• No results found

Lithium pyridine 3 sulfonate

N/A
N/A
Protected

Academic year: 2020

Share "Lithium pyridine 3 sulfonate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, m421±m423 DOI: 10.1107/S1600536804006191 van der Lee and Barboiu Li+C5H4NO3Sÿ

m421

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lithium pyridine-3-sulfonate

A. van der Lee* and M. Barboiu

Institut EuropeÂen des Membranes, UMII-cc047, Place E. Bataillon, 34095 Montpellier, France

Correspondence e-mail: avderlee@univ-montp2.fr

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.046

wRfactor = 0.068

Data-to-parameter ratio = 21.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the structure of the title lithium salt of pyridine-3-sulfonic acid, Li+C

5H4NO3Sÿ, apart from the electrostatic interactions

between the lithium cations and the pyridine-3-sulfonate anions, the three-dimensional structure contains± interac-tions between pairs of pyridine moieties. The asymmetric unit contains two cations and two anions.

Comment

Ligands containing sulfonate groups and guanidinium ions are capable of assembling into lamellar crystalline architectures with hexagonal frameworks (Holmanet al., 2001). In a recent attempt to assemble new, interesting and more or less porous networks based on sulfonate and guanidinium groups, we tried to synthesize diaminoguanidinium tri¯uoromethanesulfonate from diaminoguanidinium chloride and tri¯uoromethane-sulfonic acid, but we obtained a protonated diamino-guanidium chloride salt (van der Lee & Barboiu, 2004). In a new attempt, this time to synthesize guanidinium pyridine-3-sulfonate, we obtained the lithium salt of pyridine-3-pyridine-3-sulfonate, lithium pyridine-3-sulfonic acid, (I). Complexes or salts based on pyridinesulfonate are very rare in the Cambridge Struc-tural Database (CSD; Version 5.25; Allen, 2002). The struc-tures of two pyridine-3-sulfonate complexes (Walsh & Hathaway, 1980; Brodersen et al., 1980), the acid (Chan-drasekhar, 1977) and one pyridine-2-sulfonate complex (GarcõÂa-VaÂzquezet al., 2000) have been published.

A view of the asymmetric unit of (I) is presented in Fig. 1. The asymmetric unit contains two pyridine-3-sulfonate ions and two lithium ions. Table 1 gives some selected geometric parameters. The lithium cations are tetrahedrally coordinated by three O atoms and one N atom belonging to four different ligands, the bond angles being in the range 106.4 (2)± 115.1 (2). The LiÐO distances range from 1.868 (5) to

1.962 (4) AÊ, whereas the LiÐN distances are 1.996 (5) and 2.157 (4) AÊ. The distance ranges in the CSD (18 entries for this particular geometry) are 1.898±2.163 AÊ for the LiÐO distance and 1.842±2.069 AÊ for the LiÐN distance.

Fig. 2 shows the three-dimensional structure, in which pairs of pyridine-3-sulfonate groups are held together by± non-covalent intermolecular interactions. The distance between the centroids of two adjacent pyridine rings is 3.80 AÊ, whereas the angle between the ring-centroid vector and the ring normal of one of the pyridine rings is 20.1 (2), and the angle

(2)

metal-organic papers

m422

van der Lee and Barboiu Li+C5H4NO3Sÿ Acta Cryst.(2004). E60, m421±m423

between the two phenyl rings is 2.8 (2). These values can be

considered to be normal for±interactions (Janiak, 2000).

Experimental

Single crystals of the title complex were obtained by slow evaporation of an aqueous solution of pyridine-3-sulfonic acid (500 mg, 3.15 mmol), lithium hydroxide (132 mg, 3.15 mmol) and guanidinium chloride (300 mg, 3.15 mmol).

