• No results found

{3 [(E) (5 Bromo 2 oxidophen­yl)methyl­amino]­propanoato κ3O,N,O′}(1,10 phenanthroline κ2N,N′)­copper(II) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "{3 [(E) (5 Bromo 2 oxidophen­yl)methyl­amino]­propanoato κ3O,N,O′}(1,10 phenanthroline κ2N,N′)­copper(II) dihydrate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m156

Liuet al. [Cu(C

10H10BrNO3)(C12H8N2)]2H2O doi:10.1107/S1600536806052500 Acta Cryst.(2007). E63, m156–m158

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

{3-[(

E

)-(5-Bromo-2-oxidophenyl)methyl-amino]propanoato-

j

3

O

,

N

,

O

000

}(1,10-phen-anthroline-

j

2

N

,

N

000

)copper(II) dihydrate

Zheng Liu,a,bShu-Hua Zhang,b* Xiao-Zhen Feng,bGuang-Zhao Liband Yuan-Bin Lina*

aCollege of Chemistry, Xiangtan University,

Xiangtan, Hunan 411105, People’s Republic of China, andbKey Laboratory of Nonferrous Metal Materials and Processing Technology (Guilin University of Technology), Ministry of Education, Guilin, 541004, People’s Republic of China

Correspondence e-mail: lisa4.6@163.com, zsh720108@21cn.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.014 A˚

Rfactor = 0.057

wRfactor = 0.122

Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 30 October 2006 Accepted 4 December 2006

#2007 International Union of Crystallography All rights reserved

In the title complex, [Cu(L)(phen)]2H2O, {LH2 = 3-[(E

)-(5-bromo-2-oxidophenyl)methyleneamino]propanoic acid

(C10H10BrNO3) and phen = 1,10-phenanthroline (C12H8N2)},

the CuII atom is coordinated in a slightly distorted

square-pyramidal geometry by two O atoms and one N atom from an

L2ligand, and two N atoms from a phen ligand. One of the

carboxylate O atoms is in the apical position. In the crystal structure, a two-dimensional supramolecular network is

formed through intermolecular N—H O and O—H O

hydrogen bonds.

Comment

Over the past few decades, significant progress has been made in understanding the coordination chemistry of the copper(II) complexes of various Schiff base ligands (Casella & Gullotti, 1981; Wagner & Walker, 1983; Xiaoet al., 2006). Most model studies of metal complexes of Schiff base ligands containing salicylaldehyde and amino acids have focused on the binding mode of these ligands (Nakagimaet al.1989, Kettmannet al., 1993). Crystal structures of the complexes obtained demon-strate that the Schiff base ligands act in a tridentate mode,

coordinating through the phenolate O, imine N and

carboxylate O atoms. Our research group is interested in tridentate reduced Schiff bases, as they are more flexible

because the C N bond of the Schiff base has been reduced,

and this helps to overcome the ligand instability.

The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The CuII atom is coordinated by two O atoms and one N atom from an

L2ligand and two N atoms from a phen ligand with atom O2

in the apical position, giving a slightly distorted

square-pyra-midal geometry [LH2 =

(2)

crystal structure, a two-dimensional network is formed via

intermolecular N—H O and O—H O hydrogen bonds

(Table 2 and Fig. 2).

Experimental

A solution of 3-aminopropionic acid (2 mmol, 0.178 g) and potassium hydroxide (2 mmol, 0.112 g) in distilled water (20 ml) was slowly added to a solution of 5-bromo-2-hydroxybenzaldehyde (2 mmol, 0.404 g) in methanol (10 ml). The mixture was stirred for 30 min at

room temperature, then the solution was added to solid sodium borohydride (2 mmol, 0.076 g) and stirred for 2 h until the yellow solution became colourless. This solution was slowly added to a solution of copper(II) nitrate (1 mmol, 0.291 g) in distilled water (10 ml). The mixture was stirred and refluxed for 4 h at room temperature. Phen (2 mmol, 0.36 g) was added and the reaction continued for a further 2 h. The solution was filtered and the filtrate was left to stand at room temperature. Blue prisms suitable for X-ray diffraction were obtained in a yield of 66% (based on copper nitrate). Analysis found: C 47.69, H 4.23, N 7.57, Cu 11.49%; C22H22BrCuN3O5 requires: C 47.88, H 4.02, N 7.61, Cu 11.52%.

