• No results found

(3 Meth­oxy­phenyl)­acetic acid

N/A
N/A
Protected

Academic year: 2020

Share "(3 Meth­oxy­phenyl)­acetic acid"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o889±o890 DOI: 10.1107/S1600536802012102 Choudhury and Row C9H10O3

o889

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3-Methoxyphenyl)acetic acid

A. R Choudhury and T. N. Guru Row*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.040

wRfactor = 0.117

Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C9H10O3, also known as (m

-methoxy-phenyl)acetic acid, has been found to crystallize in the monoclinic space groupP21/c at room temperature. It is the

starting material for the synthesis of a large number of

1,2,3,4-tetrahydroisoquinoline compounds [Nagarajan et al. (1985).

Indian J. Chem. Sect. B, 24, 83±97]. The compound forms

dimers in the crystalline state, with OÐH O hydrogen

bonds between the carboxyl groups, across a crystallographic centre of symmetry.

Experimental

The 98% pure compound was bought from Sigma Aldrich. Single crystals were grown from a mixture of ethyl acetate and hexane at room temperature, by slow evaporation. The compound crystallizes as prisms.

Crystal data

C9H10O3

Mr= 166.17 Monoclinic,P21=c

a= 16.266 (3) AÊ b= 5.1024 (11) AÊ c= 10.095 (2) AÊ

= 90.73 (1)

V= 837.8 (3) AÊ3

Z= 4

Dx= 1.317 Mg mÿ3 MoKradiation Cell parameters from 3478

re¯ections

= 2.4±21.3

= 0.10 mmÿ1

T= 293 (2) K Prism, colourless 0.400.350.20 mm

Received 5 July 2002 Accepted 9 July 2002 Online 19 July 2002

Figure 1

(2)

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: none 6276 measured re¯ections 1714 independent re¯ections

1310 re¯ections withI> 2(I) Rint= 0.037

max= 26.4

h=ÿ20!20 k=ÿ6!6 l=ÿ12!12

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.117

S= 1.03 1714 re¯ections 149 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.077P)2 + 0.0041P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.003

max= 0.15 e AÊÿ3

min=ÿ0.16 e AÊÿ3

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O2ÐH2 O1i 0.82 1.87 2.687 (2) 173

Symmetry code: (i)ÿx;1ÿy;1ÿz.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows (Farrugia, 1997) andCAMERON(Watkinet al., 1993); software used to prepare material for publication:

PLATON(Spek, 1990).

The authors thank the Department of Science and Tech-nology, India, for the data collection on the CCD facility set up under the IRFA-DST programme.

References

Bruker (1998).SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Nagarajan, K., Talwalker, P. K., Kulkarni, C. L., Shah, R. K., Shenoy, S. J. & Pravu, S. S. (1985).Indian J. Chem. Sect. B,24, 83±97.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Spek, A. L. (1990).Acta Cryst.A46, C-34.

Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2002). E58, o889–o890

supporting information

Acta Cryst. (2002). E58, o889–o890 [https://doi.org/10.1107/S1600536802012102]

(3-Methoxyphenyl)acetic acid

A. R Choudhury and T. N. Guru Row

(3-methoxyphenyl) acetic acid

Crystal data

C9H10O3 Mr = 166.17

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 16.266 (3) Å b = 5.1024 (11) Å c = 10.095 (2) Å β = 90.73 (1)° V = 837.8 (3) Å3 Z = 4

F(000) = 352 Dx = 1.317 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3478 reflections θ = 2.4–21.3°

µ = 0.10 mm−1 T = 293 K Prism, colourless 0.40 × 0.35 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

6276 measured reflections 1714 independent reflections

1310 reflections with I > 2σ(I) Rint = 0.037

θmax = 26.4°, θmin = 1.3° h = −20→20

k = −6→6 l = −12→12

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.117 S = 1.03 1714 reflections 149 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.077P)2 + 0.0041P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.003

