• No results found

Tetra­aqua­bis­(4 pyridyl­thio­acetato)­nickel(II)

N/A
N/A
Protected

Academic year: 2020

Share "Tetra­aqua­bis­(4 pyridyl­thio­acetato)­nickel(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, m135±m136 DOI: 10.1107/S1600536803029039 Zhang, Fang, Wu and Ng [Ni(C7H6NO2S)2(H2O)4]

m135

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis(4-pyridylthioacetato)nickel(II)

Xian-Ming Zhang,aRui-Qin Fang,aHai-Shun Wuaand Seik Weng Ngb*

aSchool of Chemistry and Material Science,

Shanxi Normal University, Linfen 041004, People's Republic of China, andbDepartment of

Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C±C) = 0.002 AÊ Rfactor = 0.026 wRfactor = 0.072

Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The Ni atom in the zwitterionic title compound, [Ni(C7H6

-NO2S)2(H2O)4], lies on a centre of symmetry. It is linked to the

pyridyl N atom of two anionic groups and to four water molecules in an octahedral environment. The zwitterions are connected by hydrogen bonds into a three-dimensional network structure.

Comment

The reaction of copper nitrate and the ammonium salt of 4-pyridylthioacetic acid yields [Cu(C7H6NO2S)2(H2O)2

-(NH3)2], which is zwitterionic, with the the

4-pyridylthio-acetate anion bonding through the pyridyl N atom. The amine donor in the molecule arises from the slight excess of ammonium hydroxide that was used to neutralize the carboxylic acid (Huanget al., 2004). A similar reaction with a nickel salt, but with sodium hydroxide in place of ammonium hydroxide, afforded the corresponding tetraaquanickel complex,viz.the title complex, (I) (Fig. 1), which also exists as a zwitterion. The octahedrally coordinated Ni atom lies on a centre of symmetry. Hydrogen bonds link the zwitterions into a three-dimensional network structure. Bond dimensions involving Ni are similar to those found in the zwitterionic tetraaquanicotinatonickel (Batten & Harris, 2001b) and tetraaquaisonicotinatonickel (Batten & Harris, 2001a; Minet al., 2001; Ng, 2003) complexes, which also feature extensive hydrogen-bonding interactions.

Experimental

A mixture of nickel sulfate hexahydrate (0.26 g, 1.0 mmol), 4-pyridylthioacetic acid (0.25 g, 1.5 mmol) and water (7 ml) was treated with drops of 2Nsodium hydroxide to give a pH of approximately 7. The solution was transferred into a 15 ml Te¯on-lined stainless-steel bomb, which was then heated at 433 K for 96 h. After cooling to room temperature, blue crystals separated from the solution in about 50% yield. CHN analysis: C 35.94, H 4.36, N 5.96, S 13.64%; calculated for C14H20N2NiO8S2: C 36.00, H 4.32, N 6.00, S 13.73%.

Crystal data

[Ni(C7H6NO2S)2(H2O)4] Mr= 467.15

Monoclinic,P21=a a= 7.4924 (5) AÊ b= 10.4589 (7) AÊ c= 12.1369 (8) AÊ

= 107.393 (1)

V= 907.6 (1) AÊ3 Z= 2

Dx= 1.709 Mg mÿ3

MoKradiation Cell parameters from 3212

re¯ections

= 2.6±26.9

= 1.35 mmÿ1 T= 298 (2) K Plate, blue

0.350.190.09 mm

(2)

Data collection

Bruker SMART APEX area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.753,Tmax= 0.889 5157 measured re¯ections

1960 independent re¯ections 1813 re¯ections withI> 2(I) Rint= 0.015

max= 27.0 h=ÿ8!9 k=ÿ13!11 l=ÿ15!15

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.026 wR(F2) = 0.072 S= 1.04 1960 re¯ections 164 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0462P)2

+ 0.1843P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.37 e AÊÿ3

min=ÿ0.17 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Ni1ÐO1w 2.071 (1)

Ni1ÐO2w 2.044 (1) Ni1ÐN1 2.106 (1) O1wÐNi1ÐO1wi 180

O1wÐNi1ÐO2w 89.1 (1) O1wÐNi1ÐO2wi 90.9 (1) O1wÐNi1ÐN1 91.0 (1) O1wÐNi1ÐN1i 89.0 (1)