Crystal data

Li+C

5H4NO3Sÿ

Mr= 165.10

Triclinic,P1

a= 7.6362 (6) AÊ

b= 8.8697 (9) AÊ

c= 10.397 (1) AÊ = 81.572 (8) = 71.486 (8) = 82.921 (7)

V= 658.33 (11) AÊ3

Z= 4

Dx= 1.666 Mg mÿ3

MoKradiation Cell parameters from 4215

re¯ections = 2±29 = 0.43 mmÿ1

T= 293 K Prism, colourless 0.520.330.22 mm

Data collection

Oxford Diffraction XCALIBUR diffractometer

!scans

11 562 measured re¯ections 4187 independent re¯ections 2612 re¯ections withI> 2(I)

Rint= 0.07

max= 32.2

h=ÿ10!11

k=ÿ12!12

l=ÿ14!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.046

wR(F2) = 0.068

S= 1.21 4182 re¯ections 199 parameters

H-atom parameters constrained Weighting scheme: see below (/)max= 0.001

max= 0.71 e AÊÿ3 min=ÿ0.68 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

S3ÐO4 1.4421 (18)

S3ÐO5 1.438 (2)

S3ÐO6 1.4451 (18)

S3ÐC7 1.772 (2)

S13ÐO14 1.430 (2)

S13ÐO15 1.4412 (19) S13ÐO16 1.4471 (18)

S13ÐC17 1.777 (2)

O4ÐLi2i 1.886 (5) O5ÐLi1ii 1.886 (4)

O6ÐLi2 1.959 (4)

O14ÐLi2 1.896 (4) O15ÐLi1 1.962 (4) O16ÐLi1iii 1.868 (4) N11ÐC10 1.333 (3) N11ÐC12 1.335 (3) N11ÐLi2iv 1.996 (5) N21ÐC20 1.340 (3) N21ÐC22 1.342 (3) N21ÐLi1v 2.157 (4)

O4ÐS3ÐO5 112.89 (13) O4ÐS3ÐO6 113.56 (11) O4ÐS3ÐC7 105.19 (10) O5ÐS3ÐO6 111.89 (13) O5ÐS3ÐC7 105.83 (12) O6ÐS3ÐC7 106.72 (11) O14ÐS13ÐO15 114.17 (14) O14ÐS13ÐO16 112.37 (11) O14ÐS13ÐC17 105.67 (11) O15ÐS13ÐO16 112.16 (11) O15ÐS13ÐC17 105.82 (12) O16ÐS13ÐC17 105.84 (10) S3ÐO4ÐLi2i 151.12 (17) S3ÐO5ÐLi1ii 173.2 (2) S3ÐO6ÐLi2 147.00 (17) S13ÐO14ÐLi2 159.6 (2) S13ÐO15ÐLi1 142.25 (19) S13ÐO16ÐLi1iii 133.49 (16) C10ÐN11ÐC12 117.4 (2) C10ÐN11ÐLi2iv 125.5 (2) C12ÐN11ÐLi2iv 117.07 (19) C20ÐN21ÐC22 116.6 (2)

C20ÐN21ÐLi1v 124.44 (18) C22ÐN21ÐLi1v 118.89 (18) S3ÐC7ÐC8 121.20 (18) S3ÐC7ÐC12 119.83 (14) N11ÐC10ÐC9 122.7 (2) N11ÐC12ÐC7 123.34 (18) S13ÐC17ÐC18 121.27 (18) S13ÐC17ÐC22 119.29 (16) N21ÐC20ÐC19 123.9 (2) N21ÐC22ÐC17 123.3 (2) O15ÐLi1ÐN21v 96.50 (18) O5iiÐLi1ÐO15 111.4 (2) O5iiÐLi1ÐN21v 111.1 (2) O16iiiÐLi1ÐN21v 115.1 (2) O15ÐLi1ÐO16iii 116.3 (2) O5iiÐLi1ÐO16iii 106.4 (2) O6ÐLi2ÐN11vi 108.8 (2) O4iÐLi2ÐO6 111.2 (2) O6ÐLi2ÐO14 111.3 (2) O4iÐLi2ÐO14 110.4 (2) O4iÐLi2ÐN11vi 108.3 (2) O14ÐLi2ÐN11vi 106.7 (2) Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii) 1ÿx;ÿy;1ÿz; (iii) 1ÿx;ÿy;2ÿz; (iv) xÿ1;y;z; (v)ÿx;ÿy;2ÿz; (vi) 1‡x;y;z.

A Chebychev polynomial (Watkin, 1994; Prince, 1982) was used in the weighting scheme; w = 1.0/[A0T0(x) + A1T1(x) + . . .

+ Anÿ1]Tnÿ1(x)], where Ai are the Chebychev coef®cients listed

below andx=Fcalc/Fmax:Robust weighting (Prince, 1982)W=w[1ÿ

(F/6(F)]2}2.A

0±2= 471.0, 539.0 and 166.0, respectively. H atoms

were found in Fourier difference maps (CÐH = 0.93±1.06 AÊ) and allowed to ride on their parent C atoms, withUiso(H) values ®xed at

0.05 AÊ2. Five re¯ections have been omitted from the re®nement

because they were too close to the beam stop.