Δρmax = 0.15 e Å−3

Δρmin = −0.16 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O2 0.00838 (6) 0.7832 (2) 0.60937 (12) 0.0731 (4)

H2 −0.0185 0.7149 0.5493 0.110*

O3 0.41770 (7) 0.5419 (2) 0.63480 (11) 0.0737 (4) O1 0.08963 (6) 0.4467 (2) 0.57274 (11) 0.0714 (4) C1 0.07511 (8) 0.6489 (3) 0.63060 (13) 0.0495 (3) C4 0.27706 (8) 0.6621 (3) 0.68455 (12) 0.0487 (3)

H4 0.2764 0.7924 0.6201 0.058*

C5 0.34717 (8) 0.5141 (3) 0.70481 (13) 0.0511 (4) C3 0.20771 (8) 0.6175 (3) 0.75966 (12) 0.0493 (3) C6 0.34836 (9) 0.3195 (3) 0.80052 (15) 0.0612 (4)

H6 0.3950 0.2170 0.8134 0.073*

C8 0.21015 (10) 0.4272 (3) 0.85640 (14) 0.0615 (4)

H8 0.1644 0.3982 0.9086 0.074*

C2 0.13036 (9) 0.7699 (3) 0.73258 (15) 0.0588 (4)

H2A 0.1004 0.7872 0.8145 0.071*

H2B 0.1451 0.9447 0.7035 0.071*

C7 0.28013 (11) 0.2797 (3) 0.87604 (15) 0.0676 (5)

H7 0.2811 0.1513 0.9414 0.081*

C9 0.42115 (11) 0.7507 (3) 0.5427 (2) 0.0815 (5)

H9A 0.3779 0.7310 0.4780 0.122*

H9B 0.4733 0.7485 0.4993 0.122*

H9C 0.4146 0.9143 0.5884 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2002). E58, o889–o890

Geometric parameters (Å, º)

O2—C1 1.2991 (16) C3—C2 1.5011 (19)

O2—H2 0.820 C6—C7 1.370 (2)

O3—C5 1.3626 (17) C6—H6 0.930

O3—C9 1.415 (2) C8—C7 1.377 (2)

O1—C1 1.2104 (16) C8—H8 0.930

C1—C2 1.4917 (19) C2—H2A 0.970

C4—C5 1.3809 (19) C2—H2B 0.970

C4—C3 1.3860 (19) C7—H7 0.930

C4—H4 0.930 C9—H9A 0.960

C5—C6 1.385 (2) C9—H9B 0.960

C3—C8 1.377 (2) C9—H9C 0.960

C1—O2—H2 109.5 C7—C8—H8 119.9

C5—O3—C9 117.39 (12) C3—C8—H8 119.9

O1—C1—O2 122.53 (12) C1—C2—C3 114.05 (11)

O1—C1—C2 124.49 (12) C1—C2—H2A 108.7

O2—C1—C2 112.98 (12) C3—C2—H2A 108.7

C5—C4—C3 120.38 (12) C1—C2—H2B 108.7

C5—C4—H4 119.8 C3—C2—H2B 108.7

C3—C4—H4 119.8 H2A—C2—H2B 107.6

O3—C5—C4 124.42 (12) C6—C7—C8 120.86 (14)

O3—C5—C6 115.61 (13) C6—C7—H7 119.6

C4—C5—C6 119.96 (13) C8—C7—H7 119.6

C8—C3—C4 119.16 (13) O3—C9—H9A 109.5

C8—C3—C2 120.72 (13) O3—C9—H9B 109.5

C4—C3—C2 120.10 (12) H9A—C9—H9B 109.5

C7—C6—C5 119.37 (14) O3—C9—H9C 109.5

C7—C6—H6 120.3 H9A—C9—H9C 109.5

C5—C6—H6 120.3 H9B—C9—H9C 109.5

C7—C8—C3 120.25 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2···O1i 0.82 1.87 2.687 (2) 173

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical