• No results found

Observation on the Positive Pell Equation

N/A
N/A
Protected

Academic year: 2020

Share "Observation on the Positive Pell Equation"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Observation on the Positive Pell Equation

10

15

2

2

x

y

M. A. Gopalan1, A. Sathya2, A. Nandhinidevi3*

1

Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India. 2

Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.

3*

PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.

Abstract: The binary quadratic Diophantine equation represented by the positive Pellian y2 15x210is analyzed for its

non-zero distinct integer solutions. A few interesting relations among the solutions are given. Employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas and parabolas.

Keywords: Binary quadratic, Hyperbola, Parabola, Pell equation, Integer solutions

I. INTRODUCTION

The binary quadratic equation of the form y2  Dx21 where D is non-square positive integer, has been selected by various

mathematicians for its non-trivial integer solutions when D takes different integral values [1-4]. For an extensive review of various

problems, one may refer [5-16]. In this communication, yet another an interesting equation given by y2 15x210 is considered and infinitely many integer solutions are obtained. A few interesting properties among the solutions are presented.

II. METHODOFANALYSIS

The Positive Pell equation representing hyperbola under consideration is

2 15 2 10

x

y (1)

The smallest positive integer solutions of (1) are

x01,y05

To obtain the other solutions of (1) , consider the pellian equation

15 1

2 2

x

y (2) whose initial solution is given by

1 ~

0 

x ,~y0 4

The general solution

x~n,y~n

of (2) is given by

n

n g

x

15 2

1

~ ,

n

n f

y

2 1

~

where

1 1

) 15 4 ( ) 15 4

(     

n n

n

f

(4 15) (4 15) , 1,0,1,...

1 1

  

 

   n

gn n n

Applying Brahmagupta lemma between

x0,y0

and

~xn,~yn

, the other integer solution of (1) are given by

n n

n f g

x

15 2

5 2

1

1  

n n

n f g

y

2 15 2

5

1  

The recurrence relations satisfied by the solutions xand yare given by xn38xn2xn10

(2)
[image:2.612.198.416.103.211.2]

Some numerical examples of xn and yn satisfying (1) are given in the Table 1 below,

Table 1: Numerical Examples

n

n

x

yn

0 9 35

1 71 275

2 559 2165

3 4401 17045

4 34649 134195

From the above table, we observe some interesting relations among the solutions which are presented below: Both xn and yn values are odd.

A. Relations Among The Solutions Are Given Below 1) xn3 8xn2  xn1  0

2) yn3 31xn2 4xn1 0

3) 8yn131xn1xn3 0

4) 8yn3 31xn3  xn1 0

5) xn2 4xn1 yn1 0

6) yn2 4yn115xn1 0

7) yn3 31yn1120xn1 0

8) 4xn2  xn1 yn2  0

9) xn3  xn1 2yn2  0

10) 4yn3 31yn215xn1 0

11) yn1 31xn2 4xn3  0

12) yn2  4xn2  xn3  0

13) yn3  xn2 4xn3  0

14) 4yn2  yn115xn2 0

15) yn3yn130xn3 0

16) yn3 4yn2 15xn2  0

17) yn3 4xn131xn2 0

18) 4xn3  xn2  yn3  0

19) 31yn2 4yn1 15xn30

20) 31yn3  yn1120xn3 0

21) 4yn3  yn2 15xn3  0

22) yn3 8yn2  yn1  0 23) 445yn3976yn231307yn10

24) 14640xn313543yn3952753yn10

25) 14640xn2 1717yn3 120787 yn10

(3)

B. Each Of The Following Expressions Represents A Nasty Number 1)

12 6x2n3 42x2n2

2)

96 6 2 4 330 2 2

8 1

  

x n x n

3)

12 6y2n2 18x2n2

4)

48 6 2 3 162 2 2

4 1

  

y n x n

5)

372 6 2 4 1278 2 2

31 1

  

y n x n

6)

1242x2n4330x2n3

7)

48 42 2 2 18 2 3

4 1

  

y n x n

8)

