• No results found

catena Poly­[μ tri­fluoro­acetato O:O′ di­methyl­phenyl­tin(IV)]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[μ tri­fluoro­acetato O:O′ di­methyl­phenyl­tin(IV)]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m650

Mostafa M. Aminiet al. [Sn(C2F3O2)(C6H5)(CH3)2] DOI: 10.1107/S1600536802018779 Acta Cryst.(2002). E58, m650±m652

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

catena

-Poly[

l

-trifluoroacetato-

O

:

O

000

-dimethylphenyltin(IV)]

Mostafa M. Amini,a

Shabnam Hossein Abadi,aMahdi Mirzaee,aThomas LuÈgger,b F. Ekkehardt Hahnband Seik Weng Ngc*

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran,b Anorganisch-Chemisches Institut, WestfaÈlische Wilhelms-UniversitaÈt MuÈnster, Wilhelm-Klemm-Strasse 8, D-48149 MuÈnster, Germany, andcDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.006 AÊ Disorder in main residue Rfactor = 0.020 wRfactor = 0.051

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

catena-Poly[dimethylphenyltin(IV)--tri¯uoroacetato-O:O0],

[(CH3)2(C6H5)SnOC(O)CF3]n, adopts a helical

carboxylate-bridged chain structure, in which the Sn atom shows trans -C3SnO2 trigonal±bipyramidal coordination, with unequal

SnÐO distances of 2.181 (2) and 2.580 (2) AÊ.

Comment

Triorganotin carboxylates commonly self-assemble as linear chains, whose repeat units involve bridging carboxylate groups (Nget al., 1988; Haiduc & Edelmann, 1999). When the repeat units are propagated by a glide plane in the crystal structure, a zigzag polymeric chain is formed whereas when these are propagated by screw-axis symmetry transformations, a helical polymeric chain results. The repeat distance is generally insensitive to the nature of the groups bonded to the Sn atom and the substituent of the carboxylato group. The dative SnÐ O distance generally exceeds the covalent SnÐO distance in these ®ve-coordinate trans-C3SnO2 trigonal bipyramidal

compounds (Tiekink, 1991; Tiekink, 1994), though an excep-tion has been noted (Ng, Kumar Das & Syed, 1989). The triorganotin carboxylates reported in the literature are rarely of the R0

2R00SnO2CR000 type, as the synthesis of the mixed

R0

2R00SnX(X= halide) starting reagent is not trivial.

An earlier study has detailed the synthesis and crystal structure of dimethylphenyltin acetate (Amini et al., 1989). The compound exists as a helical, carboxylate-bridged polymer, a structure also adopted by the tri¯uoroacetate, as determined in the present study (Figs. 1 and 2). In the title compound, (I), the Sn atom is displaced out of the equatorial plane by 0.149 (3) AÊ in the direction of the covalently bonded O atom O1 [Sn1ÐO1 = 2.181 (2), Sn1ÐO2i = 2.580 (2) AÊ;

symmetry code (i): 1ÿx,1

2+y,32ÿz]. The equatorial plane is

almost coplanar with the phenyl ring, the dihedral angle between the planes being 4.2 (2). The tri¯uoromethyl group

is disordered, which is quite common for tri¯uoroacetate structures (Nget al., 1999).

In contrast to dimethylphenyltin actetate and tri¯uoro-acetate, trimethyltin tri¯uoroacetate adopts a zigzag conformation (Chih & Penfold, 1973). The mode of propa-gation of these polymers can be deduced from

(2)

temperature tin-119m MoÈssbauer measurements; a zigzag polymer, being more rigid, gives a smaller slope compared with a helical polymer such as triphenyltin chloroacetate (Ng, Chinet al., 1989).