Crystal data

[Cu(C10H10BrNO3)(C12H8N2)]

-2H2O Mr= 551.88

Monoclinic,Pn a= 11.120 (2) A˚

b= 5.3808 (11) A˚

c= 18.393 (4) A˚ = 93.47 (3)

V= 1098.5 (4) A˚3

Z= 2

Dx= 1.668 Mg m 3

MoKradiation = 2.85 mm1

T= 293 (2) K Prism, blue

0.180.080.06 mm

Data collection

Bruker SMART CCD diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.628,Tmax= 0.848

5630 measured reflections 3605 independent reflections 2695 reflections withI> 2(I)

Rint= 0.039

max= 26.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.057 wR(F2) = 0.122 S= 0.97 3605 reflections 309 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0239P)2

+ 4.2874P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.007 max= 0.77 e A˚

3

min=0.62 e A˚ 3

Absolute structure: Flack (1983), 1462 Friedel pairs

Flack parameter: 0.00 (1)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A O2i

1.01 (9) 1.88 (9) 2.841 (9) 157 (7) N1—H1A O3i

1.01 (9) 2.54 (9) 3.349 (12) 136 (6) O1W—H1WB O1 0.84 (6) 1.96 (7) 2.800 (9) 178 (9) O1W—H1WA O2Wii

0.84 (6) 2.03 (5) 2.865 (13) 172 (18) O2W—H2WA O1Wiii

0.84 (6) 2.12 (5) 2.926 (13) 162 (6) O2W—H2WB O3 0.84 (7) 1.88 (3) 2.667 (13) 157 (8)

Symmetry codes: (i)x;y1;z; (ii)xþ1

2;yþ2;z12; (iii)x12;yþ1;zþ12.

Water H atoms and the amido H atom were located in difference Fourier maps. They were refined isotropically but a distance restraint [0.84 (1) A˚ ] was applied to the O—H distances. All other H atoms were positioned geometrically and were treated as riding atoms, with C—H = 0.93–0.97 A˚ andUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication:SHELXTL(Bruker, 2001).

metal-organic papers

Acta Cryst.(2007). E63, m156–m158 Liuet al. [Cu(C

[image:2.610.45.295.71.260.2]

10H10BrNO3)(C12H8N2)]2H2O

m157

Figure 1

[image:2.610.58.283.309.592.2]

The molecular structure of (I), showing 30% probability displacement ellipsoids. The dashed lines indicate hydrogen bonds.

Figure 2

(3)

We acknowledge financial support by the Key Laboratory of Nonferrous Metal Materials and New Processing Tech-nology, Ministry for Education, China.

References

Bruker (2001).SAINT(Version 6.45),SMART(Version 5.0) andSHELXTL

(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Casella, L. & Gullotti, M. (1981).J. Am. Chem. Soc.103, 6338–6347. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Kettmann, V., Fresˇova´, E., Bla´hova´, M. & Kra¨tsma´r-S˘mogrovicˇ, J. (1993).Acta Cryst.C49, 1932–1934.

Nakagima, K., Kojima, M., Foriumi, K., Saito, K. & Fujita, J. (1989).Bull. Chem. Soc. Jpn,62, 760–767.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Wagner, M. R. & Walker, F. A. (1983).Inorg. Chem.22, 3021–3028. Xiao, Y., Zhang, S. H., Gao, S. X. & Sun, C. (2006).Anal. Sci.22, x217–

x218.

metal-organic papers

m158

Liuet al. [Cu(C

(4)

supporting information

sup-1

Acta Cryst. (2007). E63, m156–m158

supporting information

Acta Cryst. (2007). E63, m156–m158 [https://doi.org/10.1107/S1600536806052500]

{3-[(

E

)-(5-Bromo-2-oxidophenyl)methylamino]propanoato-

κ

3

O

,

N

,

O

}(1,10-phenanthroline-

κ

2

N

,

N

)copper(II) dihydrate

Zheng Liu, Shu-Hua Zhang, Xiao-Zhen Feng, Guang-Zhao Li and Yuan-Bin Lin

{3-[(E)-(5-Bromo-2-oxidophenyl)methyleneamino]propanoato-k3O,N,O}(1,10-

phenanthroline-k2N,N)copper(II) dihydrate

Crystal data

[Cu(C10H10BrNO3)(C12H8N2)]·2H2O Mr = 551.88

Monoclinic, Pn

Hall symbol: P -2yac

a = 11.120 (2) Å

b = 5.3808 (11) Å

c = 18.393 (4) Å

β = 93.47 (3)°

V = 1098.5 (4) Å3 Z = 2

F(000) = 558

Dx = 1.668 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2006 reflections

θ = 2.1–26.0°

µ = 2.85 mm−1 T = 293 K Prism, blue

0.18 × 0.08 × 0.06 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.628, Tmax = 0.848

5630 measured reflections 3605 independent reflections 2695 reflections with I > 2σ(I)

Rint = 0.039

θmax = 26.0°, θmin = 2.1° h = −13→13

k = −6→5

l = −21→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.122 S = 0.97 3605 reflections 309 parameters 8 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0239P)2 + 4.2874P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.007

Δρmax = 0.77 e Å−3

Δρmin = −0.62 e Å−3

Absolute structure: Flack (1983), 1462 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2007). E63, m156–m158 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 1.11996 (9) 0.3852 (2) 0.34870 (6) 0.0714 (4)

C1 0.7947 (8) 0.5843 (16) 0.1871 (5) 0.036 (2)

C2 0.8970 (8) 0.7341 (17) 0.1929 (5) 0.044 (2)

H2 0.9014 0.8718 0.1626 0.053*

C3 0.9915 (9) 0.6836 (19) 0.2422 (6) 0.049 (3)

H3 1.0577 0.7893 0.2463 0.059*

C4 0.9877 (9) 0.4756 (18) 0.2855 (5) 0.044 (2)

C5 0.8878 (8) 0.3213 (18) 0.2805 (5) 0.041 (2)

H5 0.8859 0.1814 0.3100 0.049*

C6 0.7917 (8) 0.3724 (15) 0.2324 (5) 0.035 (2)

C7 0.6846 (8) 0.2011 (16) 0.2260 (5) 0.037 (2)

H7A 0.6828 0.1170 0.1793 0.044*

H7B 0.6928 0.0758 0.2638 0.044*

C8 0.5669 (9) 0.454 (2) 0.3050 (5) 0.050 (2)

H8A 0.6295 0.5794 0.3096 0.060*

H8B 0.5852 0.3283 0.3418 0.060*

C9 0.4473 (9) 0.5731 (17) 0.3192 (5) 0.047 (2)

H9A 0.3831 0.4594 0.3037 0.056*

H9B 0.4434 0.5984 0.3712 0.056*

C10 0.4257 (9) 0.8166 (17) 0.2813 (5) 0.047 (2)

C11 0.2886 (9) 0.2955 (18) 0.1533 (5) 0.045 (2)

H11 0.3236 0.1870 0.1878 0.054*

C12 0.1653 (9) 0.276 (2) 0.1343 (6) 0.056 (3)

H12 0.1197 0.1566 0.1567 0.067*

C13 0.1111 (9) 0.430 (2) 0.0832 (5) 0.055 (3)

H13 0.0290 0.4180 0.0706 0.066*

C14 0.1827 (8) 0.6092 (18) 0.0498 (5) 0.047 (2)

C15 0.1352 (9) 0.781 (2) −0.0034 (5) 0.054 (3)

H15 0.0534 0.7782 −0.0173 0.065*

C16 0.2079 (10) 0.949 (2) −0.0339 (5) 0.055 (3)

H16 0.1754 1.0569 −0.0694 0.066*

C17 0.3329 (9) 0.9639 (18) −0.0125 (5) 0.043 (2) C18 0.4120 (11) 1.1323 (17) −0.0412 (5) 0.054 (3)

H18 0.3842 1.2452 −0.0766 0.065*

(6)

supporting information

sup-3

Acta Cryst. (2007). E63, m156–m158

H19 0.5831 1.2433 −0.0369 0.069*

C20 0.5702 (9) 0.9635 (17) 0.0361 (5) 0.043 (2)

H20 0.6509 0.9668 0.0525 0.052*

C21 0.3805 (8) 0.8007 (16) 0.0397 (4) 0.034 (2)

C22 0.3058 (8) 0.6197 (15) 0.0722 (4) 0.0318 (19) Cu1 0.53605 (7) 0.57406 (18) 0.14968 (5) 0.0334 (3)

N1 0.5685 (7) 0.3386 (13) 0.2325 (4) 0.0371 (17)

N2 0.3577 (6) 0.4658 (13) 0.1233 (4) 0.0356 (17)

N3 0.4985 (6) 0.8001 (14) 0.0644 (4) 0.0395 (18)

O1 0.7056 (5) 0.6288 (11) 0.1368 (3) 0.0435 (15)

O2 0.4696 (6) 0.8527 (10) 0.2200 (3) 0.0424 (15)

O3 0.3679 (11) 0.9784 (15) 0.3112 (5) 0.115 (4)

O1W 0.8120 (8) 0.4982 (17) 0.0081 (4) 0.069 (2)

O2W 0.3434 (9) 1.0079 (17) 0.4542 (6) 0.079 (3)

H2WA 0.324 (7) 0.878 (8) 0.476 (4) 0.02 (2)*

H2WB 0.34 (2) 0.958 (18) 0.411 (2) 0.08 (12)*

H1A 0.512 (8) 0.190 (16) 0.229 (5) 0.04 (2)*

H1WA 0.816 (12) 0.639 (8) −0.011 (5) 0.10 (5)*

H1WB 0.781 (9) 0.534 (16) 0.047 (3) 0.06 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2007). E63, m156–m158

N2 0.036 (4) 0.030 (4) 0.042 (4) −0.001 (3) 0.004 (3) 0.007 (3) N3 0.033 (4) 0.051 (5) 0.035 (4) 0.006 (4) 0.005 (3) −0.002 (4) O1 0.023 (3) 0.057 (4) 0.051 (4) 0.003 (3) 0.005 (3) 0.011 (3) O2 0.056 (4) 0.033 (3) 0.039 (3) −0.004 (3) 0.014 (3) 0.004 (3) O3 0.197 (11) 0.056 (5) 0.103 (7) 0.055 (6) 0.098 (8) 0.029 (5) O1W 0.074 (6) 0.093 (7) 0.040 (4) 0.009 (5) 0.011 (4) −0.007 (4) O2W 0.078 (6) 0.079 (7) 0.083 (7) 0.008 (5) 0.029 (5) 0.012 (5)

Geometric parameters (Å, º)

Br1—C4 1.883 (10) C13—C14 1.412 (14)

C1—O1 1.336 (10) C13—H13 0.9300

C1—C2 1.393 (12) C14—C22 1.407 (12)

C1—C6 1.414 (11) C14—C15 1.424 (13)

C2—C3 1.372 (13) C15—C16 1.357 (14)

C2—H2 0.9300 C15—H15 0.9300

C3—C4 1.376 (13) C16—C17 1.424 (14)

C3—H3 0.9300 C16—H16 0.9300

C4—C5 1.385 (13) C17—C21 1.383 (12)

C5—C6 1.373 (12) C17—C18 1.389 (14)

C5—H5 0.9300 C18—C19 1.354 (14)

C6—C7 1.505 (11) C18—H18 0.9300

C7—N1 1.499 (11) C19—C20 1.394 (13)

C7—H7A 0.9700 C19—H19 0.9300

C7—H7B 0.9700 C20—N3 1.315 (11)

C8—N1 1.472 (11) C20—H20 0.9300

C8—C9 1.513 (12) C21—N3 1.362 (11)

C8—H8A 0.9700 C21—C22 1.434 (12)

C8—H8B 0.9700 C22—N2 1.354 (10)

C9—C10 1.496 (12) Cu1—O1 1.937 (6)

C9—H9A 0.9700 Cu1—N1 1.997 (7)

C9—H9B 0.9700 Cu1—N3 2.009 (7)

C10—O3 1.231 (11) Cu1—N2 2.096 (7)

C10—O2 1.270 (11) Cu1—O2 2.141 (6)

C11—N2 1.336 (11) N1—H1A 1.01 (9)

C11—C12 1.399 (13) O1W—H1WA 0.84 (6)

C11—H11 0.9300 O1W—H1WB 0.84 (7)

C12—C13 1.368 (15) O2W—H2WA 0.84 (6)

C12—H12 0.9300 O2W—H2WB 0.84 (6)

O1—C1—C2 121.2 (8) C16—C15—C14 120.8 (9)

O1—C1—C6 120.6 (8) C16—C15—H15 119.6

C2—C1—C6 118.0 (8) C14—C15—H15 119.6

C3—C2—C1 121.7 (9) C15—C16—C17 121.3 (9)

C3—C2—H2 119.2 C15—C16—H16 119.3

C1—C2—H2 119.2 C17—C16—H16 119.3

C2—C3—C4 119.6 (9) C21—C17—C18 117.0 (9)

(8)

supporting information

sup-5

Acta Cryst. (2007). E63, m156–m158

C4—C3—H3 120.2 C18—C17—C16 124.2 (9)

C3—C4—C5 120.1 (9) C19—C18—C17 119.9 (9)

C3—C4—Br1 121.1 (7) C19—C18—H18 120.0

C5—C4—Br1 118.7 (8) C17—C18—H18 120.0

C6—C5—C4 120.9 (9) C18—C19—C20 119.5 (9)

C6—C5—H5 119.6 C18—C19—H19 120.2

C4—C5—H5 119.6 C20—C19—H19 120.2

C5—C6—C1 119.7 (8) N3—C20—C19 122.5 (9)

C5—C6—C7 120.7 (8) N3—C20—H20 118.8

C1—C6—C7 119.6 (8) C19—C20—H20 118.8

N1—C7—C6 111.9 (7) N3—C21—C17 123.6 (8)

N1—C7—H7A 109.2 N3—C21—C22 115.4 (7)

C6—C7—H7A 109.2 C17—C21—C22 121.0 (9)

N1—C7—H7B 109.2 N2—C22—C14 123.0 (8)

C6—C7—H7B 109.2 N2—C22—C21 118.1 (8)

H7A—C7—H7B 107.9 C14—C22—C21 118.8 (8)

N1—C8—C9 113.2 (8) O1—Cu1—N1 93.3 (3)

N1—C8—H8A 108.9 O1—Cu1—N3 88.3 (3)

C9—C8—H8A 108.9 N1—Cu1—N3 177.5 (3)

N1—C8—H8B 108.9 O1—Cu1—N2 158.2 (3)

C9—C8—H8B 108.9 N1—Cu1—N2 97.2 (3)

H8A—C8—H8B 107.8 N3—Cu1—N2 80.7 (3)

C10—C9—C8 114.1 (8) O1—Cu1—O2 110.0 (3)

C10—C9—H9A 108.7 N1—Cu1—O2 92.1 (3)

C8—C9—H9A 108.7 N3—Cu1—O2 89.1 (2)

C10—C9—H9B 108.7 N2—Cu1—O2 88.8 (3)

C8—C9—H9B 108.7 C8—N1—C7 109.8 (7)

H9A—C9—H9B 107.6 C8—N1—Cu1 114.3 (6)

O3—C10—O2 121.8 (9) C7—N1—Cu1 111.6 (5)

O3—C10—C9 119.0 (8) C8—N1—H1A 111 (5)

O2—C10—C9 119.2 (8) C7—N1—H1A 98 (5)

N2—C11—C12 121.8 (9) Cu1—N1—H1A 112 (5)

N2—C11—H11 119.1 C11—N2—C22 118.3 (8)

C12—C11—H11 119.1 C11—N2—Cu1 130.8 (6)

C13—C12—C11 120.7 (9) C22—N2—Cu1 110.4 (5)

C13—C12—H12 119.7 C20—N3—C21 117.5 (8)

C11—C12—H12 119.7 C20—N3—Cu1 127.7 (6)

C12—C13—C14 118.5 (9) C21—N3—Cu1 114.4 (6)

C12—C13—H13 120.8 C1—O1—Cu1 125.1 (6)

C14—C13—H13 120.8 C10—O2—Cu1 126.5 (6)

C22—C14—C13 117.6 (9) H1WA—O1W—H1WB 101 (9)

C22—C14—C15 119.3 (9) H2WA—O2W—H2WB 101 (9)

C13—C14—C15 123.1 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(9)

supporting information

sup-6

Acta Cryst. (2007). E63, m156–m158

N1—H1A···O3i 1.01 (9) 2.54 (9) 3.349 (12) 136 (6)

O1W—H1WB···O1 0.84 (6) 1.96 (7) 2.800 (9) 178 (9)

O1W—H1WA···O2Wii 0.84 (6) 2.03 (5) 2.865 (13) 172 (18)

O2W—H2WA···O1Wiii 0.84 (6) 2.12 (5) 2.926 (13) 162 (6)

O2W—H2WB···O3 0.84 (7) 1.88 (3) 2.667 (13) 157 (8)

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical