• No results found

8 (2 Phenyl­ethyl­amino)­quinoline

N/A
N/A
Protected

Academic year: 2020

Share "8 (2 Phenyl­ethyl­amino)­quinoline"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o4

Lynch and McClenaghan C17H16N2 DOI: 101107/S1600536800017864 Acta Cryst.(2001). E57, o4±o5

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

8-(2-Phenylethylamino)quinoline

Daniel E. Lyncha* and Ian

McClenaghanb²

aSchool of Natural and Environmental Sciences,

Coventry University, Coventry CV1 5FB, England, andbSpa Contract Synthesis, School of

Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England

² E-mail: [email protected].

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study

T= 151 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.046

wRfactor = 0.126

Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure of the title compound, C17H16N2, (I), comprises

twisted molecules that contain a single intramolecular NÐ H N hydrogen-bonding interaction. The dihedral angle between the two ring systems is 65.72 (4).

Experimental

Crystals of (I) were obtained from Spa Contract Synthesis.

Crystal data

C17H16N2 Mr= 248.32

Monoclinic,P21/n a= 10.1202 (3) AÊ

b= 9.9645 (3) AÊ

c= 13.8592 (5) AÊ

= 110.7743 (11)

V= 1306.73 (7) AÊ3 Z= 4

Dx= 1.262 Mg mÿ3

MoKradiation

Cell parameters from 11683 re¯ections

= 2.9±38.6 = 0.08 mmÿ1 T= 150 (2) K Plate, colourless 0.300.150.08 mm

Data collection

Enraf±Nonius KappaCCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin= 0.978,Tmax= 0.994

18 654 measured re¯ections 2989 independent re¯ections

2065 re¯ections withI> 2(I)

Rint= 0.084 max= 27.5

h=ÿ13!13

k=ÿ12!12

l=ÿ17!18 Intensity decay: none

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.046 wR(F2) = 0.126 S= 1.03 2989 re¯ections 176 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0736P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.17 e AÊÿ3 min=ÿ0.24 e AÊÿ3

(2)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N11ÐH11 N1 0.929 (15) 2.277 (15) 2.6961 (15) 106.8 (12)

All H atoms were included in the re®nement, at calculated posi-tions, as riding models with CÐH set to 0.95 (Ar±H) and 0.99 AÊ (CH2), except for the amine H atom, which was located on difference

syntheses and both positional and thermal parameters re®ned. Data collection: DENZO (Otwinowski & Minor, 1997) and

COLLECT(Hooft, 1998); cell re®nement:DENZOandCOLLECT; data reduction:DENZOandCOLLECT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication:SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).

References

Blessing, R. H. (1995).Acta Cryst.A51, 33±37.

Hooft, R. (1998).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276,

Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307±326. Academic Press.

(3)

supporting information

sup-1

Acta Cryst. (2001). E57, o4–o5

supporting information

Acta Cryst. (2001). E57, o4–o5 [doi:10.1107/S1600536800017864]

8-(2-Phenylethylamino)quinoline

Daniel E. Lynch and Ian McClenaghan

S1. Comment

NO COMMENT

S2. Experimental

Crystals of (I) were obtained from Spa Contract Synthesis.

S3. Refinement

All H atoms were included in the refinement, at calculated positions, as riding models with C—H set to 0.95 (Ar—H) and

0.99 Å (CH2), except for the amine H atom, which was located on difference syntheses and both positional and thermal

parameters refined.

8-(2-Phenylethylamino)quinoline

Crystal data

C17H16N2 Mr = 248.32

Monoclinic, P21/n a = 10.1202 (3) Å b = 9.9645 (3) Å c = 13.8592 (5) Å β = 110.7743 (11)° V = 1306.73 (7) Å3 Z = 4

F(000) = 528

Dx = 1.262 Mg m−3

Melting point: 330-331.5 K K Mo radiation, λ = 0.71073 Å Cell parameters from 11683 reflections θ = 2.9–38.6°

µ = 0.08 mm−1 T = 150 K Plate, colourless 0.30 × 0.15 × 0.08 mm

Data collection

Enraf Nonius KappaCCD area-detector diffractometer

Radiation source: Enraf Nonius FR591 rotating anode

Graphite monochromator

Detector resolution: 9.091 pixels mm-1 φ and ω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin = 0.978, Tmax = 0.994

18654 measured reflections 2989 independent reflections 2065 reflections with I > 2σ(I) Rint = 0.084

θmax = 27.5°, θmin = 3.0° h = −13→13

k = −12→12 l = −17→18

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.126

(4)

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0736P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.24 e Å−3

Special details

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. Mean plane data ex SHELXL97 ###########################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 5.2752 (0.0044) x + 7.4657 (0.0035) y + 2.7323 (0.0067) z = 1.7749 (0.0007)

* 0.0012 (0.0008) N1 * 0.0030 (0.0009) C2 * -0.0029 (0.0010) C3 * -0.0011 (0.0009) C4 * 0.0051 (0.0008) C10 * -0.0053 (0.0008) C9 0.0138 (0.0020) C5 - 0.0204 (0.0023) C6 - 0.0581 (0.0022) C7 - 0.0344 (0.0018) C8

Rms deviation of fitted atoms = 0.0035

- 3.4507 (0.0048) x + 2.9921 (0.0050) y + 13.2196 (0.0022) z = 4.8858 (0.0015) Angle to previous plane (with approximate e.s.d.) = 65.72 (0.04)

* 0.0025 (0.0009) C14 * -0.0071 (0.0009) C15 * 0.0039 (0.0009) C16 * 0.0039 (0.0009) C17 * -0.0084 (0.0009) C18 * 0.0052 (0.0009) C19

Rms deviation of fitted atoms = 0.0055

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.02455 (10) 0.19291 (10) 0.07554 (8) 0.0333 (3)

C2 −0.03832 (15) 0.26763 (14) −0.00655 (10) 0.0402 (4)

H2 −0.1150 0.3226 −0.0065 0.050*

C3 0.00107 (15) 0.27090 (15) −0.09371 (11) 0.0434 (4)

H3 −0.0484 0.3262 −0.1510 0.054*

C4 0.11133 (14) 0.19373 (14) −0.09507 (10) 0.0395 (4)

H4 0.1396 0.1947 −0.1535 0.049*

C5 0.29936 (15) 0.02972 (13) −0.00452 (11) 0.0366 (3)

H5 0.3344 0.0291 −0.0597 0.046*

C6 0.36030 (14) −0.04891 (14) 0.08017 (11) 0.0388 (4)

H6 0.4378 −0.1045 0.0830 0.048*

C7 0.31163 (13) −0.04997 (13) 0.16325 (11) 0.0356 (3)

H7 0.3552 −0.1074 0.2205 0.045*

C8 0.20115 (13) 0.03150 (12) 0.16259 (10) 0.0298 (3)

C9 0.13443 (12) 0.11497 (12) 0.07400 (10) 0.0287 (3)

C10 0.18326 (13) 0.11239 (12) −0.00945 (9) 0.0313 (3)

N11 0.15190 (12) 0.03852 (11) 0.24255 (8) 0.0351 (3)

H11 0.0637 (17) 0.0787 (14) 0.2254 (11) 0.050 (4)*

C12 0.20238 (14) −0.04938 (14) 0.33069 (10) 0.0362 (3)

H121 0.3063 −0.0411 0.3630 0.045*

H122 0.1800 −0.1435 0.3079 0.045*

C13 0.13455 (13) −0.01480 (15) 0.40963 (10) 0.0379 (3)

H131 0.1855 −0.0632 0.4746 0.047*

(5)

supporting information

sup-3

Acta Cryst. (2001). E57, o4–o5

C14 −0.02005 (13) −0.04922 (12) 0.37568 (9) 0.0297 (3)

C15 −0.06201 (14) −0.17757 (13) 0.39305 (10) 0.0339 (3)

H15 0.0076 −0.2435 0.4250 0.042*

C16 −0.20329 (14) −0.20992 (13) 0.36433 (10) 0.0354 (3)

H16 −0.2301 −0.2973 0.3777 0.044*

C17 −0.30593 (14) −0.11632 (13) 0.31635 (10) 0.0349 (3)

H17 −0.4031 −0.1389 0.2967 0.044*

C18 −0.26632 (14) 0.01069 (13) 0.29701 (10) 0.0336 (3)

H18 −0.3363 0.0752 0.2628 0.042*

C19 −0.12446 (13) 0.04375 (12) 0.32759 (10) 0.0319 (3)

H19 −0.0982 0.1319 0.3153 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0295 (6) 0.0370 (6) 0.0349 (6) 0.0009 (5) 0.0132 (5) −0.0003 (5)