Experimental

Equimolar quantities of dimethylphenyltin iodide (0.71 g, 2 mmol), which was obtained by the iodine cleavage of dimethyldiphenyltin (Davison & Rakita, 1970; Aminiet al., 1989), and silver tri¯uoro-acetate (0.45 g, 2 mmol) were dissolved in ethanol to afford a preci-pitate of silver iodide. The precipreci-pitate was removed by ®ltration and the solvent evaporated off to yield the crude title compound. Crystals, m.p. 395±396 K, were obtained by recrystallization from carbon tetrachloride. In the 1H NMR spectrum in CDCl

3, the two-bond tin± methyl coupling constant was 58 Hz. In the IR spectrum, the tin± methyl bands appeared at 575 and 540 cmÿ1.

Crystal data

[Sn(C2F3O2)(C6H5)(CH3)2]

Mr= 338.88

Orthorhombic,P212121

a= 6.6552 (3) AÊ b= 10.9949 (5) AÊ c= 17.0794 (7) AÊ V= 1249.8 (1) AÊ3

Z= 4

Dx= 1.801 Mg mÿ3

MoKradiation Cell parameters from 5881

re¯ections

= 2.2±26.0 = 2.07 mmÿ1

T= 293 (2) K Prism, colorless 0.240.160.05 mm

Data collection

Bruker AXS CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.637,Tmax= 0.904

10949 measured re¯ections

2465 independent re¯ections 2364 re¯ections withI> 2(I) Rint= 0.026

max= 26.0

h=ÿ8!8

k=ÿ13!13 l=ÿ21!21

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.020

wR(F2) = 0.051

S= 0.99 2465 re¯ections 175 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.0355P)2] whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.27 e AÊÿ3

min=ÿ0.43 e AÊÿ3

Absolute structure: Flack & Schwarzenbach (1988) Flack parameter = 0.04(3);

1197 Friedel pairs

Table 1

Selected geometric parameters (AÊ,).

Sn1ÐO1 2.181 (2)

Sn1ÐO2i 2.580 (2)

Sn1ÐC1 2.099 (4)

Sn1ÐC2 2.111 (4)

Sn1ÐC3 2.113 (3)

O1ÐSn1ÐO2i 170.7 (1)

C1ÐSn1ÐO1 95.6 (2)

C1ÐSn1ÐO2i 87.2 (2)

C2ÐSn1ÐO1 96.2 (2)

C2ÐSn1ÐO2i 89.9 (2)

C3ÐSn1ÐO1 90.3 (1)

C3ÐSn1ÐO2i 80.7 (1)

C1ÐSn1ÐC2 120.6 (2)

C1ÐSn1ÐC3 121.2 (2)

C2ÐSn1ÐC3 116.6 (2)

Symmetry code: (i) 1ÿx;1 2‡y;32ÿz.

The tri¯uoromethyl group is disordered over two positions; their occupancy ratio was re®ned to 61 (2):39 (2). The six CÐF distances were restrained to be approximately equal; additionally, the F F interactions were restrained. The temperature factors of the CF3 group were restrained to be approximately isotropic. H atoms were placed in calculated positions and were allowed to ride on their parent C-atoms; U(H) = 1.2Ueq(C) for the aromatic C atoms and

U(H) = 1.5Ueq(C) for the methyl C atoms.

Acta Cryst.(2002). E58, m650±m652 Mostafa M. Aminiet al. [Sn(C2F3O2)(C6H5)(CH3)2]

m651

metal-organic papers

Figure 2

ORTEP(Johnson, 1976) plot of the helical chain of dimethylphenyltin tri¯uoroacetate; displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii; the minor component of the disordered tri¯uoromethyl group is omitted.

Figure 1

(3)

metal-organic papers

m652

Mostafa M. Aminiet al. [Sn(C2F3O2)(C6H5)(CH3)2] Acta Cryst.(2002). E58, m650±m652 Data collection:SMART(Bruker, 1997); cell re®nement:SAINT

(Bruker, 1997); data reduction: SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the Vice President's Of®ce of Research Affairs of Shahid Beheshti University, WestfaÈlische Wilhelms-UniversitaÈt MuÈnster and the University of Malaya (F0717/ 2002A) for supporting this work.

References

Amini, M. M., Ng, S. W., Fidelis, K. A., Heeg, M. J., Muchmore, C. R., van der Helm, D. & Zuckerman, J. J. (1989).J. Organomet. Chem.365, 103±110.

Bruker (1997).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chih, B. R. & Penfold, B. R. (1973).J. Cryst. Mol. Struct.3, 285±297. Davison, A. & Rakita, P. E. (1970).J. Organomet. Chem.23, 407±426. Flack, H. D. & Schwarzenbach, D. (1988).Acta Cryst.A44, 499±506. Haiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic

Chemistry. Weinheim: Wiley-VCH Verlag GmbH.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Ng, S. W., Chen, W. & Kumar Das, V. G. (1988).J. Organomet. Chem.345, 59± 64.

Ng, S. W., Chin, K. L. Chen, W., Kumar Das, V. G. & Butcher, R. J. (1989).J. Organomet. Chem.376, 278±281.

Ng, S. W., Fun, H. K. & Raj, S. S. S. (1999).Acta Cryst.C55, 2145±2147. Ng, S. W., Kumar Das, V. G. & Syed, A. (1989).J. Organomet. Chem.364, 353±

362.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

(4)

supporting information

sup-1 Acta Cryst. (2002). E58, m650–m652

supporting information

Acta Cryst. (2002). E58, m650–m652 [https://doi.org/10.1107/S1600536802018779]

catena

-Poly[

µ

-trifluoroacetato-

O

:

O

-dimethylphenyltin(IV)]

Mostafa M. Amini, Shabnam Hossein Abadi, Mahdi Mirzaee, Thomas L

ü

gger, F. Ekkehardt Hahn

and Seik Weng Ng

catena-Poly(dimethylphenyltin-µ-trifluoroacetato-O;O′)

Crystal data

[Sn(C6H5)(C2F3O2)(CH3)2]

Mr = 338.88

Orthorhombic, P212121

a = 6.6552 (3) Å b = 10.9949 (5) Å c = 17.0794 (7) Å V = 1249.8 (1) Å3

Z = 4 F(000) = 656

Dx = 1.801 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5881 reflections θ = 2.2–26.0°

µ = 2.07 mm−1

T = 293 K Prism, colorless 0.24 × 0.16 × 0.05 mm

Data collection

Bruker AXS CCD area-detector diffractometer

Radiation source: rotating anode tube Graphite monochromator

ω scan

Absorption correction: multi-scan SADABS (Sheldrick, 1996) Tmin = 0.637, Tmax = 0.904

10949 measured reflections 2465 independent reflections 2364 reflections with I > 2σ(I) Rint = 0.026

θmax = 26.0°, θmin = 2.2°

h = −8→8 k = −13→13 l = −21→21

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.020

wR(F2) = 0.051

S = 0.99 2465 reflections 175 parameters 66 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0355P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.27 e Å−3

Δρmin = −0.43 e Å−3

Absolute structure: Flack & Schwarzenbach (1988)

Absolute structure parameter: 0.04 (3); 1197 Friedel pairs were measured

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(5)

supporting information

sup-2 Acta Cryst. (2002). E58, m650–m652

F1 0.284 (2) 0.2015 (5) 0.8995 (7) 0.119 (3) 0.61 (2)

F2 0.278 (2) 0.3519 (8) 0.9762 (3) 0.105 (3) 0.61 (2)

F3 0.0448 (9) 0.329 (1) 0.8952 (8) 0.121 (3) 0.61 (2)

F1′ 0.212 (2) 0.2033 (8) 0.881 (1) 0.085 (4) 0.39 (2)

F2′ 0.362 (3) 0.316 (2) 0.964 (1) 0.134 (6) 0.39 (2)

F3′ 0.065 (2) 0.355 (1) 0.926 (1) 0.111 (5) 0.39 (2)

O1 0.3368 (5) 0.5046 (2) 0.8569 (2) 0.068 (1)

O2 0.4165 (6) 0.3442 (2) 0.7851 (2) 0.083 (1)

C1 0.2897 (8) 0.6128 (5) 0.6858 (2) 0.080 (1)

C2 0.7652 (6) 0.5886 (4) 0.7920 (3) 0.073 (1)

C3 0.3741 (6) 0.7798 (3) 0.8689 (2) 0.050 (1)

C4 0.1841 (6) 0.8335 (3) 0.8663 (2) 0.064 (1)

C5 0.1328 (8) 0.9195 (4) 0.9239 (3) 0.076 (1)

C6 0.2621 (9) 0.9501 (4) 0.9805 (2) 0.079 (1)

C7 0.4484 (9) 0.8989 (4) 0.9834 (2) 0.075 (1)

C8 0.5032 (7) 0.8133 (3) 0.9279 (2) 0.065 (1)

C9 0.3444 (6) 0.3933 (3) 0.8420 (2) 0.058 (1)

C10 0.2403 (7) 0.3165 (3) 0.9045 (2) 0.079 (1)

H1a 0.2390 0.6878 0.6648 0.120*

H1b 0.1792 0.5612 0.7000 0.120*

H1c 0.3707 0.5728 0.6471 0.120*

H2a 0.7921 0.5592 0.8439 0.110*

H2b 0.8542 0.6549 0.7803 0.110*

H2c 0.7859 0.5242 0.7549 0.110*

H4 0.0931 0.8128 0.8272 0.077*

H5 0.0065 0.9556 0.9227 0.091*

H6 0.2247 1.0069 1.0181 0.095*

H7 0.5383 0.9212 1.0225 0.090*

H8 0.6298 0.7777 0.9306 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2002). E58, m650–m652

C7 0.114 (3) 0.059 (2) 0.053 (2) −0.001 (2) −0.005 (2) −0.008 (2) C8 0.084 (3) 0.048 (2) 0.061 (2) 0.002 (2) −0.002 (2) −0.003 (2) C9 0.080 (2) 0.037 (1) 0.055 (2) −0.002 (2) 0.015 (2) −0.003 (1) C10 0.118 (4) 0.046 (2) 0.074 (3) −0.013 (2) 0.025 (3) 0.003 (2)

Geometric parameters (Å, º)

Sn1—O1 2.181 (2) C5—C6 1.337 (7)

Sn1—O2i 2.580 (2) C6—C7 1.363 (7)

Sn1—C1 2.099 (4) C7—C8 1.384 (5)

Sn1—C2 2.111 (4) C9—C10 1.526 (5)

Sn1—C3 2.113 (3) C1—H1a 0.9600

F1—C10 1.300 (6) C1—H1b 0.9600

F2—C10 1.310 (6) C1—H1c 0.9600

F3—C10 1.318 (7) C2—H2a 0.9600

F1′—C10 1.322 (7) C2—H2b 0.9600

F2′—C10 1.298 (7) C2—H2c 0.9600

F3′—C10 1.291 (7) C4—H4 0.9300

O1—C9 1.250 (4) C5—H5 0.9300

O2—C9 1.212 (4) C6—H6 0.9300

C3—C8 1.375 (5) C7—H7 0.9300

C3—C4 1.396 (6) C8—H8 0.9300

C4—C5 1.407 (6)

O1—Sn1—O2i 170.7 (1) F1′—C10—C9 111.8 (8)

C1—Sn1—O1 95.6 (2) F2′—C10—C9 105.5 (8)

C1—Sn1—O2i 87.2 (2) F3′—C10—C9 115.0 (7)

C2—Sn1—O1 96.2 (2) F1—C10—C9 113.1 (6)

C2—Sn1—O2i 89.9 (2) F2—C10—C9 113.7 (4)

C3—Sn1—O1 90.3 (1) F3—C10—C9 107.8 (5)

