768 (2) 0.96617 (15) 0.76767 (12) 0.0596 (5)
N1 1.0298 (3) 0.8649 (2) 0.90388 (17) 0.0732 (6)
N2 0.6335 (4) 1.0832 (2) 0.90233 (19) 0.0730 (7)
C1 0.1913 (6) 0.2915 (3) 0.9340 (3) 0.0948 (10)
H1A 0.1838 0.2138 0.9562 0.142*
H1B 0.0644 0.2843 0.8858 0.142*
H1C 0.2044 0.3708 0.9958 0.142*
C2 0.4087 (4) 0.4050 (2) 0.84362 (18) 0.0575 (6)
C3 0.5833 (4) 0.4082 (2) 0.7921 (2) 0.0662 (7)
H3A 0.6680 0.3418 0.7854 0.079*
C4 0.6333 (4) 0.5090 (2) 0.75041 (18) 0.0596 (6)
H4A 0.7515 0.5095 0.7156 0.072*
C5 0.5112 (3) 0.6098 (2) 0.75921 (16) 0.0489 (5)
H6A 0.2543 0.6721 0.8188 0.077*
C7 0.2859 (4) 0.5047 (2) 0.8542 (2) 0.0663 (7)
H7A 0.1686 0.5045 0.8896 0.080*
C8 0.5679 (3) 0.7229 (2) 0.71396 (17) 0.0522 (5)
H8A 0.6749 0.6973 0.6672 0.063*
C9 0.8644 (3) 0.8632 (2) 0.85951 (17) 0.0552 (6)
C10 0.6619 (3) 0.8549 (2) 0.80195 (17) 0.0511 (5)
C11 0.5645 (3) 0.9638 (2) 0.82482 (18) 0.0518 (6)
C12 0.2888 (3) 0.8560 (2) 0.67716 (17) 0.0500 (5)
C13 0.0966 (3) 0.8720 (2) 0.62116 (17) 0.0515 (6)
C14 0.0004 (4) 0.9869 (3) 0.6559 (2) 0.0654 (7)
H14A 0.0648 1.0587 0.7165 0.079*
C15 −0.1895 (4) 0.9931 (3) 0.6002 (2) 0.0802 (8)
H15A −0.2534 1.0689 0.6241 0.096*
C16 −0.2875 (4) 0.8869 (4) 0.5082 (2) 0.0853 (9)
H16A −0.4164 0.8923 0.4719 0.102*
C17 −0.1960 (4) 0.7764 (3) 0.4717 (2) 0.0747 (8)
H17A −0.2616 0.7068 0.4098 0.090*
C18 −0.0010 (4) 0.7655 (3) 0.52681 (18) 0.0601 (6)
C19 0.0974 (4) 0.6512 (3) 0.49201 (19) 0.0688 (7)
H19A 0.0391 0.5827 0.4281 0.083*
C20 0.2775 (4) 0.6397 (3) 0.55075 (19) 0.0671 (7)
H20A 0.3371 0.5621 0.5268 0.081*
C21 0.3760 (3) 0.7425 (2) 0.64717 (17) 0.0520 (5)
H2 0.545 (5) 1.150 (3) 0.907 (2) 0.085 (8)*
H1 0.736 (4) 1.093 (3) 0.957 (2) 0.075 (8)*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
O1 0.0924 (14) 0.0657 (11) 0.0920 (13) 0.0153 (9) 0.0074 (11) 0.0424 (10)
O2 0.0426 (8) 0.0589 (9) 0.0726 (10) 0.0102 (7) −0.0128 (7) 0.0216 (8)
N1 0.0501 (12) 0.0875 (15) 0.0769 (14) 0.0247 (10) −0.0083 (10) 0.0216 (11)
N2 0.0623 (13) 0.0573 (13) 0.0858 (15) 0.0123 (10) −0.0251 (12) 0.0164 (11)
C1 0.109 (2) 0.086 (2) 0.101 (2) 0.0000 (17) 0.0209 (19) 0.0514 (18)
C2 0.0616 (14) 0.0521 (13) 0.0582 (13) 0.0104 (10) −0.0039 (11) 0.0214 (10)
C3 0.0668 (15) 0.0629 (14) 0.0730 (15) 0.0296 (12) 0.0022 (12) 0.0245 (12)
C4 0.0497 (13) 0.0691 (15) 0.0632 (13) 0.0242 (11) 0.0089 (10) 0.0211 (11)
C5 0.0405 (11) 0.0539 (12) 0.0522 (12) 0.0138 (9) 0.0019 (9) 0.0170 (9)
