• No results found

Histone Modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification

N/A
N/A
Protected

Academic year: 2020

Share "Histone Modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Journal of Biological Sciences and Medicine

Available online at www.jbscim.com

ISSN: 2455-5266

45

Review Article

Open Access

Histone Modifications by different histone modifiers: insights into

histone writers and erasers during chromatin modification

Rakesh Srivastava

1

*, Uma Maheshwar Singh

2

and Neeraj Kumar Dubey

3

1Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan,

Republic of Korea

2International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Patancheru, Telangana, India 3Department of Biotechnology, Central University of Rajasthan, Ajmer, Rajasthan, India

*Corresponding author: raakeshshrivastava@yahoo.com

ARTICLE INFO ABSTRACT

Article History: Received

8 March 2016

Accepted

24 March 2016

Available online

31 March 2016

A major mechanism regulating eukaryotic cell gene expression is dynamic DNA packaging into strings of nucleosomes. Nucleosomes and their histone components are usually identified as a negative regulatory to gene transcription. The complex regulation of chromatin structure and nucleosome assembly directs accessibility of the RNA polymerase II transcription machinery to DNA that consequently leads to gene transcription. Post-translational modifications of histone proteins are central to the regulation of chromatin structure, playing essential functions in modulating the activation and repression of gene transcription. This review highlights the different types of histone modifications and their different types of modifiers that influence chromatin structure during transcription.

Key words:

Epigenetics; Chromatin; Histone modification; Post-translational modifications; Transcription

Copyright: © 2016 Srivastava et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

The term “Epigenetics”, which was first coined by C. H. Waddington in 1942, was adapted from the Greek word “epigenesis” which initially defined the influence of genetic processes on development (Waddington 2012). The term “epigenetics” is described as the study of heritable changes in gene expression by modifying chromatin structure that takes place independently or in the absence of alteration in the original DNA sequence. In the other words, a change in phenotype without a change in genotype. During Cold Spring Harbor meeting in 2008, a consensus definition of the

epigenetics was formulated as "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence" (Berger et al. 2009).

(2)

46 (DNMTs). DNA methylation patterns are established and maintained by three main enzymes, such as DNMT3A and DNMT3B are de novo methyltransferases and DNMT1 is mostly accountable for sustaining DNMT and confirms that CpG methylation forms are copied significantly in the course of each cell division (Klose and Bird 2006).

The several kinds of chemical modifications occur on the histones at different amino acid residues, which mainly include acetylation, phosphorylation, methylation and ubiquitylation, as well as other modifications such as ADP ribosylation, β-N-acetylglucosaminylation, butyrylation, citrullination, crotonylation, formylation, hydroxyisobutyrylation, hydroxylation, malonylation, proline isomerization, propionylation, sumoylation and succinlylation (Huang et al. 2014). Identification of 130 various histone post-translational modifications sites on the histones of humans further reveals a different paradigm of their roles and advancing the more complication of chromatin-based related pathways (Tan et al. 2011). These histone modifications commonly occur within the histone amino-terminal or carboxy-terminal tails extended from the surface of the nucleosome but they also exist in their globular core regions of histone proteins (Bannister and Kouzarides 2011). Interestingly, dynamic and reversible histone modifications are not only essential for gene regulation and chromosome structure, but also important for co-transcriptional interactions to RNA polymerase II carboxy terminal domain (RNAPII CTD) (Srivastava and Ahn 2015).

Writers, readers and erasers of Histone

modifications

Post-translational modifications of histone play a major role in the regulation of the gene

(3)

47

Fig. 1. Extracellular or intracellular inputs influence the histone modifiers to modify the chromatin structure. There are two types of chromatin, heterochromatin and euchromatin. Heterochromatin is highly condensed and transcriptionally inactive chromatin region, whereas euchromatin is transcriptionally active lightly packed chromatin region. Cellular metabolites such as acetyl coenzyme A (acetyl-CoA), adenosine triphosphate (ATP), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD+), or S-adenosylmethionine (SAM) regulate gene expression by contributing as cofactors for histone

modifiers.

Histone Acetylation

Histone acetylation is first reported in 1964 (Allfrey et al. 1964) and highly dynamically regulated by two groups of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) (Fig. 2) (Zentner and Henikoff 2013). HAT enzymes catalyze the transfer of an acetyl group from acetyl coenzyme A (acetyl-CoA) to ε-amino group of a histone lysine residue. This transfer neutralizes the positive charge of the histone lysine residue and weakens the interactions with negatively charged nucleosomal DNA and adjacent nucleosomes, resulting in an open chromatin structure that increases the DNA accessibility to the transcriptional proteins or machineries (Zentner and Henikoff 2013). There are two main types of

HATs: HAT-A and HAT-B. The type-A HATs are a more diverse family of enzymes than the type-B HATs (Bannister and Kouzarides 2011; Steunou et al. 2014). The type HAT-A proteins are present in the nucleus and type HAT-B is predominantly cytoplasmic. HATs can be classified into distinct groups: the GNATs (Gcn5-related N-acetyltransferases), the MYST HATs (MOZ, Ybf2/Sas3, Sas2, and Tip60), the CBP/p300 (CREB-binding protein), SRC family (Steroid Receptor Coactivator, also known as p160 family) and others (such as yeast TAF1 and NUT1) (Steunou et al. 2014).

(4)

48 (Bannister and Kouzarides 2011). On the basis of sequence homology and phylogenetic analysis, HDACs are classified into four groups: Groups I and II comprising enzymes that are homologous to yeast Rpd3 and Hda1, respectively. Group III, also

referred to as sirtuins, is homologous to yeast Sir2, and Group IV has only a single member, human HDAC11 or Drosophila HDACX (Steunou et al. 2014).

(5)

49 Histone Methylation

Histone methylation is also a reversible process and mainly takes place on the nitrogen side chain of lysines and arginines. Histone methylation is dynamically regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs) (Fig. 2). Histone methylation does not modify the charge of the histone protein, but addition of methyl groups to histone residues creates steric bulk and eliminates a potential hydrogen bond donor, thus disturbing the interactions between DNA and histones to disrupt the chromatin structure (Bannister and Kouzarides 2011; Srivastava and Ahn 2015). Histone methylation on lysine and arginine residues displays different modification patterns: lysines can be mono methylated, di methylated, or trimethylated on ε-amine group, whereas, arginines can be monomethylated, symmetrically dimethylated or asymmetrically dimethylated on their guanidinyl group (Greer and Shi 2012).

Several histone lysine methyltransferases (KMTs) have been identified and SUV39H1 was first to be recognized that targets histone H3 at lysine 9 (H3K9). There are three lysine KMTs in

Saccharomyces cerevisiae (KMT2/Set1,

KMT3/Set2 and KMT4/Dot1) and eight (KMT1 to 8) in mammals (Allis et al. 2007; Black et al. 2012). Interestingly, all of the KMTs that methylate N-terminal lysines comprise SET domain which possesses the enzymatic activity except the Dot1 enzyme, which does not encompass SET domain. Histone KMTs catalyze S-adenosylmethionine (SAM) and the transfer of a methyl to a lysine's ε-amino group (Black et al. 2012). Histone lysine methylations are associated with activation for example histone H3 methylation at lysine 4 (H3K4me), histone H3 methylation at lysine 36 (H3K36me) and repression for example histone H3 methylation at lysine 9 (H3K9me) of transcription (Kouzarides 2007; Black et al. 2012; Srivastava and Ahn 2015).

Two types of arginine methyltransferase are identified, the type-I and type-II enzymes, and together they form large protein family comprising of 11 proteins, which are known as protein

arginine N-methyltransferases (PRMTs) (Bannister and Kouzarides 2011; Greer and Shi 2012). PRMTs transfer a methyl group to the ω-guanidino group of arginine from SAM. The enzyme type-I produces arginine monomethylation (Rme1) and asymmetrically arginine dimethylation (Rme2as), while the enzyme type-II creates Rme1 and symmetrically arginine dimethylation (Rme2s) (Izzo and Schneider 2010).

(6)

50 Histone Phosphorylation

Phosphorylation of proteins is one of the most common posttranslational modifications and histones comprise specific phosphorylation sites present on both the core histones and linker histone H1. Similarly to histone acetylation and methylation, histones phosphorylation is a highly dynamic process (Fig. 2). The phosphorylation of histones predominantly occurs on serines, threonines and tyrosines, whereas phosphorylation at histidine of the histone H4 is also reported. In particular, the histone phosphorylation sites are present within the N- or C-terminal tail. The phosphorylation sites within the core regions of histones proteins are also found (Banerjee and Chakravarti 2011). The phosphorylation of histones adds a significant negative charge to the histones, which affects electrostatic interactions in chromatin and facilitates the similar role to acetylation of histone in modulating chromatin dynamics (Banerjee and Chakravarti 2011). The histones are phosphorylated by protein kinase that act as a writer (Rossetto et al. 2012; Mehta and Jeffrey 2015). There are several broad ranges of protein kinases that phosphorylate histone but, their classification is not yet well established like histone acetylation and histone methylation, and also with respect to histone phosphorylation modification. Protein kinases contain a characteristic kinase domain, which catalyze the transfer of gamma-phosphate group from ATP to the hydroxyl group of the target side chain of amino acid. Histone phosphorylation occurs during several cellular responses such as DNA damage and repair, transcription and chromatin compaction during cell division and apoptosis for example, the phosphorylation of histone H3 at serine 28 (H3S28P) is modified by Aurora B kinase (yeast homolog Ipl1) during chromosome condensation (Goto et al. 2002). Protein kinase MSK1 phosphorylates histone H2A at serine 1 (H2AS1P) and inhibits transcription (Zhang et al. 2004). Protein kinases such as AMPK, PKCβ, JAK2, or CDK2 also phosphorylate histone during transcription (Rossetto et al. 2012). Protein phosphatases that act as an eraser and catalyze the

removal of phosphate groups from phosphorylated histones, for example, histone H3 at serine (H3S10P) and H3S28P are dephosphorylated by protein phosphatase 1 (PP1; Glc7 in yeast) (Crosio et al. 2002; Rossetto et al. 2012). The PP1 isoform protein phosphatase 1 Îł (PP1Îł) dephosphorylates the phosphorylated histone H3 at threonine 11 (H3T11P) (Qian et al. 2011).

Histone Ubiquitylation

(7)

51 USP3, USP22, USP42 or UBP12/46 in humans (Cao and Yan, 2012).

Histone ADP ribosylation

ADP-ribosylation is also a reversible covalent posttranslational modification that is conserved in all organisms from bacteria to humans, however, it is not reported in yeasts yet (Hottiger 2015). Histone ADP-ribosylation modification influences the DNA replication, DNA repair, cell cycle regulation, replication and transcription regulation. ADP-ribosylation process involves the addition of ADP-ribose moiety from nicotinamide adenine dinucleotide (NAD+) to

amino acid of protein substrate, which is catalyzed mainly by ADP-ribosyltransferases (ARTs) and a subgroup of NAD+-dependent sirtuins.

Modification by ADP-ribosylation induces high negative charge to the histone (Messner and Hottiger 2011).

Accumulating evidences suggested that histones can be mono- and poly-ADP ribosylated (Messner and Hottiger 2011; Hottiger 2015). The mono-ADP-ribosylation (also known as MARylation) of histone is mediated by the mono-ADP-ribosyltransferases and has been detected on all four core histones, as well as on the linker histone H1. Poly-ADP-ribosylation (also known as PARylation) of histones is mediated by the poly-ADP-ribose polymerases (PARPs). The paradigm of histones ADP-ribosylation sites is yet to be determined. Two families of enzymes ADP-ribosyltransferases are classified: clostridial toxin-like ADP-ribosyltransferases (ARTC) facilitate cytoplasmic and extracellular membrane-associated ADP-ribosylation process and diphtheria toxin-like ADP-ribosyltransferases (ARTDs, formerly known as PARPs) facilitate cytoplasmic and nuclear ADP-ribosylation process (Hottiger et al. 2010). The two groups of enzymes, ADP-ribosylhydrolases and PAR glycohydrolases, reverse histone poly-ADP-ribosylation marks. In human, there are three ADP-ribosyl hydrolases and one poly-ADP-ribose glycohydrolase described (Oka et al. 2006; Messner and Hottiger 2011). There are 18 different types ARTDs present,