O2wÐNi1ÐO2wi 180 O2wÐNi1ÐN1 87.5 (1) O2wÐNi1ÐN1i 92.5 (1) N1ÐNi1ÐN1i 180

Symmetry code: (i) 1ÿx;1ÿy;1ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1wÐH1w1 O1ii 0.84 (1) 1.93 (1) 2.759 (2) 168 (3) O1wÐH1w2 O1iii 0.84 (1) 2.02 (1) 2.842 (2) 165 (2) O2wÐH2w1 O2iv 0.83 (1) 1.92 (1) 2.744 (2) 168 (2) O2wÐH2w2 O2ii 0.84 (1) 1.89 (1) 2.729 (2) 177 (3) Symmetry codes: (ii) 2ÿx;1ÿy;2ÿz; (iii)3

2ÿx;yÿ12;2ÿz; (iv)x;y;zÿ1.

The crystal used in the measurements diffracted suf®ciently strongly for all H atoms to be located and re®ned with distance restraints [OÐH = 0.85 (1) AÊ and CÐH = 0.95 (1) AÊ].

Data collection:SMART(Bruker, 2001); cell re®nement:SMART; data reduction:SAINT(Bruker, 2001); method used to solve struc-ture: difference Fourier, with Ni at (1

2,12,12); program(s) used to re®ne

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

References

Batten, S. R. & Harris, A. R. (2001a).Acta Cryst.E57, m7±m8. Batten, S. R. & Harris, A. R. (2001b).Acta Cryst.E57, m9±m11.

Bruker (2001).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, Y.-Q., Zhang, H., Chen, J.-G., Zou, W., Li, L., Wei, Z.-B. & Ng, S. W. (2004).Acta Cryst.E60, m133±m134.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Min, D., Yoon, S. S., Lee, C. Y., Han, W. S. & Lee, S. W. (2001).Bull. Korean Chem. Soc.22, 1041±1044.

Ng, S. W. (2003).Chin. J. Struct. Chem.22, 495.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, m135–m136

supporting information

Acta Cryst. (2004). E60, m135–m136 [https://doi.org/10.1107/S1600536803029039]

Tetraaquabis(4-pyridylthioacetato)nickel(II)

Xian-Ming Zhang, Rui-Qin Fang, Hai-Shun Wu and Seik Weng Ng

Tetraaquabis(4-pyridylthioactetato)nickel(II)

Crystal data

[Ni(C7H6NO2S)2(H2O)4] Mr = 467.15

Monoclinic, P21/a Hall symbol: -P 2yab a = 7.4924 (5) Å b = 10.4589 (7) Å c = 12.1369 (8) Å β = 107.393 (1)° V = 907.6 (1) Å3 Z = 2

F(000) = 484 Dx = 1.709 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 3212 reflections θ = 2.6–26.9°

µ = 1.35 mm−1 T = 298 K Plate, blue

0.35 × 0.19 × 0.09 mm

Data collection

Bruker SMART APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.753, Tmax = 0.889

5157 measured reflections 1960 independent reflections 1813 reflections with I > 2σ(I) Rint = 0.015

θmax = 27.0°, θmin = 1.8° h = −8→9

k = −13→11 l = −15→15

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026 wR(F2) = 0.072 S = 1.04 1960 reflections 164 parameters 10 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined w = 1/[σ2(F

o2) + (0.0462P)2 + 0.1843P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.37 e Å−3 Δρmin = −0.17 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.5000 0.5000 0.5000 0.0207 (1)

S1 0.91703 (6) 0.69526 (4) 1.03479 (3) 0.0314 (1)

(4)

O2 0.9398 (2) 0.51701 (14) 1.3212 (1) 0.0418 (3)

O1w 0.5797 (2) 0.31611 (11) 0.5572 (1) 0.0301 (3)

O2w 0.7633 (2) 0.53151 (15) 0.4890 (1) 0.0387 (3)

N1 0.5955 (2) 0.57068 (12) 0.6700 (1) 0.0251 (3)

C1 0.9667 (2) 0.60111 (16) 1.2541 (1) 0.0297 (3)

C2 0.8545 (2) 0.58104 (17) 1.1281 (1) 0.0313 (4)

C3 0.6892 (2) 0.68180 (16) 0.6934 (1) 0.0316 (4)

C4 0.7813 (2) 0.72242 (16) 0.8036 (1) 0.0307 (3)

C5 0.7802 (2) 0.64573 (15) 0.8975 (1) 0.0236 (3)

C6 0.6759 (2) 0.53384 (16) 0.8742 (1) 0.0264 (3)

C7 0.5875 (2) 0.50083 (14) 0.7607 (1) 0.0263 (3)

H1w1 0.691 (2) 0.318 (3) 0.600 (2) 0.065 (8)*

H1w2 0.517 (3) 0.277 (2) 0.594 (2) 0.061 (7)*

H2w1 0.801 (3) 0.526 (2) 0.431 (2) 0.048 (7)*

H2w2 0.852 (3) 0.515 (2) 0.548 (2) 0.056 (8)*

H2a 0.725 (2) 0.589 (2) 1.121 (2) 0.042 (6)*

H2b 0.878 (4) 0.495 (1) 1.110 (2) 0.053 (7)*

H3 0.698 (3) 0.731 (2) 0.630 (1) 0.046 (6)*

H4 0.845 (2) 0.802 (1) 0.814 (2) 0.036 (5)*

H6 0.669 (3) 0.475 (2) 0.932 (1) 0.035 (5)*

H7 0.525 (2) 0.421 (1) 0.747 (2) 0.027 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.0223 (2) 0.0242 (2) 0.0147 (2) −0.0004 (1) 0.0041 (1) 0.0010 (1)

S1 0.0354 (2) 0.0352 (2) 0.0196 (2) −0.0083 (2) 0.0021 (2) −0.0036 (2)

O1 0.0402 (7) 0.0397 (7) 0.0268 (6) 0.0042 (5) −0.0021 (5) −0.0075 (5)

O2 0.0422 (8) 0.0611 (9) 0.0216 (6) 0.0018 (6) 0.0086 (5) 0.0050 (5)

O1w 0.0353 (7) 0.0279 (6) 0.0241 (6) 0.0027 (5) 0.0044 (5) 0.0042 (4)

O2w 0.0258 (6) 0.0661 (8) 0.0243 (6) −0.0024 (6) 0.0080 (5) 0.0051 (6)

N1 0.0287 (6) 0.0276 (7) 0.0174 (6) −0.0006 (5) 0.0045 (5) 0.0002 (5)

C1 0.0280 (8) 0.0414 (9) 0.0183 (7) 0.0102 (7) 0.0046 (6) −0.0038 (6)

C2 0.0324 (8) 0.0397 (9) 0.0196 (7) −0.0015 (7) 0.0045 (6) −0.0002 (6)

C3 0.0409 (9) 0.0306 (8) 0.0217 (8) −0.0060 (7) 0.0070 (7) 0.0034 (6)

C4 0.0381 (9) 0.0279 (8) 0.0249 (8) −0.0084 (7) 0.0077 (7) −0.0003 (6)

C5 0.0229 (7) 0.0281 (8) 0.0180 (7) 0.0009 (6) 0.0036 (5) −0.0022 (6)

C6 0.0333 (8) 0.0259 (7) 0.0191 (7) −0.0010 (6) 0.0067 (6) 0.0015 (6)

C7 0.0310 (9) 0.0263 (8) 0.0203 (8) −0.0039 (6) 0.0057 (6) −0.0018 (5)

Geometric parameters (Å, º)

Ni1—O1w 2.071 (1) C4—C5 1.395 (2)

Ni1—O1wi 2.071 (1) C5—C6 1.389 (2)

Ni1—O2w 2.044 (1) C6—C7 1.382 (2)

Ni1—O2wi 2.044 (1) O1w—H1w1 0.84 (1)

Ni1—N1 2.106 (1) O1w—H1w2 0.84 (1)

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, m135–m136

S1—C2 1.802 (2) O2w—H2w2 0.84 (1)

S1—C5 1.754 (2) C2—H2a 0.95 (1)

O1—C1 1.246 (2) C2—H2b 0.95 (1)

O2—C1 1.255 (2) C3—H3 0.95 (1)

N1—C7 1.337 (2) C4—H4 0.95 (1)

N1—C3 1.344 (2) C6—H6 0.95 (1)

C1—C2 1.523 (2) C7—H7 0.95 (1)

C3—C4 1.376 (2)

O1w—Ni1—O1wi 180 C6—C5—C4 117.3 (1)

O1w—Ni1—O2w 89.1 (1) C6—C5—S1 125.1 (1)

O1w—Ni1—O2wi 90.9 (1) C4—C5—S1 117.5 (1)

O1w—Ni1—N1 91.0 (1) C7—C6—C5 119.1 (1)

O1w—Ni1—N1i 89.0 (1) N1—C7—C6 123.9 (1)

O1wi—Ni1—O2w 90.9 (1) Ni1—O1w—H1w1 109 (2)

O1wi—Ni1—O2wi 89.1 (1) Ni1—O1w—H1w2 118 (2)

O1wi—Ni1—N1 89.0 (1) H1w1—O1w—H1w2 107 (2)

O1wi—Ni1—N1i 91.0 (1) Ni1—O2w—H2w1 129 (2)

O2w—Ni1—O2wi 180 Ni1—O2w—H2w2 117 (2)

O2w—Ni1—N1 87.5 (1) H2w1—O2w—H2w2 109 (3)

O2w—Ni1—N1i 92.5 (1) C1—C2—H2a 109 (1)

O2wi—Ni1—N1 92.5 (1) S1—C2—H2a 110 (1)

O2wi—Ni1—N1i 87.5 (1) C1—C2—H2b 106 (2)

N1—Ni1—N1i 180 S1—C2—H2b 113 (2)

C5—S1—C2 102.3 (1) H2a—C2—H2b 108 (2)

C7—N1—C3 116.6 (1) N1—C3—H3 117 (1)

C7—N1—Ni1 122.0 (1) C4—C3—H3 119 (1)

C3—N1—Ni1 120.9 (1) C3—C4—H4 119 (1)

O1—C1—O2 126.7 (2) C5—C4—H4 122 (1)

O1—C1—C2 119.3 (2) C7—C6—H6 118 (1)

O2—C1—C2 114.0 (2) C5—C6—H6 123 (1)

C1—C2—S1 111.7 (1) N1—C7—H7 118 (1)

N1—C3—C4 123.4 (1) C6—C7—H7 118 (1)

C3—C4—C5 119.5 (2)

O2w—Ni1—N1—C7 −121.8 (1) Ni1—N1—C3—C4 −168.9 (1)

O2wi—Ni1—N1—C7 58.2 (1) N1—C3—C4—C5 0.4 (3)

O1w—Ni1—N1—C7 −32.7 (1) C3—C4—C5—C6 −3.4 (2)

O1wi—Ni1—N1—C7 147.3 (1) C3—C4—C5—S1 174.4 (1)

O2w—Ni1—N1—C3 49.5 (1) C2—S1—C5—C6 −8.4 (2)

O2wi—Ni1—N1—C3 −130.5 (1) C2—S1—C5—C4 174.0 (1)

O1w—Ni1—N1—C3 138.5 (1) C4—C5—C6—C7 3.3 (2)

O1wi—Ni1—N1—C3 −41.5 (1) S1—C5—C6—C7 −174.3 (1)

O1—C1—C2—S1 6.2 (2) C3—N1—C7—C6 −2.9 (2)

(6)

C5—S1—C2—C1 176.8 (1) C5—C6—C7—N1 −0.1 (3)

C7—N1—C3—C4 2.8 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O1ii 0.84 (1) 1.93 (1) 2.759 (2) 168 (3)

O1w—H1w2···O1iii 0.84 (1) 2.02 (1) 2.842 (2) 165 (2)

O2w—H2w1···O2iv 0.83 (1) 1.92 (1) 2.744 (2) 168 (2)

O2w—H2w2···O2ii 0.84 (1) 1.89 (1) 2.729 (2) 177 (3)

References

Related documents

Random Forest algorithm is a supervised classification algorithm which has many features of it. We can see it from its name that is to create a forest by some way and make it

In order to assess the severity of damage based on damage location for different laminated composite materials used in composite wind turbine blades (E-glass/Epoxy,

a Significantly higher in comparison with normal control group using one-way-ANOVA followed by Tukey’s Multiple Comparison test, P < 0.05; b Significantly lower when compared

studied the incidence of ectopic pregnancy after in vitro fertilization in PCOS patients, and reported a threefold increase in the incidence of ectopic pregnancy in PCOS

To test the mediating role of adaptive behavior be- tween these three traits (Conscientiousness, Agreeable- ness and Emotional stability) and performance with cus- tomers,

To address the issue of ongoing viral replication in patients on current ART regimens, we compared single HIV p6, protease, and reverse transcriptase (p6-PR-RT) sequences

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

In this case, total surplus value does not equal total profit, which means there is an additional source of profit, other than labour: Marx’s theory of exploitation cannot