C6 0.0600 (14) 0.0611 (14) 0.0860 (16) 0.0296 (11) 0.0237 (13) 0.0340 (12)
C7 0.0616 (15) 0.0667 (15) 0.0806 (16) 0.0169 (12) 0.0223 (12) 0.0325 (13)
C8 0.0390 (11) 0.0617 (13) 0.0571 (12) 0.0113 (9) 0.0057 (9) 0.0211 (10)
C9 0.0466 (12) 0.0604 (13) 0.0609 (13) 0.0148 (10) 0.0042 (10) 0.0227 (11)
C10 0.0355 (10) 0.0590 (13) 0.0612 (13) 0.0075 (9) −0.0015 (9) 0.0265 (10)
C11 0.0369 (11) 0.0558 (13) 0.0629 (13) 0.0024 (9) −0.0050 (9) 0.0263 (11)
C12 0.0390 (11) 0.0576 (13) 0.0551 (12) 0.0010 (9) −0.0013 (9) 0.0264 (10)
C13 0.0374 (11) 0.0680 (14) 0.0565 (12) 0.0018 (10) 0.0007 (9) 0.0356 (11)
supporting information
sup-5
Acta Cryst. (2005). E61, o3419–o3420
C15 0.0526 (14) 0.105 (2) 0.098 (2) 0.0235 (14) −0.0020 (14) 0.0545 (18)
C16 0.0439 (14) 0.125 (3) 0.100 (2) 0.0134 (15) −0.0094 (14) 0.061 (2)
C17 0.0486 (14) 0.107 (2) 0.0709 (16) −0.0033 (14) −0.0101 (12) 0.0456 (15)
C18 0.0449 (12) 0.0793 (16) 0.0620 (14) −0.0005 (11) −0.0013 (10) 0.0387 (12)
C19 0.0595 (15) 0.0812 (17) 0.0556 (14) −0.0027 (13) −0.0064 (12) 0.0191 (12)
C20 0.0644 (15) 0.0715 (16) 0.0592 (14) 0.0120 (12) 0.0015 (12) 0.0157 (12)
C21 0.0420 (11) 0.0615 (13) 0.0555 (12) 0.0058 (9) 0.0036 (10) 0.0261 (10)
Geometric parameters (Å, º)
O1—C2 1.375 (3) C8—C21 1.515 (3)
O1—C1 1.410 (4) C8—C10 1.518 (3)
O2—C11 1.361 (2) C8—H8A 0.9800
O2—C12 1.393 (3) C9—C10 1.414 (3)
N1—C9 1.153 (3) C10—C11 1.348 (3)
N2—C11 1.344 (3) C12—C21 1.354 (3)
N2—H2 0.96 (3) C12—C13 1.429 (3)
N2—H1 0.90 (3) C13—C14 1.405 (3)
C1—H1A 0.9600 C13—C18 1.417 (3)
C1—H1B 0.9600 C14—C15 1.377 (3)
C1—H1C 0.9600 C14—H14A 0.9300
C2—C3 1.376 (3) C15—C16 1.398 (4)
C2—C7 1.377 (3) C15—H15A 0.9300
C3—C4 1.378 (3) C16—C17 1.352 (4)
C3—H3A 0.9300 C16—H16A 0.9300
C4—C5 1.385 (3) C17—C18 1.417 (3)
C4—H4A 0.9300 C17—H17A 0.9300
C5—C6 1.374 (3) C18—C19 1.407 (4)
C5—C8 1.532 (3) C19—C20 1.365 (3)
C6—C7 1.387 (3) C19—H19A 0.9300
C6—H6A 0.9300 C20—C21 1.417 (3)
C7—H7A 0.9300 C20—H20A 0.9300
C2—O1—C1 118.5 (2) C11—C10—C9 119.4 (2)
C11—O2—C12 119.09 (16) C11—C10—C8 123.13 (18)
C11—N2—H2 116.3 (17) C9—C10—C8 117.47 (18)
C11—N2—H1 121.3 (16) N2—C11—C10 127.1 (2)
H2—N2—H1 120 (2) N2—C11—O2 110.26 (18)
O1—C1—H1A 109.5 C10—C11—O2 122.6 (2)
O1—C1—H1B 109.5 C21—C12—O2 122.50 (18)
H1A—C1—H1B 109.5 C21—C12—C13 123.3 (2)
O1—C1—H1C 109.5 O2—C12—C13 114.15 (18)
H1A—C1—H1C 109.5 C14—C13—C18 119.1 (2)
H1B—C1—H1C 109.5 C14—C13—C12 123.1 (2)
O1—C2—C3 116.3 (2) C18—C13—C12 117.8 (2)
O1—C2—C7 124.4 (2) C15—C14—C13 119.9 (2)
C3—C2—C7 119.3 (2) C15—C14—H14A 120.0
C2—C3—H3A 119.8 C14—C15—C16 120.9 (3)
C4—C3—H3A 119.8 C14—C15—H15A 119.5
C3—C4—C5 121.4 (2) C16—C15—H15A 119.5
C3—C4—H4A 119.3 C17—C16—C15 120.4 (2)
C5—C4—H4A 119.3 C17—C16—H16A 119.8
C6—C5—C4 117.3 (2) C15—C16—H16A 119.8
C6—C5—C8 121.15 (18) C16—C17—C18 120.6 (3)
C4—C5—C8 121.51 (19) C16—C17—H17A 119.7
C5—C6—C7 122.0 (2) C18—C17—H17A 119.7
C5—C6—H6A 119.0 C19—C18—C13 118.7 (2)
C7—C6—H6A 119.0 C19—C18—C17 122.2 (2)
C2—C7—C6 119.6 (2) C13—C18—C17 119.0 (2)
C2—C7—H7A 120.2 C20—C19—C18 120.9 (2)
C6—C7—H7A 120.2 C20—C19—H19A 119.6
C21—C8—C10 109.44 (17) C18—C19—H19A 119.6
C21—C8—C5 111.38 (16) C19—C20—C21 121.9 (2)
C10—C8—C5 111.96 (17) C19—C20—H20A 119.1
C21—C8—H8A 108.0 C21—C20—H20A 119.1
C10—C8—H8A 108.0 C12—C21—C20 117.2 (2)
C5—C8—H8A 108.0 C12—C21—C8 122.2 (2)
N1—C9—C10 177.3 (2) C20—C21—C8 120.52 (19)
C1—O1—C2—C3 −179.5 (2) C11—O2—C12—C13 −177.54 (17)
C1—O1—C2—C7 0.5 (4) C21—C12—C13—C14 176.3 (2)
O1—C2—C3—C4 179.2 (2) O2—C12—C13—C14 −2.0 (3)
C7—C2—C3—C4 −0.8 (4) C21—C12—C13—C18 −3.0 (3)
C2—C3—C4—C5 0.3 (4) O2—C12—C13—C18 178.74 (17)
C3—C4—C5—C6 0.2 (3) C18—C13—C14—C15 1.9 (3)
C3—C4—C5—C8 179.3 (2) C12—C13—C14—C15 −177.4 (2)
C4—C5—C6—C7 −0.2 (3) C13—C14—C15—C16 −0.8 (4)
C8—C5—C6—C7 −179.3 (2) C14—C15—C16—C17 −0.6 (4)
O1—C2—C7—C6 −179.2 (2) C15—C16—C17—C18 0.9 (4)
C3—C2—C7—C6 0.8 (4) C14—C13—C18—C19 179.4 (2)
C5—C6—C7—C2 −0.3 (4) C12—C13—C18—C19 −1.2 (3)
C6—C5—C8—C21 −49.6 (3) C14—C13—C18—C17 −1.6 (3)
C4—C5—C8—C21 131.3 (2) C12—C13—C18—C17 177.71 (19)
C6—C5—C8—C10 73.3 (2) C16—C17—C18—C19 179.2 (2)
C4—C5—C8—C10 −105.8 (2) C16—C17—C18—C13 0.2 (4)
N1—C9—C10—C11 −176 (100) C13—C18—C19—C20 3.4 (4)
N1—C9—C10—C8 2 (5) C17—C18—C19—C20 −175.5 (2)
C21—C8—C10—C11 9.8 (3) C18—C19—C20—C21 −1.7 (4)
C5—C8—C10—C11 −114.2 (2) O2—C12—C21—C20 −177.11 (19)
C21—C8—C10—C9 −168.21 (18) C13—C12—C21—C20 4.7 (3)
C5—C8—C10—C9 67.8 (2) O2—C12—C21—C8 4.3 (3)
C9—C10—C11—N2 −3.5 (4) C13—C12—C21—C8 −173.90 (18)
C8—C10—C11—N2 178.5 (2) C19—C20—C21—C12 −2.4 (3)
C9—C10—C11—O2 175.18 (19) C19—C20—C21—C8 176.3 (2)
supporting information
sup-7
Acta Cryst. (2005). E61, o3419–o3420
C12—O2—C11—N2 174.00 (18) C5—C8—C21—C12 113.9 (2)
C12—O2—C11—C10 −4.9 (3) C10—C8—C21—C20 170.99 (19)
C11—O2—C12—C21 4.2 (3) C5—C8—C21—C20 −64.7 (3)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A