ARTD1 (also known as PARP1) and ARTD2 (also known as PARP2) mainly present in the nucleus, whereas the other ARTDs are found in the cytoplasm and nucleus, or only in the cytoplasm (Hottiger 2015). Recent reports suggested that ARTD1 modifies all four core histones in vitro, ARTD3 (also known as PARP3) modifies with histones H2B and H3, ARTD10 (also known as PARP10) mono-ADP-ribosylates all four core histones and histone H1, while ARTD14 (also known as PARP7) modifies only the core histones (Messner et al. 2010; MacPherson et al. 2013; Hottiger 2015).

Histone Sumoylation

Sumoylation functions as a complex regulator of chromatin modification, transcription, and genome stability. Sumoylation involves the covalent binding of small ubiquitin-like modifier (SUMOs, 11 kDa) molecules to the histone. Mechanistically, sumoylation takes place through an enzyme cascade similar to ubiquitylation process. Sumoylation takes place by the action of the E1 activating enzyme such as Aos1 and Uba2 proteins in yeast, E2 conjugating enzyme like yeast Ubc9, and E3 ligases enzymes such as yeast Siz1, Siz2, Mms21, and Zip3 (Cubenas-Potts and Matunis 2013; Texari and Stutz 2015). Sumoylation affects protein-nucleic acid or protein-protein interactions either by steric hindrance or by prompting conformational alterations (Texari and Stutz 2014). Sumoylation is also a highly dynamic process and is reversed by desumoylating enzymes. S. cerevisiae has only a single SUMO, while mammals have four paralogs, SUMO-1, SUMO-2, SUMO-3, and SUMO-4 (Kerscher 2007; Cubenas-Potts and Matunis 2013).

(8)

52

Histone O-GlcNAcylation

The monosaccharide, β-N-acetylglucosamine (GlcNAc), is conjugated to the hydroxyl group of serines and threonines to generate an O-linked β-N-acetylglucosamine (O-GlcNAc) residue. This post-translational protein modification is known as O-GlcNAcylation, which is equivalent to protein phosphorylation and a reversible process (Hart et al. 2007). Interestingly, in mammalian cells, there is a single enzyme, β-N-acetylglucosaminyltransferase (also known as O-GlcNAc transferase or OGT), which catalyzes the transfer of the sugar moiety from the donor substrate, UDP-GlcNAc, to the target protein. The β-N-acetylglucosaminidase (also called as O-GlcNAcase or OGA) enzyme is capable of eliminating the sugar moiety (Zachara and Hart 2004; Hart et al. 2007). Like, most of the other histone post translation modification, O-GlcNAc modification is also a highly dynamic process with high turnover rates (Hart et al. 2007; Sakabe et al. 2010; Bannister and Kouzarides 2011). Transcription is regulated by glycosylation modification on RNA polymerase II CTD, histones, chromatin-remodeling factors and transcription factors (Nagel and Ball 2015; Srivastava and Ahn 2015). Recent reports indicated that all histones are also modified by sugar residues O-GlcNAc (Sakabe et al. 2010; Zhang et al. 2011). In humans, all four core histones of the nucleosome are subject to glycosylation modification in the relative order H3, H4 or H2B, and H2A (Zhang et al. 2011). Accumulating evidence revealed that histone glycosylation occurs at various sites of core histone such as histone H2A at threonine 101, histone H2B at serine 36 and serine 112, histone H3 serine 10 and threonine 32, and histone H4 at serine 47 (Sakabe et al. 2010; Fujiki et al. 2011; Zhang et al. 2011; Fong et al. 2012).

Conclusion

The histone code comprises of covalent modifications of the histone mainly by acetylation, methylation, phosphorylation, ubiquitylation and

several other newly recognized modifications,

along with the crosstalk among these

modifications. The histone codes or post-translational modifications of histones are key mechanisms for several cellular processes, including regulation of the gene expression and chromatin modification. Accumulating evidences indicate that the significant role of histone modifications is to direct the recruitment or activity of downstream effectors. With the recent development in high throughput screening or

mass-spectrometrical sensitivity, some

uncharacterized modifications on histone have

been recognized in vivo, but how these

modifications occur and their functional roles are subject to be determined. Major progresses have been made in recent years concerning how histone modifying enzymes are regulating the addition or removal of chemical groups to histones, however, many remain to be uncovered. It is also interesting to identify novel writers or erasers for unravelling the uncharacterized histone modifications.

Conflict of interest: The authors declare no conflict of interest.

References

Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis Proc Natl Acad Sci U S A 51:786-794

Allis CD et al. (2007) New nomenclature for chromatin-modifying enzymes Cell 131:633-636 doi:10.1016/j.cell.2007.10.039

Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex Oncogene 26:5329-5340 doi:10.1038/sj.onc.1210603

Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation Mol Cell Biol 31:4858-4873 doi:10.1128/MCB.05631-11

Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications Cell research 21:381-395 doi:10.1038/cr.2011.22

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics Genes Dev 23:781-783 doi:10.1101/gad.1787609

(9)

53 regulation, and biological impact Mol Cell 48:491-507 doi:10.1016/j.molcel.2012.11.006

Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer Frontiers in oncology 2:26 doi:10.3389/fonc.2012.00026

Crosio C et al. (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases Mol Cell Biol 22:874-885

Cubenas-Potts C, Matunis MJ (2013) SUMO: a multifaceted modifier of chromatin structure and function Dev Cell 24:1-12 doi:10.1016/j.devcel.2012.11.020

Dhall A, Wei S, Fierz B, Woodcock CL, Lee TH, Chatterjee C (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions J Biol Chem 289:33827-33837 doi:10.1074/jbc.M114.591644 Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan

S, Sifers RN (2012) beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3 J Biol Chem 287:12195-12203 doi:10.1074/jbc.M111.315804 Fujiki R et al. (2011) GlcNAcylation of histone H2B

facilitates its monoubiquitination Nature 480:557-560 doi:10.1038/nature10656

Goto H, Yasui Y, Nigg EA, Inagaki M (2002) Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation Genes Cells 7:11-17

Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance Nat Rev Genet 13:343-357 doi:10.1038/nrg3173

Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins Nature 446:1017-1022 doi:10.1038/nature05815

Hottiger MO (2015) Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics Annu Rev Biochem 84:227-263 doi:10.1146/annurev-biochem-060614-034506 Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014)

SnapShot: Histone Modifications Cell 159:458-458 e451 doi:10.1016/j.cell.2014.09.037

Izzo A, Schneider R (2010) Chatting histone modifications in mammals Brief Funct Genomics 9:429-443 doi:10.1093/bfgp/elq024

Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs

EMBO Rep 8:550-555

doi:10.1038/sj.embor.7400980

Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators Trends Biochem Sci 31:89-97 doi:10.1016/j.tibs.2005.12.008

Kouzarides T (2007) Chromatin modifications and their

function Cell 128:693-705

doi:10.1016/j.cell.2007.02.005

Liu T, Liu PY, Marshall GM (2009) The critical role of the class III histone deacetylase SIRT1 in cancer Cancer Res 69:1702-1705 doi:10.1158/0008-5472.CAN-08-3365

MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation Nucleic Acids Res 41:1604-1621 doi:10.1093/nar/gks1337

Mehta S, Jeffrey KL (2015) Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity Immunol Cell Biol 93:233-244 doi:10.1038/icb.2014.101

Messner S et al. (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails Nucleic Acids Res 38:6350-6362 doi:10.1093/nar/gkq463

Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription Trends Cell Biol 21:534-542 doi:10.1016/j.tcb.2011.06.001 Nagel AK, Ball LE (2015) Intracellular protein O-GlcNAc

modification integrates nutrient status with transcriptional and metabolic regulation Adv Cancer Res 126:137-166 doi:10.1016/bs.acr.2014.12.003 Nathan D et al. (2006) Histone sumoylation is a negative

regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications Genes Dev 20:966-976 doi:10.1101/gad.1404206

Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase J Biol Chem 281:705-713 doi:10.1074/jbc.M510290200

Qian J, Lesage B, Beullens M, Van Eynde A, Bollen M (2011) PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting Curr Biol 21:766-773 doi:10.1016/j.cub.2011.03.047 Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events Epigenetics 7:1098-1108 doi:10.4161/epi.21975

Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code Proc Natl Acad Sci U S A 107:19915-19920 doi:10.1073/pnas.1009023107

Shi Y et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 Cell 119:941-953 doi:10.1016/j.cell.2004.12.012

Srivastava R, Ahn SH (2015) Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function Biotechnol Adv 33:856-872 doi:10.1016/j.biotechadv.2015.07.008

(10)

54 Evolutionary Conservation and Functional Determination PLoS One 10:e0134709 doi:10.1371/journal.pone.0134709

Srivastava R, Srivastava R, Singh UM (2014) Understanding the patterns of gene expression during climate change. In: Climate Change Effect on Crop Productivity. CRC Press, Taylor & Francis Group, Print ISBN: 978-1-4822-2920-2 eBook ISBN: 978-1-4822-2921-9 DOI: 10.1201/b17684-14, pp 279-328

Steunou A-L, Rossetto D, Côté J (2014) Regulating chromatin by histone acetylation. In: Fundamentals of chromatin. Springer, pp 147-212

Strahl BD, Allis CD (2000) The language of covalent histone modifications Nature 403:41-45 doi:10.1038/47412 Tan M et al. (2011) Identification of 67 histone marks and

histone lysine crotonylation as a new type of histone modification Cell 146:1016-1028 doi:10.1016/j.cell.2011.08.008

Texari L, Stutz F (2014) Sumoylation and transcription regulation at nuclear pores Chromosoma 124:45-56 doi:10.1007/s00412-014-0481-x

Texari L, Stutz F (2015) Sumoylation and transcription regulation at nuclear pores Chromosoma 124:45-56 doi:10.1007/s00412-014-0481-x

Waddington CH (2012) The epigenotype. 1942 Int J Epidemiol 41:10-13 doi:10.1093/ije/dyr184

Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity Mol Cell 29:653-663 doi:10.1016/j.molcel.2008.02.014

Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications Cell research 21:564-578 doi:10.1038/cr.2011.42

Zachara NE, Hart GW (2004) O-GlcNAc modification: a nutritional sensor that modulates proteasome function Trends Cell Biol 14:218-221 doi:10.1016/j.tcb.2004.03.005

Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications Nat Struct Mol Biol 20:259-266 doi:10.1038/nsmb.2470

Zhang S, Roche K, Nasheuer HP, Lowndes NF (2011) Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated J Biol Chem 286:37483-37495 doi:10.1074/jbc.M111.284885

Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones Acta Biochim Biophys Sin (Shanghai) 44:14-27 doi:10.1093/abbs/gmr100

Figure

Fig. 1.  Extracellular or intracellular inputs influence the histone modifiers to modify the chromatin structure
Fig. 2.  Writers and erasers of histone modifications. Among several histone modifications, four main modifications highly associated with chromatin dynamics are: histone acetylation, histone methylation, histone phosphorylation, and histone ubiquitylation

References

Related documents

Pricing goods and services - it may be the most difficult task in the business arena. It's generally agreed that the primary goal of business is to make a profit. But many

This pilot study aimed to determine if PC providers and occupational therapists are receptive to occupational therapists as integrated interprofessional PC team members if barriers

Munro (2006) [14] proved that even if the matching subject's score and preference order are consistent with stable marriage matching problems, it is still a strong NP-hard

The aim of this study was to investigate the prevalence of thyroid dysfunction in a cohort of 305 children and adolescents with Type 1 Diabetes Mellitus from central

This essay discusses the works of artists Michael Nicoll Yahgulanaas and Brendan Lee Satish Tang as they relate to manga and popular culture.. Known as Haida Manga

We used a spatially explicit, individual-based model of early marine migration with two stocks of yearling Chinook salmon to quantify the influence of external forces on estimates

However after 48 hours approximately 40% decline in growth of Bacillus was observed in the presence of capsaicin as compared to in the absence of any

However, when religious belief is taken into account participants’ strength of religious belief was associated inversely with suicidal ideation in the total sample, and in the