• No results found

6 (4 Meth­oxy­phenyl) 4 phenyl 2 (pyrrolidin 1 yl)­nicotino­nitrile

N/A
N/A
Protected

Academic year: 2020

Share "6 (4 Meth­oxy­phenyl) 4 phenyl 2 (pyrrolidin 1 yl)­nicotino­nitrile"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1261±o1263 DOI: 10.1107/S1600536802018627 S. Thinagaret al. C23H21N3O

o1261

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-(4-Methoxyphenyl)-4-phenyl-2-(pyrrolidin-1-yl)-nicotinonitrile

S. Thinagar,a* D. Velmurugan,a

S. Shanmuga Sundara Raj,b

Hoong-Kun Funband V.

Raghukumarc

aDepartment of Crystallography and Biophysics,

University of Madras, Guindy Campus, Chennai 600 025, India,bX-ray Crystallography Unit,

School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and

cDepartment of Organic chemistry, University of

Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.064 wRfactor = 0.177

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The pyrrolidine ring in the title molecule, C23H21N3O, adopts a

half-chair conformation. In the solid state, CÐH N inter-molecular hydrogen bonds link inversion-related molecules, forming cyclic dimers. The structure is further stabilized by weak CÐH O hydrogen bonds and van der Waals forces.

Comment

Nicotine derivatives have a wide range of biological applica-tions. Niacin is a vitamin that contains nicotinamide, de®ciency of which makes the body lose copper, thereby giving rise to the pellagra disease (HoÈkelek & Necefouglu, 1999). The nicotinic acid derivative N,N-diethylnicotinamide, which is commonly known as DENA, has a respiratory stimulating property (HoÈkelek & Necefouglu, 1996). The redox pair NAD+(nicotinamide adenine dinucleotide) molecule, which is

the oxidized form of the coenzyme NADH, plays a key role in energy-producing processes (Stryer, 1988) and in the redox processes catalysed by various protein families, the de-hydrogenases being the largest group (Guillot et al., 2000). Against this background and in order to obtain detailed information on the molecular conformation in the solid state, the X-ray study of the title compound, (I), was carried out and the results are presented here.

Fig. 1 shows the molecular structure of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme. The values of the Nsp2ÐCsp2bond distances, N1ÐC6

[1.342 (2) AÊ] and N1ÐC2 [1.345 (2) AÊ], agree well with reported values (Leban et al., 1996; HoÈkelek & Necefouglu, 1996). The C3ÐC2ÐN2 angle [122.6 (2)] is wider than the

N1ÐC2ÐN2 angle [116.6 (2)], as a result of the repulsive

force exerted by the nitrile group on the pyrrolidine ring. The widening of the exocyclic angle C5ÐC6ÐC18 [122.2 (2)]

compared with N1ÐC6ÐC18 [115.7 (2)] might be a

con-sequence of steric repulsion between atoms H5 and H19 (H5 H19 = 2.22 AÊ). The sum of the angles around N2 [356.5 (2)] indicates an sp2hybridization for this atom. The

pyrrolidine ring adopts a half-chair conformation, with asymmetry parameterC2(N2) = 0.005 (1) (Nardelli, 1983).

(2)

organic papers

o1262

S. Thinagaret al. C23H21N3O Acta Cryst.(2002). E58, o1261±o1263

The pyridine ring is planar, with a maximum deviation of 0.070 (2) AÊ for C2, and it forms a dihedral angle of 31.20 (7)

with the mean plane through the pyrrolidine ring. The dihe-dral angle between the pyridine and phenyl ring planes is 43.41 (6). The dihedral angle between the planes passing

through the pyridine and methoxyphenyl rings [14.7 (1)] is

slightly larger than that reported [9.04 (6)] for a related

structure (Fun et al., 1996). The methoxy group is coplanar with the attached phenyl ring. In the crystal, inversion-related molecules exist as CÐH N hydrogen-bonded dimers,i.e.the molecules form a cyclic dimer (Table 2) with graph-set descriptorR22(26) (Bernsteinet al., 1995). The ring forR22(26)

is N3iÐC11iÐC3iÐC4iÐC5iÐC6iÐC18iÐC19iÐC20iÐ

C21iÐOiÐC24iÐH24CiÐN3ÐC11ÐC3ÐC4ÐC5ÐC6Ð

C18ÐC19ÐC20ÐC21ÐOÐC24ÐH24C[symmetry code: (i)

ÿx, 1ÿy, 1ÿz] (Fig. 2). The dimers are linked by weak C15ÐH15 Oii [symmetry code: (ii) x, yÿ1, zÿ1]

hydrogen bonds, to form in®nite one-dimensional chains. The crystal structure is further stabilized by van der Waals forces.

Experimental

To a re¯uxing solution of 4-methoxylbenzoylacetophenone (1.8 mmol) in ethanol (10 ml), malononitrile (1.8 mmol) and pyrrol-idine (1.8 mmol) were added, and the resulting solution was re¯uxed for 9 h. The solvent was distilled off under reduced pressure and the resulting residue was puri®ed by column chromatography using silica-gel eluent (100±200 mesh). Single crystals were obtained by slow evaporation using a petroleum ether±ethyl acetate (1:3) solvent system.

Crystal data

C23H21N3O

Mr= 355.43

Triclinic,P1

a= 7.9336 (5) AÊ

b= 10.3841 (6) AÊ

c= 12.4407 (7) AÊ = 105.158 (1)

= 104.077 (1)

= 100.400 (1)

V= 926.35 (9) AÊ3

Z= 2

Dx= 1.274 Mg mÿ3

MoKradiation Cell parameters from 3290

re¯ections = 1.8±28.3

= 0.08 mmÿ1

T= 293 (2) K Plate, pale yellow 0.420.200.16 mm

Data collection

Siemens SMART CCD area-detector diffractometer !scans

6584 measured re¯ections 4310 independent re¯ections 2663 re¯ections withI> 2(I)

Rint= 0.047

max= 28.3

h=ÿ9!10

k=ÿ13!11

l=ÿ16!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.064

wR(F2) = 0.177

S= 0.94 4310 re¯ections

244 parameters

H-atom parameters constrained (/)max< 0.001

max= 0.28 e AÊÿ3 min=ÿ0.30 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

N1ÐC6 1.342 (2) N1ÐC2 1.345 (2)

C2ÐN2ÐC10 124.31 (16) C2ÐN2ÐC7 120.85 (16) C10ÐN2ÐC7 111.43 (15) N1ÐC2ÐN2 116.61 (16)

N2ÐC2ÐC3 122.59 (17) N1ÐC6ÐC18 115.73 (16) C5ÐC6ÐC18 122.21 (17)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C23ÐH23 N1 0.93 2.46 2.780 (3) 100 C24ÐH24C N3i 0.96 2.61 3.511 (4) 156

C15ÐH15 Oii 0.93 2.64 3.498 (2) 153 Symmetry codes: (i)ÿx;1ÿy;1ÿz; (ii)x;yÿ1;zÿ1.

Figure 2

A view of the CÐH N hydrogen-bonded dimer of (I).

Figure 1

(3)

The H atoms were ®xed geometrically and allowed to ride on the attached non-H atoms, with CÐH distances of 0.93, 0.96 or 0.97 AÊ, and withUiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other atoms. The data coverage was only 94% complete, owing to the poor diffraction quality of the crystal.

Data collection:SMART(Siemens, 1996); cell re®nement:SAINT

(Siemens, 1996); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ZORTEP (Zsolnai, 1997); software used to prepare material for publication:SHELXL97 andPARST(Nardelli, 1995).

ST and DV thank the University Grants Commission, India, for providing ®nancial assistance under a major research project.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555±1573.

Fun, H.-K., Sivakumar, K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996).Acta Cryst.C52, 986±988.

Guillot, B., Jelsch, C. & Lecomte, C. (2000).Acta Cryst.C56, 726±728. HoÈkelek, T. & Necefouglu, H. (1996).Acta Cryst.C52, 1128±1131. HoÈkelek, T. & Necefouglu, H. (1999).Acta Cryst.C55, 1438±1440. Leban, I., Segedin, P. & Gruber, K. (1996).Acta Cryst.C52, 1096±1098. Nardelli, M. (1983).Acta Cryst.C39, 1141±1142.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Siemens (1996).SMARTandSAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stryer, L. (1988). Biochemistry, 3rd ed., pp. 320±321, New York: W. H. Freeman and Co.

Zsolnai, L. (1997).ZORTEP. University of Heidelberg, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2002). E58, o1261–o1263

supporting information

Acta Cryst. (2002). E58, o1261–o1263 [https://doi.org/10.1107/S1600536802018627]

6-(4-Methoxyphenyl)-4-phenyl-2-(pyrrolidin-1-yl)nicotinonitrile

S. Thinagar, D. Velmurugan, S. Shanmuga Sundara Raj, Hoong-Kun Fun and V. Raghukumar

6-(4-Methoxyphenyl)-4-phenyl-2-(pyrrolidin-1-yl)nicotinonitrile

Crystal data

C23H21N3O

Mr = 355.43

Triclinic, P1 Hall symbol: -P 1

a = 7.9336 (5) Å

b = 10.3841 (6) Å

c = 12.4407 (7) Å

α = 105.158 (1)°

β = 104.077 (1)°

γ = 100.400 (1)°

V = 926.35 (9) Å3

Z = 2

F(000) = 376

Dx = 1.274 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3290 reflections

θ = 1.8–28.3°

µ = 0.08 mm−1

T = 293 K Plate, pale yellow 0.42 × 0.20 × 0.16 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

6584 measured reflections 4310 independent reflections

2663 reflections with I > 2σ(I)

Rint = 0.047

θmax = 28.3°, θmin = 1.8°

h = −9→10

k = −13→11

l = −16→15

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.064

wR(F2) = 0.177

S = 0.94 4310 reflections 244 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

(Δ/σ)max < 0.001 Δρmax = 0.28 e Å−3 Δρmin = −0.30 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2002). E58, o1261–o1263

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.1834 (2) 0.36092 (16) 0.70531 (13) 0.0358 (4)

N2 0.4304 (2) 0.27571 (17) 0.74677 (14) 0.0400 (4)

N3 0.4935 (3) 0.1466 (2) 0.45639 (17) 0.0565 (5)

O −0.3615 (2) 0.69623 (16) 0.84605 (13) 0.0549 (4)

C2 0.2869 (2) 0.28263 (19) 0.66568 (16) 0.0339 (4)

C3 0.2451 (2) 0.21134 (19) 0.54342 (16) 0.0349 (4)

C4 0.0752 (2) 0.20061 (18) 0.46931 (16) 0.0341 (4)

C5 −0.0366 (3) 0.2714 (2) 0.51511 (17) 0.0376 (4)

H5 −0.1523 0.2621 0.4688 0.045*

C6 0.0261 (2) 0.35730 (19) 0.63197 (16) 0.0342 (4)

C7 0.4693 (3) 0.3515 (2) 0.87162 (17) 0.0447 (5)

H7A 0.3644 0.3312 0.8973 0.054*

H7B 0.5086 0.4504 0.8872 0.054*

C8 0.6196 (3) 0.2977 (3) 0.9314 (2) 0.0565 (6)

H8A 0.7365 0.3513 0.9365 0.068*

H8B 0.6167 0.3002 1.0094 0.068*

C9 0.5789 (3) 0.1508 (3) 0.8523 (2) 0.0585 (6)

H9A 0.4838 0.0904 0.8661 0.070*

H9B 0.6851 0.1159 0.8638 0.070*

C10 0.5191 (3) 0.1628 (3) 0.7303 (2) 0.0508 (6)

H10A 0.6215 0.1855 0.7027 0.061*

H10B 0.4360 0.0775 0.6751 0.061*

C11 0.3813 (3) 0.1706 (2) 0.49528 (18) 0.0406 (5)

C12 0.0155 (2) 0.11426 (19) 0.34347 (16) 0.0347 (4)

C13 0.0377 (3) −0.0191 (2) 0.31055 (18) 0.0418 (5)

H13 0.0921 −0.0544 0.3674 0.050*

C14 −0.0203 (3) −0.0990 (2) 0.1943 (2) 0.0501 (6)

H14 −0.0058 −0.1881 0.1734 0.060*

C15 −0.0995 (3) −0.0479 (2) 0.1090 (2) 0.0535 (6)

H15 −0.1375 −0.1017 0.0307 0.064*

C16 −0.1221 (3) 0.0839 (2) 0.14072 (19) 0.0528 (6)

H16 −0.1750 0.1189 0.0833 0.063*

C17 −0.0669 (3) 0.1645 (2) 0.25709 (18) 0.0421 (5)

H17 −0.0851 0.2526 0.2775 0.051*

C18 −0.0805 (3) 0.44516 (18) 0.68378 (17) 0.0350 (4)

C19 −0.2229 (3) 0.4779 (2) 0.61658 (17) 0.0412 (5)

H19 −0.2536 0.4434 0.5355 0.049*

C20 −0.3211 (3) 0.5606 (2) 0.66619 (19) 0.0444 (5)

H20 −0.4164 0.5806 0.6189 0.053*

(6)

supporting information

sup-3

Acta Cryst. (2002). E58, o1261–o1263

C22 −0.1326 (3) 0.5829 (2) 0.85603 (18) 0.0442 (5)

H22 −0.1015 0.6186 0.9371 0.053*

C23 −0.0363 (3) 0.5009 (2) 0.80558 (18) 0.0408 (5)

H23 0.0598 0.4821 0.8532 0.049*

C24 −0.5083 (4) 0.7315 (3) 0.7800 (2) 0.0731 (8)

H24A −0.5560 0.7892 0.8321 0.110*

H24B −0.6003 0.6488 0.7318 0.110*

H24C −0.4678 0.7803 0.7314 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0351 (8) 0.0376 (9) 0.0346 (9) 0.0159 (7) 0.0103 (7) 0.0073 (7) N2 0.0366 (9) 0.0458 (10) 0.0361 (9) 0.0199 (7) 0.0075 (7) 0.0079 (7) N3 0.0489 (11) 0.0676 (13) 0.0565 (13) 0.0246 (10) 0.0252 (9) 0.0111 (10) O 0.0592 (10) 0.0623 (10) 0.0522 (10) 0.0370 (8) 0.0254 (8) 0.0110 (7) C2 0.0320 (9) 0.0345 (10) 0.0341 (10) 0.0118 (8) 0.0087 (8) 0.0082 (8) C3 0.0361 (10) 0.0346 (10) 0.0358 (11) 0.0143 (8) 0.0136 (8) 0.0081 (8) C4 0.0370 (10) 0.0323 (9) 0.0324 (10) 0.0114 (8) 0.0107 (8) 0.0078 (7) C5 0.0336 (10) 0.0405 (10) 0.0378 (11) 0.0162 (8) 0.0086 (8) 0.0088 (8) C6 0.0348 (10) 0.0331 (10) 0.0353 (10) 0.0128 (8) 0.0108 (8) 0.0091 (8) C7 0.0410 (11) 0.0522 (12) 0.0360 (11) 0.0140 (9) 0.0081 (9) 0.0079 (9) C8 0.0498 (13) 0.0781 (17) 0.0417 (13) 0.0215 (12) 0.0082 (10) 0.0211 (12) C9 0.0516 (13) 0.0757 (17) 0.0649 (16) 0.0350 (12) 0.0209 (12) 0.0343 (13) C10 0.0453 (12) 0.0629 (14) 0.0506 (13) 0.0322 (11) 0.0153 (10) 0.0160 (11) C11 0.0415 (11) 0.0414 (11) 0.0382 (11) 0.0163 (9) 0.0122 (9) 0.0078 (8) C12 0.0340 (10) 0.0343 (10) 0.0335 (10) 0.0089 (8) 0.0121 (8) 0.0054 (8) C13 0.0476 (11) 0.0372 (11) 0.0414 (12) 0.0132 (9) 0.0168 (9) 0.0095 (9) C14 0.0555 (13) 0.0383 (11) 0.0518 (14) 0.0091 (10) 0.0241 (11) 0.0019 (10) C15 0.0550 (13) 0.0548 (14) 0.0361 (12) 0.0046 (11) 0.0154 (10) −0.0044 (10) C16 0.0525 (13) 0.0622 (15) 0.0374 (12) 0.0149 (11) 0.0064 (10) 0.0124 (10) C17 0.0435 (11) 0.0428 (11) 0.0379 (11) 0.0152 (9) 0.0099 (9) 0.0092 (9) C18 0.0353 (9) 0.0329 (10) 0.0350 (10) 0.0117 (8) 0.0114 (8) 0.0057 (8) C19 0.0412 (11) 0.0470 (11) 0.0311 (10) 0.0193 (9) 0.0069 (8) 0.0039 (8) C20 0.0396 (11) 0.0480 (12) 0.0452 (12) 0.0230 (9) 0.0098 (9) 0.0096 (9) C21 0.0410 (11) 0.0389 (11) 0.0457 (12) 0.0187 (9) 0.0186 (9) 0.0084 (9) C22 0.0523 (12) 0.0478 (12) 0.0322 (11) 0.0205 (10) 0.0140 (9) 0.0062 (9) C23 0.0431 (11) 0.0437 (11) 0.0379 (11) 0.0213 (9) 0.0111 (9) 0.0112 (9) C24 0.090 (2) 0.094 (2) 0.0696 (18) 0.0697 (18) 0.0420 (15) 0.0348 (15)

Geometric parameters (Å, º)

N1—C6 1.342 (2) C10—H10B 0.97

N1—C2 1.345 (2) C12—C17 1.389 (3)

N2—C2 1.352 (2) C12—C13 1.394 (3)

N2—C10 1.469 (3) C13—C14 1.380 (3)

N2—C7 1.472 (3) C13—H13 0.93

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, o1261–o1263

O—C21 1.372 (2) C14—H14 0.93

O—C24 1.418 (3) C15—C16 1.379 (3)

C2—C3 1.431 (3) C15—H15 0.93

C3—C4 1.402 (3) C16—C17 1.384 (3)

C3—C11 1.433 (3) C16—H16 0.93

C4—C5 1.384 (3) C17—H17 0.93

C4—C12 1.494 (2) C18—C19 1.385 (3)

C5—C6 1.402 (3) C18—C23 1.401 (3)

C5—H5 0.93 C19—C20 1.387 (3)

C6—C18 1.483 (3) C19—H19 0.93

C7—C8 1.520 (3) C20—C21 1.381 (3)

C7—H7A 0.97 C20—H20 0.93

C7—H7B 0.97 C21—C22 1.388 (3)

C8—C9 1.510 (3) C22—C23 1.375 (3)

C8—H8A 0.97 C22—H22 0.93

C8—H8B 0.97 C23—H23 0.93

C9—C10 1.521 (3) C24—H24A 0.96

C9—H9A 0.97 C24—H24B 0.96

C9—H9B 0.97 C24—H24C 0.96

C10—H10A 0.97

C6—N1—C2 119.49 (16) N3—C11—C3 175.5 (2)

C2—N2—C10 124.31 (16) C17—C12—C13 118.72 (18)

C2—N2—C7 120.85 (16) C17—C12—C4 120.45 (17)

C10—N2—C7 111.43 (15) C13—C12—C4 120.82 (17)

C21—O—C24 118.06 (18) C14—C13—C12 120.5 (2)

N1—C2—N2 116.61 (16) C14—C13—H13 119.8

N1—C2—C3 120.80 (16) C12—C13—H13 119.8

N2—C2—C3 122.59 (17) C15—C14—C13 120.5 (2)

C4—C3—C2 118.24 (16) C15—C14—H14 119.7

C4—C3—C11 120.23 (17) C13—C14—H14 119.7

C2—C3—C11 120.86 (17) C14—C15—C16 119.4 (2)

C5—C4—C3 118.67 (17) C14—C15—H15 120.3

C5—C4—C12 120.53 (16) C16—C15—H15 120.3

C3—C4—C12 120.80 (16) C15—C16—C17 120.7 (2)

C4—C5—C6 119.39 (17) C15—C16—H16 119.6

C4—C5—H5 120.3 C17—C16—H16 119.6

C6—C5—H5 120.3 C16—C17—C12 120.1 (2)

N1—C6—C5 122.01 (17) C16—C17—H17 119.9

N1—C6—C18 115.73 (16) C12—C17—H17 119.9

C5—C6—C18 122.21 (17) C19—C18—C23 117.28 (17)

N2—C7—C8 103.25 (17) C19—C18—C6 122.77 (18)

N2—C7—H7A 111.1 C23—C18—C6 119.94 (17)

C8—C7—H7A 111.1 C18—C19—C20 122.18 (19)

N2—C7—H7B 111.1 C18—C19—H19 118.9

C8—C7—H7B 111.1 C20—C19—H19 118.9

H7A—C7—H7B 109.1 C21—C20—C19 119.29 (18)

(8)

supporting information

sup-5

Acta Cryst. (2002). E58, o1261–o1263

C9—C8—H8A 111.1 C19—C20—H20 120.4

C7—C8—H8A 111.1 O—C21—C20 124.92 (18)

C9—C8—H8B 111.1 O—C21—C22 115.29 (18)

C7—C8—H8B 111.1 C20—C21—C22 119.78 (18)

H8A—C8—H8B 109.1 C23—C22—C21 120.27 (19)

C8—C9—C10 103.29 (19) C23—C22—H22 119.9

C8—C9—H9A 111.1 C21—C22—H22 119.9

C10—C9—H9A 111.1 C22—C23—C18 121.19 (18)

C8—C9—H9B 111.1 C22—C23—H23 119.4

C10—C9—H9B 111.1 C18—C23—H23 119.4

H9A—C9—H9B 109.1 O—C24—H24A 109.5

N2—C10—C9 103.11 (18) O—C24—H24B 109.5

N2—C10—H10A 111.1 H24A—C24—H24B 109.5

C9—C10—H10A 111.1 O—C24—H24C 109.5

N2—C10—H10B 111.1 H24A—C24—H24C 109.5

C9—C10—H10B 111.1 H24B—C24—H24C 109.5

H10A—C10—H10B 109.1

C6—N1—C2—N2 −170.98 (16) C3—C4—C12—C17 −134.90 (19)

C6—N1—C2—C3 9.1 (3) C5—C4—C12—C13 −133.3 (2)

C10—N2—C2—N1 157.04 (19) C3—C4—C12—C13 46.5 (3)

C7—N2—C2—N1 −0.3 (3) C17—C12—C13—C14 0.4 (3)

C10—N2—C2—C3 −23.1 (3) C4—C12—C13—C14 178.97 (18)

C7—N2—C2—C3 179.58 (18) C12—C13—C14—C15 0.6 (3)

N1—C2—C3—C4 −13.4 (3) C13—C14—C15—C16 −0.6 (3)

N2—C2—C3—C4 166.75 (18) C14—C15—C16—C17 −0.4 (4)

N1—C2—C3—C11 157.27 (18) C15—C16—C17—C12 1.3 (3)

N2—C2—C3—C11 −22.6 (3) C13—C12—C17—C16 −1.3 (3)

C2—C3—C4—C5 6.8 (3) C4—C12—C17—C16 −179.90 (19)

C11—C3—C4—C5 −163.94 (18) N1—C6—C18—C19 164.92 (18)

C2—C3—C4—C12 −173.08 (17) C5—C6—C18—C19 −17.7 (3)

C11—C3—C4—C12 16.2 (3) N1—C6—C18—C23 −13.9 (3)

C3—C4—C5—C6 3.4 (3) C5—C6—C18—C23 163.53 (18)

C12—C4—C5—C6 −176.77 (17) C23—C18—C19—C20 −1.0 (3)

C2—N1—C6—C5 1.6 (3) C6—C18—C19—C20 −179.81 (19)

C2—N1—C6—C18 179.01 (16) C18—C19—C20—C21 0.3 (3)

C4—C5—C6—N1 −8.0 (3) C24—O—C21—C20 0.4 (3)

C4—C5—C6—C18 174.74 (17) C24—O—C21—C22 179.5 (2)

C2—N2—C7—C8 171.45 (18) C19—C20—C21—O 179.5 (2)

C10—N2—C7—C8 11.4 (2) C19—C20—C21—C22 0.5 (3)

N2—C7—C8—C9 −31.5 (2) O—C21—C22—C23 −179.61 (19)

C7—C8—C9—C10 40.0 (2) C20—C21—C22—C23 −0.4 (3)

C2—N2—C10—C9 −146.1 (2) C21—C22—C23—C18 −0.3 (3)

C7—N2—C10—C9 13.1 (2) C19—C18—C23—C22 1.0 (3)

C8—C9—C10—N2 −32.5 (2) C6—C18—C23—C22 179.86 (19)

(9)

supporting information

sup-6

Acta Cryst. (2002). E58, o1261–o1263 Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C23—H23···N1 0.93 2.46 2.780 (3) 100

C24—H24C···N3i 0.96 2.61 3.511 (4) 156

C15—H15···Oii 0.93 2.64 3.498 (2) 153

References

Related documents

Users see the topics discovered by the model and select words (by clicking on them) to build constraints to be added to the model. Clicking on a word will remove that word from

We had three cases of Short Anagen Syndrome (SAS). SAS is a recently described entity characterized by persistent short hair due to shorter anagen phase. It

In this paper, we claim that each class has several latent concepts and its subclasses share information with these d- ifferent concepts respectively.. Then, we pro- pose a

We propose Bilingual Tree Kernels (BTKs) to capture the structural similarities across a pair of syntactic translational equivalences and apply BTKs to sub-tree alignment along

We present a new rational model of eye movement control in reading, the cen- tral assumption of which is that eye move- ment decisions are made to obtain noisy visual information as

A Regional Inequality Index using Aggregated Data.

Implementation of the state from intervening in the market may be affected by the exercise of political economic policy (Abdul Azim Islahi, 1979, p. In

If we can use the information from both the source language and the translated text, we cannot only find the named entities missed by the English NER, but also modify