• No results found

Acenapthene 2 spiro 5′ perhydrodi­pyrrolo[1,2 a;2′,1′ c]pyrazine 6′ spiro 2′′ acenapthene 1,1′′ dione

N/A
N/A
Protected

Academic year: 2020

Share "Acenapthene 2 spiro 5′ perhydrodi­pyrrolo[1,2 a;2′,1′ c]pyrazine 6′ spiro 2′′ acenapthene 1,1′′ dione"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2432

Sugaleshiniet al. C

32H26N2O2 doi:10.1107/S1600536806017661 Acta Cryst.(2006). E62, o2432–o2434

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Acenapthene-2-spiro-5

000

-perhydrodipyrrolo[1,2-

a

;-2

000

,1

000

-

c

]pyrazine-6

000

-spiro-2

000000

-acenapthene-1,1

000000

-dione

S. Sugaleshini,aD. Gayathri,b D. Velmurugan,b* K. Ravikumarc and A. R. Sureshbabud

aBioinformatics Research Institute, Ashok Nagar,

Chennai 600 083, India,bDepartment of

Crys-tallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India,cLaboratory of X-ray Crystallography,

Indian Institute of Chemical Technology, Hyderabad 500 007, India, anddDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.045 wRfactor = 0.128

Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 11 May 2006 Accepted 12 May 2006

#2006 International Union of Crystallography

All rights reserved

The five-membered ring in the acenapthene ring system of the title compound, C32H26N2O2, slightly deviates from planarity. The two pyrrolidine rings adopt half-chair conformations and the piperazine ring adopts a chair conformation. The mol-ecular structure is stabilized by weak C—H O intra-molecular interactions and the crystal packing is stabilized by C—H O intermolecular interactions forming a chain running along (011).

Comment

[image:1.610.256.409.452.588.2]

Acenaphthene, a polycyclic aromatic hydrocarbon consisting of naphthalene with an olefin bridge, is used to make dyes, plastics and pesticides. Derivatives of acenaphthene are used as conformationally restricted ligands for melatonin receptors (Jellimann et al., 2000), liver regeneration (Gershbein, 1975) and antitumoral agents (Boido et al., 1994). Pyrrolidine has gained much attention in the pharmacological industry for its medicinal value. Pyrrolidine compounds have antifungal and antimicrobial activity (Amal Raj et al., 2003). Owing to the high medicinal importance of pyrrolidine and acenaphthene derivatives we have undertaken the X-ray structure determi-nation of the title compound, (I), containing both acenaph-thene and pyrrolidine.

Fig. 1 shows the molecular structure of the title compound. The sums of the bond angles at N1 and N2 of the pyrrolidine rings are 338.9 and 338.3, respectively, indicatingsp3

-hybri-dization. The bond lengths and bond angles of the acenaph-thene ring system are comparable to reported values (Edwardset al., 1980; Selvanayagamet al., 2004).

(2)

ring (N2/C29—C32), q2 = 0.427 (2) A˚ , ’ = 193.6 (3) and 2(C31) = 6.8 (2); and for the piperazine ring, q2 = 0.024 (1) A˚ , q3 = 0.552 (1) A˚ , QT = 0.552 (1) A˚ and = 177.5 (2).

The molecular structure is stabilized by a weak C—H O intramolecular interaction and the crystal packing is stabilized by two C—H O intermolecular interactions (Table 2). The interactions involving C9 and C15 generate centrosymmetric

R2

2(14) rings. As a result, a chain is formed running along [011].

Experimental

A mixture of acenapthenequinone (1 mmol) andl-proline (1 mmol) in methanol (20 ml) was refluxed on a water bath until the disap-pearance of the starting materials. The excess solvent was removed in vacuum and the crude product was recrystallized from methanol.