12 42y2n3 162x2n3

9)

48 42 2 4 1278 2 3

4 1

  

y n x n

10)

372 330 2 2 18 2 4

31 1

  

y n x n

11)

48 330 2 3 162 2 4

4 1

  

y n x n

12)

12330y2n41278x2n4

13)

60 54 2 2 6 2 3

5 1

  

y n y n

14)

480 426 2 2 6 2 4

40 1

  

y n y n

15)

60 426 2 3 54 2 4

5 1

  

y n y n

III.EACHOFTHEFOLLOWINGEXPRESSIONSREPRESENTSACUBICALINTEGER

1)

x3n4 7x3n3 3xn2 21xn1

2)

3 5 55 3 3 3 3 165 1

8 1

 

  nnn

n x x x

x

3)

y3n3 3x3n3 9xn1 3yn1

4)

3 4 27 3 3 81 1 3 2

4 1

  

  nnn

n x x y

y

5)

3 5 213 3 3 3 3 639 1

31 1

 

  nnn

n x y x

y

6)

7x3n555x3n4 21xn3165xn2

7)

7 3 3 3 3 4 21 1 9 2

4 1

  

  nnn

n x y x

y

8)

7y3n427x3n4 81xn221yn2

9)

7 3 5 213 3 4 639 2 21 3

4 1

 

  nnn

n y x y

y

10)

55 3 3 3 3 5 9 3 165 1

31 1

 

  nnn

n x x y

y

11)

55 3 4 27 3 5 81 3 165 2

4 1

 

  nnn

n x x y

y

(4)

13)

9 3 3 3 4 27 1 3 2

5 1   

  nnn

n y y y

y

14)

71 3 3 3 5 213 1 3 3

40 1

  

  nnn

n y y y

y

15)

71 3 4 9 3 5 213 2 27 3

5 1

 

  nnn

n y y y

y

IV.EACHOFTHEFOLLOWINGEXPRESSIONSREPRESENTSABIQUADRATICINTEGER

1)

x4n57x4n428x2n2 4x2n36

2)

55 220 4 48

8 1 4 2 2 2 4 4 6

4n  xn  x n  x n 

x

3)

y4n43x4n412x2n24y2n26

4)

27 4 108 24

4 1 2 2 3 2 4 4 5

4n  xn  y n  xn 

y

5)

213 4 852 186

31 1 2 2 4 2 4 4 6

4n  xn  yn  xn 

y

6)

7x4n6220x2n355x4n528x2n46

7)

7 3 12 28 24

4 1 2 2 3 2 5 4 4

4n  x n  x n  y n 

y

8)

7y4n528y2n327x4n5108x2n36

9)

7 28 213 852 24

4 1 3 2 5 4 4 2 6

4n  y n  xn  xn 

y

10)

55 3 12 220 186

31 1 2 2 4 2 6 4 4

4n  x n  xn  yn 

y

11)

220 55 27 108 24

4 1 4 2 6 2 5 4 3

2n  yn  xn  xn 

y

12)

55y4n6220y2n4213x4n6852x2n46

13)

9 36 4 30

5 1 3 2 2 2 5 4 4

4n y n  y n  y n 

y

14)

71 284 4 240

40 1 4 2 2 2 6 4 4

4n y n  yn  yn 

y

15)

71 9 284 36 30

5 1 4 2 3 2 6 4 5

4n  xn  yn  yn 

y

V. EACHOFTHEFOLLOWINGEXPRESSIONSREPRESENTSAQUINTICINTEGER

16)

x5n67x5n5 5x3n5 35x3n3 70xn110xn2

17)

5 7 55 5 5 5 3 5 275 3 3 550 1 10 3

8 1     

  nnnnn

n x x x x x

x

18)

y5n53x5n5 5y3n315x3n330xn110yn1

19)

5 6 27 5 5 5 3 4 135 3 3 270 1 10 2

4 1     

  nnnnn

n x x x x y

y

20)

5 7 213 5 5 1065 3 5 5 3 5 2130 1 10 3

31 1     

  nnnnn

n x x y x y

y

21)

7y5n755x5n635x3n5275x3n4550xn2 70xn3

22)

7 5 5 3 5 6 15 3 4 35 3 4 30 2 70 1

4 1     

  nnnnn

n x x x x y

y

(5)

24)

7 5 7 213 5 6 10653 4 35 3 5 2130 2 70 3

4 1

  

 

  nnnnn

n x x y x y

y

25)

5 6 27 5 5 5 3 4 135 3 3 270 1 10 2

4 1

  

 

  nnnnn

n x x x x y

y

26)

55 5 5 3 5 7 15 3 5 275 3 3 30 3 550 1

31 1

 

 

  nnnnn

n x x y x y

y

27)

55 5 6 27 5 7 135 3 5 275 3 4 270 3 550 2

4 1

 

 

  nnnnn

n x x y x y

y

28)

55y5n7213x5n71065x3n5275y3n52130xn3550yn3

29)

9 5 5 5 6 5 3 4 45 3 3 90 1 10 2

5 1

 

 

  nnnnn

n y y y y y

y

30)

71 5 5 5 7 355 3 3 5 3 5 710 1 10 3

40 1

 

 

  nnnnn

n y y y y y

y

31)

71 5 6 9 5 7 355 3 4 45 3 5 710 2 90 3

5 1

 

 

  nnnnn

n y y y y y

y

VI. REMARKABLEOBSERVATIONS

1) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas

[image:5.612.106.511.339.715.2]

which are presented in Table 2 below:

Table 2: Hyperbolas

S.NO Hyperbola (X,Y)

1 5 2 3 2 20

Y

X

xn2 7xn1 , 9xn1 xn2

2 5 2 3 2 1280

Y

X

xn355xn1 , 71xn1xn3

3 5 2 3 2 20

Y

X

yn13xn1 , 5xn1  yn1

4 5 2 3 2 320

Y

X

yn2 27xn1 , 35xn1 yn2

5 5X23Y2 19220

3 1 1

3 213  , 275  

  n nn

n x x y

y

6 5 2 3 2 20

Y

X

7xn355xn2 , 71xn29xn3

7 5 2 3 2 320

Y

X

7

y

n1

3

x

n2

,

5

x

n2

9

y

n1

8 5 2 3 2 20

Y

X

7yn227xn2 ,35xn29yn2

9 5 2 3 2 320

Y

X

7yn3213xn2,275xn29yn3

10 5 23 2 19220

Y

X

55yn13xn3 ,5xn371yn1

11 5 2 3 2 320

Y

X

55yn227xn3,35xn371yn2

12 5 2 3 2 20

Y

X

55yn3213xn3,275xn371yn3

13 11163 2 20 2 71443200

Y

X

71yn1yn3 ,55yn1yn3

14 3 2 5 2 300

Y

X

9yn1 yn2 , yn27yn1

15 3 2 5 2 300

Y

(6)
[image:6.612.106.508.115.434.2]

2) Employing linear combination among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in Table 3 below

Table 3: Parabolas

S.NO Parabola (X,Y)

1 3 2 5 10

X

Y

x2n3 7x2n2 , 9xn1 xn3

2 3 2 40 640

X

Y

x2n4 55x2n2 , 71xn1xn3

3 3 2 5 10

X

Y

y2n2 3x2n2 , 5xn1 yn1

4 3 2 20 160

X

Y

y2n3 27x2n2 ,35xn1 yn2

5 3 2 155 9610

X

Y

y2n4213x2n2 ,275xn1yn3

6 3 2 5 10

X

Y

7x2n455x2n3,71xn29xn3

7 3 2 20 160

X

Y

7y2n23x2n3 , 5xn2 9yn1

8 3 2 5 10

X

Y

7y2n327x2n3,35xn29yn2

9 3 2 20 160

X

Y

7y2n4213x2n3,275xn29yn3

10 3 2 155 9610

X

Y

55y2n23x2n4 ,5xn371yn1

11 3 2 20 160

X

Y

55y2n327x2n4,35xn371yn2

12 3 2 5 10

X

Y

55y2n4213x2n4,275xn371yn3

13 3 2 5 10

X

Y

9

y

2n2

y

2n3

,

y

n2

7

y

n1

14 2 22326 1786080

X

Y

71y2n2y2n4 ,55yn1yn3

15 2 3 30

X

Y

71y2n39y2n4 ,7yn355yn2

VII. CONCLUSION

In this paper, we have presented infinitely many integer solutions for the positive Pell equation y215x210 . As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell equations and determine their integer solutions along with suitable properties.

REFERENCES

[1] L.E. Dickson, History of Theory of numbers, Chelsea Publishing Company, volume-II, (1952) New York. [2] L.J. Mordel, Diophantine Equations, Academic Press, (1969) New York.

[3] S.J. Telang, Number Theory, Tata McGraw Hill Publishing Company Limited, (2000) New Delhi.

[4] D.M. Burton, Elementary Number Theory, Tata McGraw Hill Publishing Company Limited, (2002) New Delhi.

[5] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, On the integral solutions of the binary quadratic Equation X24(K21)Y24t, Bulletin of Mathematics and Statistics Research, 2(1)(2014), 42-46.

[6] S.Vidhyalakshmi, A.Kavitha and M.A.Gopalan, On the binary quadratic Diophantine Equation x23xyy233x0, International Journal of Scientific Engineering and Applied Science, 1(4)(2015), 222-225.

[7] M.A.Gopalan, S.Vidhyalakshmi and A. Kavitha, Observations on the Hyperbola 10y23x213,Archimedes J. Math., 3(1) (2013), 31-34. [8] S.Vidhyalakshmi, A.Kavitha and M.A.Gopalan, Observations on the Hyperbola ax2(a1)y23a1, Discovery, 4(10) (2013),22-24.

[9] S.Vidhyalakshmi, A.Kavitha and M.A.Gopalan, Integral points on the Hyperbola x24xyy215x0,Diophantus J.Maths,1(7)(2014), 338-340. [10] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, On the integral solutions of the binary quadratic equation x215y211t,Scholars Journal of Engineering

and Technology, 2(2A) (2014), 156-158.

[11] A.Kavitha and V.Kiruthika, On the positive Pell equation y219x220,to appear in International Journal of Emerging Technologies in Engineering Research, 5(3) (2017), 71-74.

(7)

[13] K.Meena, M.A.Gopalan, T.Swetha, On the negative Pell equation y240x24,International Journal of Emerging Technologies in Engineering Research, 5(1)(2017), 6-11.

[14] S.Ramya and A.Kavitha, On the positive Pell equation y290x231,Journal of Mathematics and Informatics, (11)(2017), 111-117. [15] Shreemathi Adiga, N. Anusheela and M.A. Gopalan, On the Negative Pellian Equation 2 20 2 31

x

y , International Journal of Pure and Applied

Mathematics, 119(14) (2018), 199-204.

[16] Shreemathi Adiga, N. Anusheela and M.A. Gopalan, Observations on the Positive Pell Equation 2 20

2 1

x

y , International Journal of Pure and Applied

Mathematics, 120(6) (2018), 11813-11825.

Figure

Table 1: Numerical Examples
Table 2: Hyperbolas
Table 3: Parabolas

References

Related documents

The wind turbine was created to leverage this free energy resource by converting the kinetic energy in the wind into mechanical power that runs a generator to

In addition to using artificial intelligence in the supply chain, its presence in financial technology can be noted, including advanced machine learning software

1) SCT-013-XXX: The SCT-013 is a series of non-invasive current transformer sensor used for measuring alternating current. Being split core type, they are ideal

the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell Equations and determine their integer solutions

As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of equations and determine their integer solutions along with suitable

As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of equations and determine their integer solutions along with

x 2  6 2  3 As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell Equations and determine their

As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of Pell Equations and determine their integer