C3—Sn1—O2i 80.7 (1) Sn1—C1—H1a 109.5

C1—Sn1—C2 120.6 (2) Sn1—C1—H1b 109.5

C1—Sn1—C3 121.2 (2) H1a—C1—H1b 109.5

C2—Sn1—C3 116.6 (2) Sn1—C1—H1c 109.5

C9—O1—Sn1 125.7 (2) H1a—C1—H1c 109.5

C8—C3—C4 118.4 (3) H1b—C1—H1c 109.5

C8—C3—Sn1 119.9 (3) Sn1—C2—H2a 109.5

C4—C3—Sn1 121.6 (3) Sn1—C2—H2b 109.5

C3—C4—C5 118.8 (4) H2a—C2—H2b 109.5

C6—C5—C4 121.2 (4) Sn1—C2—H2c 109.5

C5—C6—C7 120.6 (4) H2a—C2—H2c 109.5

C6—C7—C8 119.7 (4) H2b—C2—H2c 109.5

C3—C8—C7 121.3 (4) C3—C4—H4 120.6

O2—C9—O1 128.0 (3) C5—C4—H4 120.6

O2—C9—C10 119.6 (3) C6—C5—H5 119.4

O1—C9—C10 112.4 (3) C4—C5—H5 119.4

F1′—C10—F2′ 108.6 (7) C5—C6—H6 119.7

(7)

supporting information

sup-4 Acta Cryst. (2002). E58, m650–m652

F2′—C10—F3′ 110.4 (7) C6—C7—H7 120.2

F1—C10—F2 107.9 (5) C8—C7—H7 120.2

F2—C10—F3 105.7 (5) C3—C8—H8 119.4

F1—C10—F3 108.3 (6) C7—C8—H8 119.4

C1—Sn1—O1—C9 61.4 (4) Sn1—C3—C8—C7 179.8 (3)

C2—Sn1—O1—C9 −60.3 (4) C6—C7—C8—C3 0.9 (6)

C3—Sn1—O1—C9 −177.2 (4) Sn1—O1—C9—O2 −2.6 (7)

C1—Sn1—C3—C8 −171.6 (3) Sn1—O1—C9—C10 179.8 (3)

C2—Sn1—C3—C8 −5.4 (3) O2—C9—C10—F3′ −131 (1)

O1—Sn1—C3—C8 91.7 (3) O1—C9—C10—F3′ 47 (1)

O2i—Sn1—C3—C8 −90.6 (3) O2—C9—C10—F2′ 107 (1)

C1—Sn1—C3—C4 8.8 (3) O1—C9—C10—F2′ −75 (1)

C2—Sn1—C3—C4 174.9 (3) O2—C9—C10—F1 16 (1)

O1—Sn1—C3—C4 −88.0 (3) O1—C9—C10—F1 −165.8 (9)

O2i—Sn1—C3—C4 89.7 (3) O2—C9—C10—F2 139.8 (8)

C8—C3—C4—C5 0.1 (5) O1—C9—C10—F2 −42.4 (8)

Sn1—C3—C4—C5 179.8 (3) O2—C9—C10—F3 −103.3 (8)

C3—C4—C5—C6 0.0 (6) O1—C9—C10—F3 74.5 (8)

C4—C5—C6—C7 0.3 (7) O2—C9—C10—F1′ −11 (1)

C5—C6—C7—C8 −0.7 (7) O1—C9—C10—F1′ 166.9 (9)

C4—C3—C8—C7 −0.5 (5)

References

Related documents

In aggregate topic classifier, representative topic vectors for positive and negative classes are composed and used as a guide to classify the reports in the test dataset..

  However,  it  needs  to  be  highlighted  that  this  research  doesn’t  examine  the  causality  between   income  and  an  individual’s  risk  profile  or

results: Out of 50 patients, type II Arnold-Chiari Malformation (34%), Spina Bifida Occulta (22%) and Diastematomyelia (18%) were common anomalies. MRI findings were well

Consequently links to rele- vant articles in Wikipedia were added to each the meta-data of each artefact using Wikipedia Miner (Milne and Witten, 2008) to provide

Nowadays, organizations are aware of the fact that employee performance is one of the key  

to study three aspects: first, the tax burden level how to influence the sense of comparison fairness;. second, the justice of tax law enforcement how to influence the sense

The pace of adoption of precision agriculture technologies has been relatively modest and large number of farmers are not familiar and not affordable with these technologies using

“The Japan Municipal Bond Yield Curve: 2002 to the Present.” International Journal of Economics and Finance, 8 (2016, forthcoming). “Comparative Analysis of Zero Coupon