Data collection:Xcalibur(Oxford Diffraction, 2002); cell re®ne-ment: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure:SIR92 (Altomare et al., 1994); program(s) used to re®ne structure:CRYSTALS(Watkin et al., 2001); molecular graphics: ORTEP-3 (Farrugia, 1997) and

Figure 1

The asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level.

Figure 2

(3)

PLATON (Spek, 2003); software used to prepare material for publication:CRYSTALS.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435±435.

Brodersen, K., Dolling, R. & Liehr, G. (1980).Z. Anorg. Allg. Chem.464, 17± 22.

Chandrasekhar, K. (1977).Acta Cryst.B33, 143±145. Farrugia, L. D. (1997).J. Appl. Cryst.30, 565.

GarcõÂa±VaÂzquez, J. A., Romero, J., Sousa-Pedrares, A., Sousa, A., Garnovskii, A. D. & Garnovskii, D. A. (2000).J. Chem. Cryst.30, 23±26.

Holman, K. T., Pivovar, A. M. & Ward, M. D. (2001).Science,294, 1907±1911. Janiak, C. (2000).J. Chem. Soc. Dalton Trans.pp. 3885±3896.

Lee, A. van der & Barboiu, M. (2004).Acta Cryst.E60, o89±o91.

Oxford Diffraction (2002).CrysAlis REDandXcalibur Users Manual.Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Spek, A. L. (2003).J. Appl. Cryst36, 7±13.

Walsh, B. & Hathaway, B. J. (1980).J. Chem. Soc. Dalton Trans.pp. 681±689. Watkin, D. J. (1994).Acta Cryst, A50, 411±437.

Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper, R. I. (2001). CRYSTALS. Issue 12. Chemical Crystallography Laboratory, Oxford, England.

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m421–m423

supporting information

Acta Cryst. (2004). E60, m421–m423 [https://doi.org/10.1107/S1600536804006191]

Lithium pyridine-3-sulfonate

A. van der Lee and M. Barboiu

(I)

Crystal data

Li+·C

5H4NO3S− Mr = 165.10 Triclinic, P1 Hall symbol: -P 1 a = 7.6362 (6) Å b = 8.8697 (9) Å c = 10.397 (1) Å α = 81.572 (8)° β = 71.486 (8)° γ = 82.921 (7)° V = 658.33 (11) Å3

Z = 4

F(000) = 336.000 Dx = 1.666 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4215 reflections θ = 2–29°

µ = 0.43 mm−1 T = 293 K Prism, colourless 0.52 × 0.33 × 0.22 mm

Data collection

Oxford Diffraction XCALIBUR diffractometer

Graphite monochromator

Detector resolution: 17 pixels mm-1 area detector scans

11562 measured reflections 4187 independent reflections

2612 reflections with I > 2σ(I) Rint = 0.07

θmax = 32.2°, θmin = 3.3° h = −10→11

k = −12→12 l = −14→15

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.068 S = 1.22 4182 reflections 199 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

%TMethod, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982). ηfilβreak [weight] = $1.0/[A_0T_0(x) + A_1T_1(x) ··· +

A_{n-1}]T_{n-1}(x)]$

where A$_i$ are the Chebychev coefficients listed below and $x$ = F$_{µathrm{

}}$/F$_{µathrm{max}}.$ηfilβreak Method = Robust Weighting (Prince, 1982).ηfilβreak W = [weight] * [1-(Δelta F/6σigma

F)$2$]$2$.ηfilβreak A$_{0-2}$ are 471.0, 539.0, and 166.0, respectively.

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m421–m423

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Li1 0.4525 (5) −0.1728 (4) 0.8897 (4) 0.0256 Li2 0.6333 (5) 0.3261 (5) 0.6222 (4) 0.0284 S3 0.39921 (7) 0.30511 (7) 0.41227 (6) 0.0239 O4 0.3310 (2) 0.46386 (19) 0.3996 (2) 0.0468 O5 0.4545 (3) 0.2402 (3) 0.28501 (19) 0.0560 O6 0.5412 (2) 0.2755 (2) 0.4794 (2) 0.0422 C7 0.2063 (3) 0.2079 (2) 0.5192 (2) 0.0210 C8 0.2296 (3) 0.0658 (3) 0.5888 (2) 0.0303 C9 0.0729 (4) −0.0046 (3) 0.6670 (3) 0.0356 C10 −0.1000 (3) 0.0696 (3) 0.6764 (2) 0.0334 N11 −0.1234 (3) 0.2072 (2) 0.6098 (2) 0.0296 C12 0.0287 (3) 0.2739 (2) 0.5324 (2) 0.0252 S13 0.33457 (7) 0.18748 (6) 0.90474 (6) 0.0217 O14 0.4717 (2) 0.2681 (3) 0.7986 (2) 0.0538 O15 0.3245 (3) 0.0326 (2) 0.8825 (2) 0.0485 O16 0.3489 (2) 0.1966 (2) 1.03882 (18) 0.0418 C17 0.1181 (3) 0.2859 (2) 0.9025 (2) 0.0204 C18 0.1087 (3) 0.4251 (3) 0.8247 (2) 0.0286 C19 −0.0667 (3) 0.4959 (3) 0.8303 (3) 0.0332 C20 −0.2201 (3) 0.4241 (3) 0.9101 (3) 0.0320 N21 −0.2129 (2) 0.2894 (2) 0.9866 (2) 0.0285 C22 −0.0436 (3) 0.2226 (3) 0.9812 (2) 0.0243

H23 0.3533 0.0106 0.5929 0.0500*

H24 0.0812 −0.1054 0.7246 0.0500*

H25 0.0095 0.3666 0.4812 0.0500*

H26 0.2144 0.4775 0.7754 0.0500*

H27 −0.0746 0.6023 0.7707 0.0500*

H28 −0.3498 0.4654 0.9113 0.0500*

H29 −0.0330 0.1184 1.0350 0.0500*

H5 −0.2110 0.0149 0.7257 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m421–m423

C12 0.022 (1) 0.020 (1) 0.0314 (12) 0.0008 (8) −0.0077 (9) −0.0011 (9) S13 0.0147 (2) 0.0252 (3) 0.0238 (3) −0.00152 (19) −0.00452 (19) −0.0013 (2) O14 0.0224 (9) 0.0687 (14) 0.0499 (12) −0.0059 (9) 0.0056 (8) 0.0216 (11) O15 0.039 (1) 0.0261 (9) 0.0931 (17) 0.0103 (8) −0.0377 (11) −0.020 (1) O16 0.0316 (9) 0.0625 (13) 0.037 (1) 0.0142 (9) −0.0199 (8) −0.0164 (9) C17 0.0186 (9) 0.024 (1) 0.020 (1) −0.0002 (7) −0.0076 (8) −0.0032 (8) C18 0.0253 (11) 0.0279 (12) 0.0295 (12) −0.0033 (9) −0.0063 (9) 0.0030 (9) C19 0.0356 (13) 0.0278 (12) 0.0359 (14) 0.005 (1) −0.0152 (11) 0.001 (1) C20 0.0266 (11) 0.0340 (13) 0.0379 (14) 0.008 (1) −0.015 (1) −0.0086 (11) N21 0.0163 (8) 0.0331 (11) 0.0354 (11) 0.0016 (7) −0.0064 (8) −0.0085 (9) C22 0.0181 (9) 0.0253 (11) 0.0277 (11) 0.0002 (8) −0.0057 (8) −0.0020 (9)

Geometric parameters (Å, º)

S3—O4 1.4421 (18) N21—C22 1.342 (3)

S3—O5 1.438 (2) N21—Li1v 2.157 (4)

S3—O6 1.4451 (18) C7—C8 1.380 (3)

S3—C7 1.772 (2) C7—C12 1.382 (3)

S13—O14 1.430 (2) C8—C9 1.379 (4)

S13—O15 1.4412 (19) C9—C10 1.382 (4)

S13—O16 1.4471 (18) C17—C18 1.381 (3)

S13—C17 1.777 (2) C17—C22 1.380 (3)

O4—Li2i 1.886 (5) C18—C19 1.395 (4)

O5—Li1ii 1.886 (4) C19—C20 1.370 (4)

O6—Li2 1.959 (4) C8—H23 1.0194

O14—Li2 1.896 (4) C9—H24 1.0076

O15—Li1 1.962 (4) C10—H5 0.9844

O16—Li1iii 1.868 (4) C12—H25 0.9341

N11—C10 1.333 (3) C18—H26 0.9435

N11—C12 1.335 (3) C19—H27 1.0567

N11—Li2iv 1.996 (5) C20—H28 1.0096

N21—C20 1.340 (3) C22—H29 1.0161

S3···H23ii 3.1767 C18···Li2 3.946 (5) O4···N11vi 3.148 (3) C19···C17x 3.509 (3) O4···O6i 3.173 (2) C20···Li2iv 3.755 (5) O4···O14i 3.105 (3) C9···H29v 3.0448 O4···C12vi 3.336 (3) C22···H24v 3.0171 O5···O15ii 3.178 (3) C22···H29v 3.0281 O5···O16vii 3.005 (3) Li2···C20viii 3.755 (5) O6···O4i 3.173 (2) Li2···C18 3.946 (5) O6···N11viii 3.217 (3) Li1···H28xi 3.3819 O6···O14 3.182 (3) Li1···H5viii 3.1179

O6···C8ii 3.356 (3) Li2···H26 3.3023

O14···O4i 3.105 (3) H5···Li1iv 3.1179

O14···O6 3.182 (3) H5···O16v 2.8505

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m421–m423

O15···C22v 3.172 (3) H23···O5ii 2.8748 O15···O5ii 3.178 (3) H23···O6ii 2.7063 O15···C8 3.321 (3) H23···H23ii 2.4578 O16···O5ix 3.005 (3) H24···C22v 3.0171

O4···H25vi 2.8450 H24···H29v 2.3953

O4···H25 2.5448 H25···O4 2.5448

O5···H23ii 2.8748 H25···O4vi 2.8450

O6···H23ii 2.7063 H25···H25vi 2.4340

O6···H23 2.8133 H25···H27vi 2.4855

O14···H28viii 2.9149 H26···O14 2.5765

O14···H26 2.5765 H26···Li2 3.3023

O15···H29 2.7638 H27···H25vi 2.4855

O15···H29v 2.5826 H28···O14iv 2.9149 O16···H5v 2.8505 H28···Li1xii 3.3819 N11···O6iv 3.217 (3) H28···H28xiii 2.5176 N11···O14iv 3.122 (3) H29···O15 2.7638 N11···O4vi 3.148 (3) H29···O15v 2.5826 N21···O15v 3.076 (3) H29···C9v 3.0448

C8···O15 3.321 (3) H29···C22v 3.0281

C8···O6ii 3.356 (3) H29···H24v 2.3953 C12···O4vi 3.336 (3) H29···H29v 2.2692 C17···C19x 3.509 (3)

O4—S3—O5 112.89 (13) C18—C17—C22 119.4 (2) O4—S3—O6 113.56 (11) C17—C18—C19 117.7 (2) O4—S3—C7 105.19 (10) C18—C19—C20 119.1 (2) O5—S3—O6 111.89 (13) N21—C20—C19 123.9 (2) O5—S3—C7 105.83 (12) N21—C22—C17 123.3 (2)

O6—S3—C7 106.72 (11) C9—C8—H23 116.41

(8)

supporting information

sup-5 Acta Cryst. (2004). E60, m421–m423

S3—C7—C12 119.83 (14) O15—Li1—O16iii 116.3 (2) C8—C7—C12 119.0 (2) O5ii—Li1—O16iii 106.4 (2) C7—C8—C9 117.9 (2) O6—Li2—N11viii 108.8 (2) C8—C9—C10 119.7 (2) O4i—Li2—O6 111.2 (2) N11—C10—C9 122.7 (2) O6—Li2—O14 111.3 (2) N11—C12—C7 123.34 (18) O4i—Li2—O14 110.4 (2) S13—C17—C18 121.27 (18) O4i—Li2—N11viii 108.3 (2) S13—C17—C22 119.29 (16) O14—Li2—N11viii 106.7 (2)

O5—S3—O4—Li2i −96.8 (4) S13—O14—Li2—N11viii −93.4 (6) O6—S3—O4—Li2i 31.9 (4) S13—O14—Li2—O6 25.1 (7) C7—S3—O4—Li2i 148.3 (4) S13—O15—Li1—O16iii 6.6 (4) O4—S3—O6—Li2 36.5 (3) S13—O15—Li1—N21v 128.8 (2) O5—S3—O6—Li2 165.8 (3) S13—O15—Li1—O5ii −115.5 (3) C7—S3—O6—Li2 −78.9 (3) S13iii—O16iii—Li1—O15 66.0 (3) O4—S3—C7—C8 −159.12 (18) C12viii—N11viii—Li2—O6 91.6 (2) O4—S3—C7—C12 21.7 (2) C10viii—N11viii—Li2—O14 29.0 (3) O5—S3—C7—C8 81.2 (2) C10viii—N11viii—Li2—O6 −91.1 (3) O5—S3—C7—C12 −98.03 (19) Li2iv—N11—C12—C7 177.1 (2) O6—S3—C7—C8 −38.2 (2) C12—N11—C10—C9 −0.5 (3) O6—S3—C7—C12 142.64 (17) C12viii—N11viii—Li2—O14 −148.2 (2) O15—S13—O14—Li2 28.4 (6) C10—N11—C12—C7 −0.4 (3) O16—S13—O14—Li2 157.6 (5) Li2iv—N11—C10—C9 −177.7 (2) C17—S13—O14—Li2 −87.5 (6) Li1v—N21—C20—C19 −179.0 (2) O14—S13—O15—Li1 75.9 (3) C20—N21—C22—C17 0.2 (3) O16—S13—O15—Li1 −53.4 (3) Li1v—N21—C22—C17 178.3 (2) C17—S13—O15—Li1 −168.3 (3) C22—N21—C20—C19 −1.0 (4) O14—S13—O16—Li1iii −45.7 (3) C22v—N21v—Li1—O15 20.6 (3) O15—S13—O16—Li1iii 84.5 (2) C20v—N21v—Li1—O15 −157.4 (2) C17—S13—O16—Li1iii −160.6 (2) C8—C7—C12—N11 0.1 (3) O14—S13—C17—C18 −9.7 (2) S3—C7—C12—N11 179.31 (16) O14—S13—C17—C22 171.02 (18) C12—C7—C8—C9 1.0 (3) O15—S13—C17—C18 −131.09 (18) S3—C7—C8—C9 −178.21 (19) O15—S13—C17—C22 49.6 (2) C7—C8—C9—C10 −1.8 (4) O16—S13—C17—C18 109.70 (18) C8—C9—C10—N11 1.6 (4) O16—S13—C17—C22 −69.61 (19) S13—C17—C18—C19 −179.04 (18) S3i—O4i—Li2—O14 −67.9 (4) S13—C17—C22—N21 179.45 (17) S3i—O4i—Li2—O6 56.2 (5) C22—C17—C18—C19 0.3 (3) S3—O6—Li2—O14 66.7 (4) C18—C17—C22—N21 0.1 (3) S3—O6—Li2—N11viii −176.1 (2) C17—C18—C19—C20 −1.0 (4) S3—O6—Li2—O4i −56.9 (4) C18—C19—C20—N21 1.4 (4) S13—O14—Li2—O4i 149.1 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z+2; (iv) x−1, y, z; (v) −x, −y, −z+2; (vi) −x, −y+1, −z+1; (vii) x, y, z−1; (viii)

(9)

supporting information

sup-6 Acta Cryst. (2004). E60, m421–m423

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C12—H25···O4 0.93 2.54 2.886 (3) 102

C18—H26···O14 0.94 2.58 2.895 (3) 100

C22—H29···O15v 1.02 2.58 3.172 (3) 117

References

Related documents

The recruitment firms believe that as the industry matures and evolves from e-commerce to mobile commerce, the sector will continue to hire more fresh recruits, and also

Next, we investigate the asymptotic behaviour of the Gerber-Shiu function using a similar methodology as the one used for the analysis of the ruin

Tax policy reforms per se should seek to broaden the tax base not just by bringing a larger population under the tax net, but also by increasing the scope of taxes to activities

Another study conducted by Karthiga Prabhu, found among the lipid parameters, there was significant increase in Triglycerides (p=0.0008) and decrease in HDL cholesterol

RESEARCH Open Access Down regulation of IRES containing 5?UTR of HCV genotype 3a using siRNAs Saba Khaliq*, Shah Jahan, Asim Pervaiz, Usman Ali Ashfaq and Sajida Hassan Abstract

With the strategy followed in the generation of this database, we pretend to know the value of the attributes related to personnel management that permit to obtain good results

A dvanced C omputing and I nformation S ystems laboratory CI Stakeholders Domain Data Producers Infrastructure Providers Domain Service Providers Domain Data Consumers