C2 0.0374 (7) 0.0439 (8) 0.0392 (8) 0.0036 (6) 0.0134 (6) 0.0034 (7)

C3 0.0487 (9) 0.0460 (8) 0.0344 (8) −0.0007 (7) 0.0132 (7) 0.0068 (6)

C4 0.0484 (8) 0.0421 (8) 0.0334 (8) −0.0125 (7) 0.0210 (7) −0.0039 (6)

C5 0.0383 (7) 0.0393 (7) 0.0413 (8) −0.0096 (6) 0.0253 (7) −0.0109 (6)

C6 0.0294 (7) 0.0446 (8) 0.0480 (9) −0.0011 (6) 0.0208 (6) −0.0098 (6)

C7 0.0296 (7) 0.0416 (8) 0.0372 (8) 0.0015 (6) 0.0136 (6) −0.0018 (6)

C8 0.0256 (6) 0.0357 (7) 0.0298 (7) −0.0037 (5) 0.0119 (5) −0.0061 (5)

C9 0.0255 (6) 0.0310 (6) 0.0314 (7) −0.0065 (5) 0.0125 (5) −0.0057 (5)

C10 0.0331 (7) 0.0318 (7) 0.0321 (7) −0.0116 (5) 0.0155 (6) −0.0086 (5)

N11 0.0330 (6) 0.0458 (7) 0.0308 (6) 0.0095 (5) 0.0163 (5) 0.0049 (5)

C12 0.0304 (7) 0.0479 (8) 0.0303 (7) 0.0044 (6) 0.0106 (6) 0.0031 (6)

C13 0.0319 (7) 0.0560 (9) 0.0250 (7) −0.0022 (6) 0.0090 (6) −0.0007 (6)

C14 0.0327 (7) 0.0388 (7) 0.0189 (6) 0.0015 (6) 0.0108 (5) −0.0020 (5)

C15 0.0413 (8) 0.0333 (7) 0.0266 (7) 0.0068 (6) 0.0114 (6) 0.0026 (5)

C16 0.0462 (8) 0.0306 (7) 0.0295 (7) −0.0045 (6) 0.0135 (6) −0.0006 (5)

C17 0.0332 (7) 0.0420 (7) 0.0299 (7) −0.0032 (6) 0.0118 (6) −0.0030 (6)

C18 0.0352 (7) 0.0366 (7) 0.0301 (7) 0.0070 (6) 0.0129 (6) 0.0016 (6)

C19 0.0399 (7) 0.0299 (6) 0.0283 (7) 0.0000 (5) 0.0152 (6) 0.0013 (5)

Geometric parameters (Å, º)

N1—C2 1.3192 (16) N11—H11 0.929 (15)

N1—C9 1.3626 (16) C12—C13 1.5231 (18)

C2—C3 1.400 (2) C12—H121 0.9900

C2—H2 0.9500 C12—H122 0.9900

C3—C4 1.361 (2) C13—C14 1.5048 (17)

C3—H3 0.9500 C13—H131 0.9900

C4—C10 1.4079 (18) C13—H132 0.9900

C4—H4 0.9500 C14—C19 1.3854 (18)

C5—C6 1.363 (2) C14—C15 1.3952 (18)

C5—C10 1.4166 (19) C15—C16 1.3795 (19)

(6)

C6—C7 1.4038 (19) C16—C17 1.3788 (18)

C6—H6 0.9500 C16—H16 0.9500

C7—C8 1.3791 (17) C17—C18 1.3822 (18)

C7—H7 0.9500 C17—H17 0.9500

C8—N11 1.3686 (17) C18—C19 1.3848 (18)

C8—C9 1.4378 (18) C18—H18 0.9500

C9—C10 1.4099 (17) C19—H19 0.9500

N11—C12 1.4413 (16)

C2—N1—C9 117.05 (12) N11—C12—C13 110.90 (11)

N1—C2—C3 124.01 (13) N11—C12—H121 109.5

N1—C2—H2 118.0 C13—C12—H121 109.5

C3—C2—H2 118.0 N11—C12—H122 109.5

C4—C3—C2 118.98 (13) C13—C12—H122 109.5

C4—C3—H3 120.5 H121—C12—H122 108.0

C2—C3—H3 120.5 C14—C13—C12 114.04 (11)

C3—C4—C10 119.68 (13) C14—C13—H131 108.7

C3—C4—H4 120.2 C12—C13—H131 108.7

C10—C4—H4 120.2 C14—C13—H132 108.7

C6—C5—C10 119.33 (12) C12—C13—H132 108.7

C6—C5—H5 120.3 H131—C13—H132 107.6

C10—C5—H5 120.3 C19—C14—C15 117.97 (12)

C5—C6—C7 121.83 (12) C19—C14—C13 121.94 (12)

C5—C6—H6 119.1 C15—C14—C13 120.09 (12)

C7—C6—H6 119.1 C16—C15—C14 120.81 (12)

C8—C7—C6 120.64 (13) C16—C15—H15 119.6

C8—C7—H7 119.7 C14—C15—H15 119.6

C6—C7—H7 119.7 C17—C16—C15 120.50 (12)

N11—C8—C7 123.50 (12) C17—C16—H16 119.7

N11—C8—C9 117.79 (11) C15—C16—H16 119.7

C7—C8—C9 118.70 (12) C16—C17—C18 119.49 (12)

N1—C9—C10 123.28 (11) C16—C17—H17 120.3

N1—C9—C8 117.06 (11) C18—C17—H17 120.3

C10—C9—C8 119.66 (11) C17—C18—C19 119.93 (12)

C4—C10—C9 117.00 (12) C17—C18—H18 120.0

C4—C10—C5 123.19 (12) C19—C18—H18 120.0

C9—C10—C5 119.81 (12) C18—C19—C14 121.28 (12)

C8—N11—C12 122.26 (11) C18—C19—H19 119.4

C8—N11—H11 114.1 (10) C14—C19—H19 119.4

C12—N11—H11 119.9 (10)

C9—N1—C2—C3 0.08 (19) C8—C9—C10—C5 −1.26 (17)

N1—C2—C3—C4 −0.5 (2) C6—C5—C10—C4 −178.09 (12)

C2—C3—C4—C10 0.1 (2) C6—C5—C10—C9 1.56 (18)

C10—C5—C6—C7 −0.29 (19) C7—C8—N11—C12 −6.45 (19)

C5—C6—C7—C8 −1.3 (2) C9—C8—N11—C12 174.23 (11)

C6—C7—C8—N11 −177.72 (12) C8—N11—C12—C13 177.33 (11)

(7)

supporting information

sup-5

Acta Cryst. (2001). E57, o4–o5

C2—N1—C9—C10 0.73 (17) C12—C13—C14—C19 −93.80 (15)

C2—N1—C9—C8 −178.79 (11) C12—C13—C14—C15 86.71 (14)

N11—C8—C9—N1 −1.42 (16) C19—C14—C15—C16 −0.86 (18)

C7—C8—C9—N1 179.23 (11) C13—C14—C15—C16 178.66 (12)

N11—C8—C9—C10 179.04 (11) C14—C15—C16—C17 1.01 (19)

C7—C8—C9—C10 −0.31 (17) C15—C16—C17—C18 0.05 (19)

C3—C4—C10—C9 0.65 (18) C16—C17—C18—C19 −1.22 (19)

C3—C4—C10—C5 −179.69 (12) C17—C18—C19—C14 1.38 (19)

N1—C9—C10—C4 −1.10 (17) C15—C14—C19—C18 −0.33 (19)

C8—C9—C10—C4 178.41 (10) C13—C14—C19—C18 −179.84 (11)

N1—C9—C10—C5 179.23 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

This retrospective study was carried out to identify the frequency and pattern of chromosomal aberrations among patients referred to the Division of Genetics, Department of

Materials and Methods: Whole blood sera samples from a total of 5781 patients suspected of various viral diseases (chikungunya, dengue, hepatitis A, hepatitis

For exam- ple, in computational linguistics, one is often interested in results which express a relationship between a fixed semantic input and a possible

The network evaluation methods introduced are based on examining the network response to each left context, available in the training corpus.. An effective way

We extended this mechanism to the universal principles: the constraints on a certain type were only checked, once certain attributes were sufficiently

We represent operators as elementary trees in LTAG, and use TAG op- erations to combine them; we give the meaning of each tree as a formula in an ontologically

tegration dynamics and volatility spillover effects of European and US

For those observations with a low debt ratio, the groups are further splitted on the basis of Debt/ GDP ratio; Inflation rate, Short term debt/ Foreign Reserves ratio; Short