Crystal data

C32H26N2O2

Mr= 470.55 Triclinic,P1

a= 8.8721 (7) A˚

b= 10.7042 (8) A˚

c= 14.2846 (11) A˚ = 109.418 (1) = 100.584 (1) = 102.447 (1)

V= 1200.37 (16) A˚3

Z= 2

Dx= 1.302 Mg m 3

MoKradiation = 0.08 mm1

T= 293 (2) K Block, colorless 0.240.230.21 mm

Data collection

Bruker SMART APEX CCD area detector diffractometer !scans

Absorption correction: none 13844 measured reflections

5468 independent reflections 4621 reflections withI> 2(I)

Rint= 0.018

max= 28.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045

wR(F2) = 0.128

S= 1.02 5468 reflections 325 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.068P)2

+ 0.217P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.30 e A˚

3

min=0.19 e A˚

[image:2.610.51.287.69.361.2]

3

Table 1

Selected geometric parameters (A˚ ,).

N1—C13 1.454 (1)

N1—C25 1.464 (2)

N1—C28 1.471 (2)

N2—C12 1.453 (2)

N2—C32 1.461 (2)

N2—C29 1.470 (2)

O1—C1 1.207 (2)

O2—C24 1.206 (2)

C1—C12 1.586 (2)

C10—C12 1.522 (2)

C12—C13 1.578 (2)

C13—C14 1.526 (2)

C13—C24 1.586 (2)

C28—C29 1.5019 (19)

C13—N1—C25 117.0 (1)

C13—N1—C28 116.0 (1)

C25—N1—C28 105.9 (1)

C12—N2—C32 116.8 (1)

C12—N2—C29 116.3 (1)

C32—N2—C29 105.2 (1)

C29—N2—C12—C13 55.2 (1) C28—N1—C13—C12 55.7 (1) N2—C12—C13—N1 50.3 (1)

C13—N1—C28—C29 59.1 (1) C12—N2—C29—C28 58.3 (1) N1—C28—C29—N2 55.1 (1)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C28—H28 O2 0.98 2.41 3.058 (2) 124

C29—H29 O1 0.98 2.43 3.075 (2) 123

C9—H9 O2i

0.93 2.48 3.217 (2) 136

C15—H15 O1ii

0.93 2.51 3.261 (2) 138

Symmetry codes: (i)xþ2;yþ1;z; (ii)xþ2;yþ2;zþ1.

organic papers

Acta Cryst.(2006). E62, o2432–o2434 Sugaleshiniet al. C

32H26N2O2

o2433

Figure 1

[image:2.610.47.296.402.583.2]

The structure of (I), showing 30% probability displacement ellipsoids.

Figure 2

[image:2.610.313.568.461.601.2]
(3)

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances in the range 0.93–0.98 A˚ and withUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication:SHELXL97andPARST(Nardelli, 1995).

DG and DV thank the University Grants Commission, India, for funding. Financial support from the University Grants Commission (UGC-SAP) and Department of Science and Technology (DST-FIST), Government of India, is acknowledged for providing facilities to the department.

References

Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003).

Bioorg. Med. Chem.11, 407–409.

Boido, A., Vazzana, I. & Sparatore, F. (1994).Farmaco,49, 97–104. Bruker (2001).SMART(Version 5.625/NT/2000) andSAINT(Version 6.28a).

Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Edwards, J. M., Mangion, M., Anderson, J. B., Rapposch, M., Moews, P. & Hite,

G. (1980).Acta Cryst.B36, 1241–1244.

Gershbein, L. L. (1975).Res. Commun. Chem. Pathol. Pharm.11, 445–466. Jellimann, C., Mathe-Allainmat, M., Andrieux, J., Kloubert, S., Boutin, J. A.,

Nicolas, J. P., Bennejean, C., Delagrange, P. & Langlois, M. (2000).J. Med. Chem.43, 4051–4062.

Nardelli, M. (1983).Acta Cryst.C39, 1141–1142. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004).Acta Cryst.E60, o2216–o2218. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

o2434

Sugaleshiniet al. C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o2432–o2434

supporting information

Acta Cryst. (2006). E62, o2432–o2434 [https://doi.org/10.1107/S1600536806017661]

Acenapthene-2-spiro-5

-perhydrodipyrrolo[1,2-

a

;2

,1

-

c

]pyrazine-6

-spiro-2

′′

-acenapthene-1,1

′′

-dione

S. Sugaleshini, D. Gayathri, D. Velmurugan, K. Ravikumar and A. R. Sureshbabu

Acenapthene-2-spiro-5′-perhydrodipyrrole[1,2 - a;2′,1′-c]pyrazine-6′- spiro-2′′-acenapthene-1,1′′-dione

Crystal data

C32H26N2O2

Mr = 470.55 Triclinic, P1 Hall symbol: -P 1

a = 8.8721 (7) Å

b = 10.7042 (8) Å

c = 14.2846 (11) Å

α = 109.418 (1)°

β = 100.584 (1)°

γ = 102.447 (1)°

V = 1200.37 (16) Å3

Z = 2

F(000) = 496

Dx = 1.302 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 2635 reflections

θ = 1.6–25.0°

µ = 0.08 mm−1

T = 293 K

Block, colorless 0.24 × 0.23 × 0.21 mm

Data collection

Bruker SMART APEX CCD area detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

13844 measured reflections 5468 independent reflections

4621 reflections with I > 2σ(I)

Rint = 0.018

θmax = 28.0°, θmin = 1.6°

h = −11→11

k = −14→13

l = −18→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045

wR(F2) = 0.128

S = 1.02

5468 reflections 325 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.068P)2 + 0.217P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.30 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o2432–o2434

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 1.20128 (12) 0.73893 (11) 0.34162 (8) 0.0405 (2)

N2 0.88722 (12) 0.56861 (10) 0.26268 (8) 0.0388 (2)

O1 0.93123 (13) 0.83443 (10) 0.44283 (7) 0.0528 (3)

O2 1.12021 (13) 0.55941 (9) 0.11471 (7) 0.0524 (3)

C1 0.88698 (14) 0.81798 (12) 0.35332 (9) 0.0384 (3)

C2 0.78277 (14) 0.88773 (12) 0.30958 (10) 0.0399 (3)

C3 0.72907 (17) 0.99867 (14) 0.35429 (12) 0.0490 (3)

H3 0.7625 1.0491 0.4253 0.059*

C4 0.62161 (18) 1.03264 (15) 0.28818 (14) 0.0572 (4)

H4 0.5858 1.1084 0.3167 0.069*

C5 0.56748 (18) 0.95874 (16) 0.18340 (13) 0.0565 (4)

H5 0.4949 0.9843 0.1432 0.068*

C6 0.62052 (15) 0.84406 (14) 0.13558 (11) 0.0467 (3)

C7 0.57400 (17) 0.75505 (16) 0.02976 (12) 0.0541 (4)

H7 0.4995 0.7692 −0.0176 0.065*

C8 0.63816 (17) 0.64832 (16) −0.00299 (11) 0.0525 (3)

H8 0.6053 0.5908 −0.0727 0.063*

C9 0.75307 (16) 0.62217 (14) 0.06551 (10) 0.0441 (3)

H9 0.7950 0.5490 0.0411 0.053*

C10 0.80085 (14) 0.70636 (12) 0.16782 (9) 0.0366 (3)

C11 0.73210 (14) 0.81465 (12) 0.20214 (10) 0.0387 (3)

C12 0.91854 (14) 0.70607 (12) 0.25984 (8) 0.0348 (2)

C13 1.09847 (14) 0.75716 (12) 0.25847 (8) 0.0350 (2)

C14 1.14204 (14) 0.90671 (12) 0.26590 (9) 0.0374 (3)

C15 1.16731 (16) 1.02998 (13) 0.34522 (10) 0.0463 (3)

H15 1.1642 1.0329 0.4106 0.056*

C16 1.19837 (18) 1.15353 (15) 0.32628 (13) 0.0562 (4)

H16 1.2150 1.2374 0.3804 0.067*

C17 1.20488 (19) 1.15439 (15) 0.23167 (13) 0.0571 (4)

H17 1.2241 1.2376 0.2222 0.069*

C18 1.18233 (16) 1.02853 (14) 0.14794 (11) 0.0467 (3)

C19 1.18662 (18) 1.00925 (17) 0.04555 (12) 0.0563 (4)

H19 1.2033 1.0854 0.0269 0.068*

C20 1.16662 (19) 0.88028 (17) −0.02647 (12) 0.0567 (4)

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o2432–o2434

C21 1.14197 (17) 0.76071 (15) −0.00353 (10) 0.0486 (3)

H21 1.1307 0.6743 −0.0531 0.058*

C22 1.13520 (14) 0.77648 (13) 0.09519 (9) 0.0398 (3)

C23 1.15329 (14) 0.90764 (13) 0.16880 (9) 0.0385 (3)

C24 1.11555 (14) 0.67750 (12) 0.14728 (9) 0.0384 (3)

C25 1.37471 (17) 0.78453 (17) 0.35572 (12) 0.0556 (4)

H25A 1.4160 0.8850 0.3831 0.067*

H25B 1.4009 0.7464 0.2911 0.067*

C26 1.4416 (2) 0.7268 (2) 0.43320 (14) 0.0721 (5)

H26A 1.5237 0.6857 0.4127 0.086*

H26B 1.4882 0.7999 0.5016 0.086*

C27 1.2991 (2) 0.61722 (19) 0.43276 (13) 0.0660 (4)

H27A 1.3244 0.5310 0.4241 0.079*

H27B 1.2691 0.6489 0.4966 0.079*

C28 1.16447 (17) 0.59791 (14) 0.34102 (10) 0.0457 (3)

H28 1.1757 0.5334 0.2773 0.055*

C29 0.99523 (17) 0.55459 (14) 0.34736 (10) 0.0447 (3)

H29 0.9865 0.6143 0.4138 0.054*

C30 0.9210 (2) 0.40269 (16) 0.32806 (13) 0.0609 (4)

H30A 0.9432 0.3874 0.3918 0.073*

H30B 0.9623 0.3427 0.2786 0.073*

C31 0.7407 (2) 0.37578 (18) 0.28484 (14) 0.0669 (4)

H31A 0.6971 0.2928 0.2218 0.080*

H31B 0.6838 0.3642 0.3347 0.080*

C32 0.72517 (18) 0.50312 (15) 0.26331 (12) 0.0546 (3)

H32A 0.6484 0.4769 0.1971 0.065*

H32B 0.6919 0.5646 0.3170 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0390 (5) 0.0480 (6) 0.0365 (5) 0.0164 (4) 0.0095 (4) 0.0174 (4)

N2 0.0440 (6) 0.0379 (5) 0.0369 (5) 0.0132 (4) 0.0129 (4) 0.0157 (4)

O1 0.0672 (6) 0.0583 (6) 0.0334 (5) 0.0275 (5) 0.0164 (4) 0.0117 (4)

O2 0.0760 (7) 0.0439 (5) 0.0434 (5) 0.0272 (5) 0.0251 (5) 0.0140 (4)

C1 0.0392 (6) 0.0379 (6) 0.0370 (6) 0.0118 (5) 0.0146 (5) 0.0107 (5)

C2 0.0367 (6) 0.0387 (6) 0.0460 (7) 0.0126 (5) 0.0163 (5) 0.0151 (5)

C3 0.0485 (7) 0.0423 (7) 0.0599 (8) 0.0178 (6) 0.0239 (6) 0.0169 (6)

C4 0.0557 (8) 0.0485 (8) 0.0826 (11) 0.0279 (7) 0.0314 (8) 0.0299 (8)

C5 0.0470 (8) 0.0619 (9) 0.0801 (11) 0.0270 (7) 0.0218 (7) 0.0425 (8)

C6 0.0369 (6) 0.0531 (7) 0.0582 (8) 0.0142 (5) 0.0141 (6) 0.0306 (6)

C7 0.0419 (7) 0.0697 (9) 0.0547 (8) 0.0144 (6) 0.0054 (6) 0.0348 (7)

C8 0.0479 (7) 0.0628 (9) 0.0392 (7) 0.0092 (6) 0.0041 (6) 0.0192 (6)

C9 0.0443 (7) 0.0459 (7) 0.0386 (6) 0.0121 (5) 0.0100 (5) 0.0137 (5)

C10 0.0351 (6) 0.0390 (6) 0.0373 (6) 0.0108 (5) 0.0110 (5) 0.0163 (5)

C11 0.0336 (6) 0.0403 (6) 0.0452 (6) 0.0108 (5) 0.0133 (5) 0.0192 (5)

C12 0.0383 (6) 0.0363 (6) 0.0304 (5) 0.0132 (5) 0.0113 (4) 0.0112 (4)

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o2432–o2434

C14 0.0348 (6) 0.0387 (6) 0.0390 (6) 0.0123 (5) 0.0112 (5) 0.0140 (5)

C15 0.0477 (7) 0.0423 (7) 0.0434 (7) 0.0127 (5) 0.0126 (5) 0.0102 (5)

C16 0.0579 (9) 0.0381 (7) 0.0633 (9) 0.0142 (6) 0.0135 (7) 0.0102 (6)

C17 0.0583 (8) 0.0433 (7) 0.0750 (10) 0.0174 (6) 0.0183 (7) 0.0282 (7)

C18 0.0410 (7) 0.0489 (7) 0.0579 (8) 0.0164 (5) 0.0141 (6) 0.0280 (6)

C19 0.0557 (8) 0.0654 (9) 0.0675 (9) 0.0225 (7) 0.0220 (7) 0.0445 (8)

C20 0.0619 (9) 0.0755 (10) 0.0489 (8) 0.0264 (8) 0.0223 (7) 0.0368 (7)

C21 0.0516 (8) 0.0592 (8) 0.0407 (7) 0.0198 (6) 0.0178 (6) 0.0217 (6)

C22 0.0386 (6) 0.0468 (7) 0.0383 (6) 0.0156 (5) 0.0141 (5) 0.0181 (5)

C23 0.0334 (6) 0.0431 (6) 0.0418 (6) 0.0135 (5) 0.0112 (5) 0.0185 (5)

C24 0.0407 (6) 0.0419 (6) 0.0338 (6) 0.0152 (5) 0.0136 (5) 0.0127 (5)

C25 0.0397 (7) 0.0710 (9) 0.0563 (8) 0.0188 (6) 0.0107 (6) 0.0248 (7)

C26 0.0508 (9) 0.1046 (14) 0.0677 (10) 0.0349 (9) 0.0094 (7) 0.0383 (10)

C27 0.0667 (10) 0.0833 (11) 0.0602 (9) 0.0348 (9) 0.0097 (8) 0.0391 (9)

C28 0.0544 (8) 0.0506 (7) 0.0402 (6) 0.0263 (6) 0.0135 (6) 0.0208 (6)

C29 0.0580 (8) 0.0459 (7) 0.0371 (6) 0.0206 (6) 0.0159 (6) 0.0199 (5)

C30 0.0810 (11) 0.0528 (8) 0.0606 (9) 0.0227 (8) 0.0220 (8) 0.0334 (7)

C31 0.0748 (11) 0.0573 (9) 0.0707 (10) 0.0081 (8) 0.0213 (8) 0.0342 (8)

C32 0.0505 (8) 0.0511 (8) 0.0627 (9) 0.0080 (6) 0.0179 (7) 0.0260 (7)

Geometric parameters (Å, º)

N1—C13 1.454 (1) C16—C17 1.366 (2)

N1—C25 1.464 (2) C16—H16 0.9300

N1—C28 1.471 (2) C17—C18 1.418 (2)

N2—C12 1.453 (2) C17—H17 0.9300

N2—C32 1.461 (2) C18—C23 1.4037 (18)

N2—C29 1.470 (2) C18—C19 1.416 (2)

O1—C1 1.207 (2) C19—C20 1.371 (2)

O2—C24 1.206 (2) C19—H19 0.9300

C1—C2 1.4826 (17) C20—C21 1.406 (2)

C1—C12 1.586 (2) C20—H20 0.9300

C2—C3 1.3772 (17) C21—C22 1.3777 (17)

C2—C11 1.4021 (18) C21—H21 0.9300

C3—C4 1.407 (2) C22—C23 1.4006 (17)

C3—H3 0.9300 C22—C24 1.4828 (17)

C4—C5 1.372 (2) C25—C26 1.526 (2)

C4—H4 0.9300 C25—H25A 0.9700

C5—C6 1.416 (2) C25—H25B 0.9700

C5—H5 0.9300 C26—C27 1.526 (3)

C6—C11 1.4038 (17) C26—H26A 0.9700

C6—C7 1.417 (2) C26—H26B 0.9700

C7—C8 1.368 (2) C27—C28 1.5247 (19)

C7—H7 0.9300 C27—H27A 0.9700

C8—C9 1.4190 (18) C27—H27B 0.9700

C8—H8 0.9300 C28—C29 1.5019 (19)

C9—C10 1.3638 (17) C28—H28 0.9800

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o2432–o2434

C10—C11 1.4117 (16) C29—H29 0.9800

C10—C12 1.522 (2) C30—C31 1.531 (2)

C12—C13 1.578 (2) C30—H30A 0.9700

C13—C14 1.526 (2) C30—H30B 0.9700

C13—C24 1.586 (2) C31—C32 1.522 (2)

C14—C15 1.3638 (17) C31—H31A 0.9700

C14—C23 1.4119 (17) C31—H31B 0.9700

C15—C16 1.417 (2) C32—H32A 0.9700

C15—H15 0.9300 C32—H32B 0.9700

C13—N1—C25 117.0 (1) C20—C19—C18 121.14 (13)

C13—N1—C28 116.0 (1) C20—C19—H19 119.4

C25—N1—C28 105.9 (1) C18—C19—H19 119.4

C12—N2—C32 116.8 (1) C19—C20—C21 122.53 (13)

C12—N2—C29 116.3 (1) C19—C20—H20 118.7

C32—N2—C29 105.2 (1) C21—C20—H20 118.7

O1—C1—C2 127.02 (11) C22—C21—C20 117.43 (13)

O1—C1—C12 125.08 (11) C22—C21—H21 121.3

C2—C1—C12 107.69 (10) C20—C21—H21 121.3

C3—C2—C11 120.15 (12) C21—C22—C23 120.36 (12)

C3—C2—C1 132.65 (12) C21—C22—C24 132.56 (12)

C11—C2—C1 107.16 (10) C23—C22—C24 107.05 (10)

C2—C3—C4 117.31 (13) C22—C23—C18 122.89 (12)

C2—C3—H3 121.3 C22—C23—C14 113.65 (11)

C4—C3—H3 121.3 C18—C23—C14 123.45 (12)

C5—C4—C3 122.81 (13) O2—C24—C22 127.00 (11)

C5—C4—H4 118.6 O2—C24—C13 125.01 (11)

C3—C4—H4 118.6 C22—C24—C13 107.88 (10)

C4—C5—C6 120.96 (13) N1—C25—C26 103.03 (12)

C4—C5—H5 119.5 N1—C25—H25A 111.2

C6—C5—H5 119.5 C26—C25—H25A 111.2

C11—C6—C5 115.48 (13) N1—C25—H25B 111.2

C11—C6—C7 116.29 (12) C26—C25—H25B 111.2

C5—C6—C7 128.22 (13) H25A—C25—H25B 109.1

C8—C7—C6 120.25 (12) C27—C26—C25 105.89 (12)

C8—C7—H7 119.9 C27—C26—H26A 110.6

C6—C7—H7 119.9 C25—C26—H26A 110.6

C7—C8—C9 122.44 (13) C27—C26—H26B 110.6

C7—C8—H8 118.8 C25—C26—H26B 110.6

C9—C8—H8 118.8 H26A—C26—H26B 108.7

C10—C9—C8 118.73 (12) C28—C27—C26 104.57 (12)

C10—C9—H9 120.6 C28—C27—H27A 110.8

C8—C9—H9 120.6 C26—C27—H27A 110.8

C9—C10—C11 118.91 (11) C28—C27—H27B 110.8

C9—C10—C12 131.78 (11) C26—C27—H27B 110.8

C11—C10—C12 109.29 (10) H27A—C27—H27B 108.9

C2—C11—C6 123.19 (12) N1—C28—C29 108.90 (10)

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o2432–o2434

C6—C11—C10 123.33 (12) C29—C28—C27 117.20 (12)

N2—C12—C10 111.23 (9) N1—C28—H28 109.8

N2—C12—C13 108.82 (9) C29—C28—H28 109.8

C10—C12—C13 111.92 (9) C27—C28—H28 109.8

N2—C12—C1 114.08 (9) N2—C29—C28 108.59 (10)

C10—C12—C1 101.44 (9) N2—C29—C30 101.03 (11)

C13—C12—C1 109.24 (9) C28—C29—C30 117.76 (12)

N1—C13—C14 112.79 (9) N2—C29—H29 109.7

N1—C13—C12 108.39 (9) C28—C29—H29 109.7

C14—C13—C12 110.81 (9) C30—C29—H29 109.7

N1—C13—C24 114.08 (9) C29—C30—C31 104.25 (12)

C14—C13—C24 101.22 (9) C29—C30—H30A 110.9

C12—C13—C24 109.41 (9) C31—C30—H30A 110.9

C15—C14—C23 118.67 (12) C29—C30—H30B 110.9

C15—C14—C13 132.18 (11) C31—C30—H30B 110.9

C23—C14—C13 109.14 (10) H30A—C30—H30B 108.9

C14—C15—C16 118.85 (13) C32—C31—C30 105.51 (12)

C14—C15—H15 120.6 C32—C31—H31A 110.6

C16—C15—H15 120.6 C30—C31—H31A 110.6

C17—C16—C15 122.61 (13) C32—C31—H31B 110.6

C17—C16—H16 118.7 C30—C31—H31B 110.6

C15—C16—H16 118.7 H31A—C31—H31B 108.8

C16—C17—C18 120.09 (13) N2—C32—C31 103.42 (12)

C16—C17—H17 120.0 N2—C32—H32A 111.1

C18—C17—H17 120.0 C31—C32—H32A 111.1

C23—C18—C19 115.62 (13) N2—C32—H32B 111.1

C23—C18—C17 116.28 (13) C31—C32—H32B 111.1

C19—C18—C17 128.11 (13) H32A—C32—H32B 109.0

O1—C1—C2—C3 11.1 (2) C24—C13—C14—C15 −172.23 (13)

C12—C1—C2—C3 −173.99 (13) N1—C13—C14—C23 131.25 (10)

O1—C1—C2—C11 −166.31 (13) C12—C13—C14—C23 −107.04 (10)

C12—C1—C2—C11 8.62 (13) C24—C13—C14—C23 8.92 (12)

C11—C2—C3—C4 0.85 (19) C23—C14—C15—C16 2.14 (19)

C1—C2—C3—C4 −176.27 (13) C13—C14—C15—C16 −176.62 (12)

C2—C3—C4—C5 1.3 (2) C14—C15—C16—C17 −0.3 (2)

C3—C4—C5—C6 −1.2 (2) C15—C16—C17—C18 −0.9 (2)

C4—C5—C6—C11 −1.1 (2) C16—C17—C18—C23 0.2 (2)

C4—C5—C6—C7 178.22 (14) C16—C17—C18—C19 −179.22 (14)

C11—C6—C7—C8 −0.66 (19) C23—C18—C19—C20 −1.3 (2)

C5—C6—C7—C8 −179.94 (14) C17—C18—C19—C20 178.20 (15)

C6—C7—C8—C9 −0.5 (2) C18—C19—C20—C21 −0.4 (2)

C7—C8—C9—C10 0.2 (2) C19—C20—C21—C22 1.2 (2)

C8—C9—C10—C11 1.19 (18) C20—C21—C22—C23 −0.31 (19)

C8—C9—C10—C12 179.50 (12) C20—C21—C22—C24 −178.21 (13)

C3—C2—C11—C6 −3.29 (19) C21—C22—C23—C18 −1.46 (19)

C1—C2—C11—C6 174.49 (11) C24—C22—C23—C18 176.92 (11)

(10)

supporting information

sup-7

Acta Cryst. (2006). E62, o2432–o2434

C1—C2—C11—C10 −3.88 (14) C24—C22—C23—C14 −2.15 (14)

C5—C6—C11—C2 3.31 (18) C19—C18—C23—C22 2.21 (18)

C7—C6—C11—C2 −176.06 (12) C17—C18—C23—C22 −177.32 (12)

C5—C6—C11—C10 −178.48 (12) C19—C18—C23—C14 −178.82 (12)

C7—C6—C11—C10 2.15 (18) C17—C18—C23—C14 1.65 (19)

C9—C10—C11—C2 175.91 (11) C15—C14—C23—C22 176.17 (11)

C12—C10—C11—C2 −2.75 (14) C13—C14—C23—C22 −4.81 (14)

C9—C10—C11—C6 −2.46 (18) C15—C14—C23—C18 −2.89 (18)

C12—C10—C11—C6 178.88 (11) C13—C14—C23—C18 176.14 (11)

C32—N2—C12—C10 −55.69 (13) C21—C22—C24—O2 9.8 (2)

C29—N2—C12—C10 178.97 (9) C23—C22—C24—O2 −168.33 (13)

C32—N2—C12—C13 −179.43 (10) C21—C22—C24—C13 −173.98 (13)

C29—N2—C12—C13 55.2 (1) C23—C22—C24—C13 7.91 (13)

C32—N2—C12—C1 58.31 (14) N1—C13—C24—O2 44.79 (17)

C29—N2—C12—C1 −67.03 (13) C14—C13—C24—O2 166.21 (12)

C9—C10—C12—N2 −49.21 (17) C12—C13—C24—O2 −76.80 (15)

C11—C10—C12—N2 129.22 (10) N1—C13—C24—C22 −131.55 (10)

C9—C10—C12—C13 72.76 (16) C14—C13—C24—C22 −10.13 (12)

C11—C10—C12—C13 −108.82 (11) C12—C13—C24—C22 106.87 (10)

C9—C10—C12—C1 −170.89 (13) C13—N1—C25—C26 −169.92 (12)

C11—C10—C12—C1 7.53 (12) C28—N1—C25—C26 −38.86 (14)

O1—C1—C12—N2 45.67 (16) N1—C25—C26—C27 16.49 (17)

C2—C1—C12—N2 −129.39 (10) C25—C26—C27—C28 10.32 (18)

O1—C1—C12—C10 165.34 (12) C13—N1—C28—C29 −59.1 (1)

C2—C1—C12—C10 −9.71 (12) C25—N1—C28—C29 169.22 (10)

O1—C1—C12—C13 −76.36 (15) C13—N1—C28—C27 176.89 (11)

C2—C1—C12—C13 108.59 (10) C25—N1—C28—C27 45.24 (13)

C25—N1—C13—C14 −55.07 (14) C26—C27—C28—N1 −32.95 (15)

C28—N1—C13—C14 178.73 (9) C26—C27—C28—C29 −151.05 (13)

C25—N1—C13—C12 −178.14 (10) C12—N2—C29—C28 −58.3 (1)

C28—N1—C13—C12 55.7 (1) C32—N2—C29—C28 170.65 (11)

C25—N1—C13—C24 59.71 (14) C12—N2—C29—C30 177.2 (1)

C28—N1—C13—C24 −66.49 (13) C32—N2—C29—C30 46.17 (13)

N2—C12—C13—N1 −50.3 (1) N1—C28—C29—N2 55.1 (1)

C10—C12—C13—N1 −173.64 (9) C27—C28—C29—N2 168.90 (12)

C1—C12—C13—N1 74.84 (11) N1—C28—C29—C30 169.03 (11)

N2—C12—C13—C14 −174.57 (9) C27—C28—C29—C30 −77.21 (17)

C10—C12—C13—C14 62.09 (12) N2—C29—C30—C31 −33.49 (14)

C1—C12—C13—C14 −49.43 (12) C28—C29—C30—C31 −151.49 (13)

N2—C12—C13—C24 74.66 (11) C29—C30—C31—C32 10.17 (17)

C10—C12—C13—C24 −48.67 (12) C12—N2—C32—C31 −170.69 (11)

C1—C12—C13—C24 −160.20 (9) C29—N2—C32—C31 −39.96 (14)

N1—C13—C14—C15 −49.91 (17) C30—C31—C32—N2 17.29 (16)

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, o2432–o2434

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C28—H28···O2 0.98 2.41 3.058 (2) 124

C29—H29···O1 0.98 2.43 3.075 (2) 123

C9—H9···O2i 0.93 2.48 3.217 (2) 136

C15—H15···O1ii 0.93 2.51 3.261 (2) 138

Figure

Fig. 1 shows the molecular structure of the title compound.
Figure 1The structure of (I), showing 30% probability displacement ellipsoids.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical