2,2′ Bi­pyridine­(octa­carbonyl)­dirhenium(Re–Re)

11  Download (0)

Full text

(1)

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,2

000

-Bipyridine(octacarbonyl)dirhenium(

Re

±

Re

)

Alexander J. Blake,* Michael W. George, Emma L. Little and James J. Turner

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England UK

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study

T= 220 K

Mean(C±C) = 0.019 AÊ

Rfactor = 0.046

wRfactor = 0.136

Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, [Re2(C10H8N2)(CO)8], both Re atoms have distorted octahedral coordination geometry. The carbo-nyls of the Re(CO)5 moiety are fully staggered relative to those of the Re(CO)3unit. We are currently interested in the application of Re-diimine complexes as catalysts for the photo- and electro-chemical reduction of CO2. The (2,20 -bipyridine)Re(CO)3. radical, a key intermediate in the [Cl(2,20-bipyridine)Re(CO)

3] catalytic CO2 reduction cycle, is formed by Clÿloss from [Cl(2,20-bipyridine)Re(CO)

3]ÿ.. We synthesized the title compound as a precursor to the (2,20

-bipyridine)Re(CO)3. radical and so that we can examine the structural features of the (2,20-bipyridine)Re(CO)

3 moiety following irradiation of the title compound.

Experimental

The title compound (I) was prepared by re¯uxing [Re2(CO)10] with

excess bipyridyl in xylene for 3 d. The xylene was removed and the residual starting material extracted by dissolution in diethyl ether and precipitating the product with pentane. Crystals were obtained by slow concentration of an acetone solution in the dark.

Crystal data

[Re2(C10H8N2)(CO)8] Mr= 752.66

Triclinic,P1

a= 10.155 (5) AÊ

b= 13.586 (5) AÊ

c= 14.972 (8) AÊ

= 80.55 (5)

= 73.07 (4)

= 85.40 (5) V= 1948.1 (16) AÊ3

Z= 4

Dx= 2.566 Mg mÿ3

MoKradiation Cell parameters from 43

re¯ections

= 12.5±14.5

= 12.47 mmÿ1 T= 220 (2) K Plate, red

0.650.240.09 mm

(2)

Data collection

Stoe Stadi-4 four-circle diffractometer

!/scans

Absorption correction: re®ned from

F(DIFABS; Walker & Stuart, 1983)

Tmin= 0.049,Tmax= 0.310

6852 measured re¯ections 6852 independent re¯ections

5903 re¯ections withI> 2(I)

max= 25.0 h=ÿ11!12

k=ÿ15!16

l= 0!17

3 standard re¯ections frequency: 60 min intensity variation: random

3.2%

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.046 wR(F2) = 0.136 S= 1.11 6852 re¯ections 542 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.082P)2

+ 20.60P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.03

max= 2.74 e AÊÿ3

min=ÿ2.72 e AÊÿ3

The crystal was transferred into the nitrogen stream of an Oxford Cryosystems open-¯ow cryostat (Cosier & Glazer, 1986) operating at 150 (2) K. The crystal used was unsuitable for absorption correction using scans (tmid'3.0) and it was not possible to index and measure crystal faces with suf®cient accuracy for a numerical correction. Furthermore, because of the low symmetry we could not employHABITUS(Herrendorf, 1995) to optimize the crystal shape and dimensions. We reluctantly, therefore, had to use DIFABS

(Walker & Stuart, 1983) to apply empirical corrections. The ®nal residual electron density extrema lie near Re2. H atoms were placed geometrically and re®ned riding at a distance of 0.95 AÊ from their parent C atoms withUiso(H) = 1.2Ueq(C).

Data collection:Stadi4 (Stoe & Cie, 1997); cell re®nement:Stadi4; data reduction:X-RED(Stoe & Cie, 1997); program(s) used to solve structure:SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2001); software used to prepare material for publication:SHELXL97 andPLATON.

We thank EPSRC for the award of a diffractometer.

References

Cosier, J. & Glazer, A. M. (1986).J. Appl. Cryst.19, 105±107. Herrendorf, W. (1995).HABITUS.University of Giessen, Germany. Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2001).PLATON.University of Utrecht, The Netherlands. Stoe & Cie (1997).Stadi4 andX-RED.Stoe and Cie, Darmstadt, Germany. Walker, N. & Stuart, D. (1983).Acta Cryst.A39, 158±166.

Acta Cryst.(2001). E57, m378±m379 Alexander J. Blakeet al. [Re2(C10H8N2)(CO)8]

m379

metal-organic papers

Figure 1

(3)

supporting information

Acta Cryst. (2001). E57, m378–m379 [doi:10.1107/S1600536801011278]

2,2

-Bipyridine(octacarbonyl)dirhenium(

Re

Re

)

Alexander J. Blake, Michael W. George, Emma L. Little and James J. Turner

S1. Comment

no comment

S2. Experimental

The title compound was prepared by refluxing [Re2(CO)10] with excess bipyridyl in xylene for 3 days. The xylene was

removed and the residual starting material extracted by dissolution in diethyl ether and precipitating the product with pentane. Crystals were obtained by slow concentration of an acetone solution in the dark.

S3. Refinement

The crystal was transferred into the nitrogen stream of an Oxford Cryosystems open-flow cryostat (Cosier & Glazer, 1986) operating at 150 (2) K. The crystal used was unsuitable for absorption correction using ψ scans (µ × tmid ≈ 3.0) and it was not possible to index and measure crystal faces with sufficient accuracy for a numerical correction.

(4)

supporting information

sup-2

Acta Cryst. (2001). E57, m378–m379 Figure 1

A general view of one of the two independent molecules of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

(I)

Crystal data

C18H8N2O8Re2 Mr = 752.66

Triclinic, P1

a = 10.155 (5) Å

b = 13.586 (5) Å

c = 14.972 (8) Å

α = 80.55 (5)°

β = 73.07 (4)°

γ = 85.40 (5)°

V = 1948.1 (16) Å3

Z = 4

F(000) = 1376

Dx = 2.566 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 43 reflections

θ = 12.5–14.5°

µ = 12.47 mm−1 T = 220 K Plate, red

0.65 × 0.24 × 0.09 mm

Data collection

Stoe Stadi-4 four-circle diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/θ scans

Absorption correction: part of the refinement model (ΔF)

(DIFABS; Walker & Stuart, 1983)

Tmin = 0.049, Tmax = 0.310

(5)

6852 independent reflections 5903 reflections with I > 2σ(I)

Rint = 0.0

θmax = 25.0°, θmin = 2.6° h = −11→12

k = −15→16

l = 0→17

3 standard reflections every 60 min intensity decay: random variation +−3.2%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.136 S = 1.11 6852 reflections 542 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.082P)2 + 20.6P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.03

Δρmax = 2.74 e Å−3

Δρmin = −2.72 e Å−3

Special details

Experimental. The crystal used for data collection was unsuitable for absorption correction using ψ scans (µ*tmid ≈ 3.0) and it was not possible to index and measure crystal faces with sufficient accuracy for a numerical correction.

Furthermore, the low crystal symmetry meant that it was not possible to optimize the crystal dimensions and shape using

HABITUS. Relectantly therefore we resorted to the use of DIFABS to apply empirical corrections. The final residual electron density extrema lie near the Re atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Re1 0.84644 (5) 0.72901 (4) 0.96382 (3) 0.02809 (16) Re2 0.53124 (5) 0.71670 (4) 1.04708 (3) 0.02721 (16)

N1 0.8327 (9) 0.8829 (8) 0.9839 (7) 0.027 (2)

C2 0.8416 (11) 0.9037 (9) 1.0678 (9) 0.025 (2)

C3 0.8340 (13) 1.0011 (10) 1.0871 (10) 0.033 (3)

H3 0.8412 1.0137 1.1460 0.040*

C4 0.8156 (13) 1.0803 (10) 1.0184 (10) 0.037 (3)

H4 0.8086 1.1473 1.0304 0.044*

C5 0.8080 (14) 1.0593 (11) 0.9340 (11) 0.039 (3)

H5 0.7960 1.1118 0.8863 0.047*

C6 0.8178 (13) 0.9611 (10) 0.9184 (10) 0.036 (3)

H6 0.8138 0.9478 0.8589 0.043*

(6)

supporting information

sup-4

Acta Cryst. (2001). E57, m378–m379

H3′ 0.8784 0.8852 1.2420 0.043*

C4′ 0.8979 (13) 0.7357 (11) 1.2818 (10) 0.039 (3)

H4′ 0.9027 0.7382 1.3438 0.047*

C5′ 0.9084 (13) 0.6463 (11) 1.2482 (10) 0.040 (3)

H5′ 0.9254 0.5860 1.2859 0.048*

C6′ 0.8942 (12) 0.6444 (11) 1.1599 (9) 0.032 (3)

H6′ 0.9010 0.5819 1.1379 0.039*

C11 0.8510 (14) 0.5874 (11) 0.9642 (11) 0.040 (3) O11 0.8537 (12) 0.5035 (8) 0.9648 (10) 0.062 (3) C12 1.0396 (14) 0.7294 (11) 0.9022 (11) 0.040 (3) O12 1.1545 (10) 0.7256 (10) 0.8604 (8) 0.058 (3) C13 0.8117 (13) 0.7510 (10) 0.8432 (8) 0.034 (3) O13 0.7885 (11) 0.7705 (10) 0.7713 (8) 0.057 (3) C21 0.5504 (16) 0.6269 (13) 0.9519 (11) 0.046 (4) O21 0.5626 (13) 0.5751 (9) 0.8970 (8) 0.059 (3) C22 0.5279 (14) 0.8338 (12) 0.9513 (11) 0.041 (3) O22 0.5298 (11) 0.9025 (10) 0.8966 (8) 0.057 (3) C23 0.5370 (13) 0.8117 (11) 1.1342 (10) 0.036 (3) O23 0.5442 (11) 0.8660 (8) 1.1815 (8) 0.050 (3) C24 0.3340 (14) 0.6995 (11) 1.0942 (10) 0.035 (3) O24 0.2186 (10) 0.6913 (9) 1.1181 (8) 0.051 (3) C25 0.5882 (14) 0.6058 (10) 1.1340 (9) 0.034 (3) O25 0.6218 (11) 0.5440 (8) 1.1841 (8) 0.049 (3) Re3 0.24594 (5) 0.65085 (4) 0.41160 (3) 0.02698 (16) Re4 0.19284 (5) 0.79814 (4) 0.55540 (3) 0.02662 (16) N1* 0.3415 (10) 0.8972 (8) 0.4548 (7) 0.027 (2) C2* 0.4734 (12) 0.8846 (9) 0.4545 (8) 0.026 (3) C3* 0.5790 (14) 0.9424 (10) 0.3939 (10) 0.038 (3)

H3* 0.6719 0.9298 0.3953 0.046*

C4* 0.5425 (15) 1.0203 (11) 0.3307 (10) 0.042 (3)

H4* 0.6108 1.0623 0.2878 0.050*

C5* 0.4070 (17) 1.0352 (11) 0.3314 (10) 0.045 (4)

H5* 0.3809 1.0875 0.2887 0.054*

C6* 0.3084 (14) 0.9737 (10) 0.3944 (9) 0.035 (3)

H6* 0.2146 0.9857 0.3951 0.042*

N1*′ 0.3884 (10) 0.7521 (8) 0.5832 (8) 0.031 (2) C2*′ 0.5009 (12) 0.8041 (10) 0.5261 (9) 0.029 (3) C3*′ 0.6301 (13) 0.7795 (13) 0.5408 (10) 0.042 (4)

H3*B 0.7096 0.8118 0.4996 0.051*

C4*′ 0.6417 (14) 0.7090 (11) 0.6143 (10) 0.039 (3)

H4*B 0.7291 0.6933 0.6252 0.046*

C5*′ 0.5284 (15) 0.6611 (14) 0.6722 (11) 0.053 (4)

H5*B 0.5356 0.6121 0.7238 0.064*

C6*′ 0.4051 (14) 0.6847 (12) 0.6547 (10) 0.041 (3)

H6*B 0.3263 0.6514 0.6956 0.049*

(7)

O32 −0.0672 (10) 0.6144 (8) 0.5018 (8) 0.048 (3) C33 0.4430 (13) 0.6847 (9) 0.3690 (10) 0.031 (3) O33 0.5563 (10) 0.7035 (8) 0.3468 (7) 0.042 (2) C34 0.2555 (14) 0.5606 (11) 0.3224 (10) 0.039 (3) O34 0.2543 (12) 0.5077 (8) 0.2698 (7) 0.049 (3) C35 0.2082 (13) 0.7750 (10) 0.3314 (9) 0.034 (3) O35 0.1877 (11) 0.8473 (8) 0.2866 (8) 0.047 (2) C41 0.0901 (13) 0.6923 (11) 0.6436 (9) 0.034 (3) O41 0.0339 (11) 0.6278 (9) 0.6957 (8) 0.053 (3) C42 0.1400 (13) 0.8848 (11) 0.6500 (10) 0.036 (3) O42 0.1009 (12) 0.9358 (10) 0.7055 (8) 0.058 (3) C43 0.0336 (14) 0.8477 (10) 0.5133 (10) 0.035 (3) O43 −0.0613 (10) 0.8751 (9) 0.4896 (9) 0.054 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-6

Acta Cryst. (2001). E57, m378–m379

Re4 0.0212 (2) 0.0273 (3) 0.0311 (3) 0.00023 (19) −0.00580 (19) −0.0071 (2) N1* 0.026 (5) 0.031 (6) 0.027 (5) 0.000 (4) −0.011 (4) −0.009 (4) C2* 0.027 (6) 0.020 (6) 0.029 (6) −0.005 (5) −0.001 (5) −0.006 (5) C3* 0.038 (7) 0.030 (7) 0.046 (8) −0.006 (6) −0.004 (6) −0.015 (6) C4* 0.049 (8) 0.035 (8) 0.036 (8) −0.015 (6) 0.000 (6) −0.008 (6) C5* 0.063 (10) 0.034 (8) 0.036 (8) −0.009 (7) −0.010 (7) −0.002 (6) C6* 0.044 (7) 0.030 (7) 0.034 (7) 0.006 (6) −0.011 (6) −0.014 (6) N1*′ 0.029 (5) 0.032 (6) 0.035 (6) 0.003 (4) −0.012 (4) −0.006 (5) C2*′ 0.020 (5) 0.037 (7) 0.031 (6) −0.002 (5) −0.006 (5) −0.015 (6) C3*′ 0.024 (6) 0.067 (11) 0.044 (8) 0.002 (6) −0.014 (6) −0.025 (8) C4*′ 0.037 (7) 0.046 (9) 0.037 (7) 0.016 (6) −0.017 (6) −0.016 (7) C5*′ 0.041 (8) 0.076 (12) 0.040 (8) 0.014 (8) −0.013 (7) −0.004 (8) C6*′ 0.030 (7) 0.059 (10) 0.034 (7) 0.002 (6) −0.009 (6) −0.012 (7) C31 0.038 (7) 0.029 (7) 0.041 (8) −0.001 (6) −0.010 (6) 0.011 (6) O31 0.071 (8) 0.061 (8) 0.071 (8) 0.005 (6) −0.031 (7) 0.019 (7) C32 0.032 (7) 0.027 (7) 0.046 (8) 0.009 (5) −0.016 (6) −0.009 (6) O32 0.039 (6) 0.038 (6) 0.066 (7) −0.006 (4) −0.009 (5) −0.008 (5) C33 0.040 (8) 0.010 (6) 0.045 (8) 0.008 (5) −0.017 (6) −0.007 (5) O33 0.031 (5) 0.040 (6) 0.055 (6) −0.003 (4) −0.010 (4) −0.003 (5) C34 0.032 (7) 0.042 (9) 0.040 (8) 0.001 (6) −0.008 (6) 0.001 (7) O34 0.062 (7) 0.047 (7) 0.040 (6) −0.002 (5) −0.013 (5) −0.012 (5) C35 0.038 (7) 0.031 (8) 0.033 (7) −0.017 (6) −0.010 (6) −0.001 (6) O35 0.062 (7) 0.032 (6) 0.051 (6) −0.001 (5) −0.025 (5) −0.001 (5) C41 0.029 (6) 0.039 (8) 0.031 (7) −0.007 (6) −0.003 (5) −0.006 (6) O41 0.049 (6) 0.051 (7) 0.044 (6) −0.016 (5) 0.009 (5) 0.003 (5) C42 0.030 (6) 0.034 (8) 0.045 (8) −0.008 (6) −0.011 (6) −0.006 (6) O42 0.059 (7) 0.068 (8) 0.050 (7) 0.000 (6) −0.007 (5) −0.038 (6) C43 0.035 (7) 0.024 (7) 0.047 (8) −0.002 (5) −0.012 (6) −0.003 (6) O43 0.034 (5) 0.052 (7) 0.082 (8) 0.009 (5) −0.027 (6) −0.012 (6)

Geometric parameters (Å, º)

Re1—Re2 3.0856 (18) Re4—C41 1.927 (14)

Re1—N1 2.149 (10) Re4—C42 1.918 (14)

Re1—N1′ 2.184 (11) Re4—C43 1.935 (14)

Re1—C11 1.920 (15) N1*—C2* 1.336 (15)

Re1—C12 1.909 (14) N1*—C6* 1.351 (17)

Re1—C13 1.910 (13) C2*—C3* 1.387 (18)

Re2—C21 1.982 (17) C2*—C2*′ 1.470 (19)

Re2—C22 1.964 (16) C3*—C4* 1.40 (2)

Re2—C23 1.995 (14) C4*—C5* 1.37 (2)

Re2—C24 1.940 (13) C5*—C6* 1.38 (2)

Re2—C25 1.988 (15) N1*′—C2*′ 1.378 (16)

N1—C2 1.360 (16) N1*′—C6*′ 1.330 (19)

N1—C6 1.353 (17) C2*′—C3*′ 1.398 (17)

C2—C3 1.391 (17) C3*′—C4*′ 1.36 (2)

C2—C2′ 1.486 (17) C4*′—C5*′ 1.36 (2)

(9)

C4—C5 1.37 (2) C31—O31 1.121 (17)

C5—C6 1.38 (2) C32—O32 1.144 (16)

N1′—C2′ 1.371 (16) C33—O33 1.139 (16)

N1′—C6′ 1.326 (17) C34—O34 1.153 (18)

C2′—C3′ 1.363 (17) C35—O35 1.136 (17)

C3′—C4′ 1.38 (2) C41—O41 1.140 (17)

C4′—C5′ 1.37 (2) C42—O42 1.133 (17)

C5′—C6′ 1.377 (19) C43—O43 1.136 (16)

C11—O11 1.136 (17) C3—H3 0.95

C12—O12 1.154 (17) C4—H4 0.95

C13—O13 1.154 (16) C5—H5 0.95

C21—O21 1.142 (19) C6—H6 0.95

C22—O22 1.134 (18) C3′—H3′ 0.95

C23—O23 1.123 (17) C4′—H4′ 0.95

C24—O24 1.130 (16) C5′—H5′ 0.95

C25—O25 1.131 (17) C6′—H6′ 0.95

Re3—Re4 3.0816 (18) C3*—H3* 0.95

Re3—C31 1.994 (14) C4*—H4* 0.95

Re3—C32 1.973 (14) C5*—H5* 0.95

Re3—C33 1.982 (13) C6*—H6* 0.95

Re3—C34 1.934 (16) C3*′—H3*B 0.95

Re3—C35 1.984 (15) C4*′—H4*B 0.95

Re4—N1* 2.166 (11) C5*′—H5*B 0.95

Re4—N1*′ 2.170 (10) C6*′—H6*B 0.95

C13—Re1—C12 89.4 (6) C42—Re4—C43 89.2 (6)

C13—Re1—C11 90.0 (6) C41—Re4—C43 91.8 (6)

C12—Re1—C11 89.1 (6) C42—Re4—N1*′ 94.3 (5)

C13—Re1—N1 96.9 (5) C41—Re4—N1*′ 95.4 (5)

C12—Re1—N1 94.5 (5) C43—Re4—N1*′ 172.0 (5)

C11—Re1—N1 172.2 (5) C42—Re4—N1* 95.4 (5)

C13—Re1—N1′ 171.3 (5) C41—Re4—N1* 169.1 (5)

C12—Re1—N1′ 94.3 (5) C43—Re4—N1* 97.6 (5)

C11—Re1—N1′ 98.0 (5) N1*′—Re4—N1* 74.9 (4)

N1—Re1—N1′ 74.9 (4) C42—Re4—Re3 173.8 (4)

C13—Re1—Re2 85.9 (4) C41—Re4—Re3 85.1 (4)

C12—Re1—Re2 174.0 (4) C43—Re4—Re3 87.0 (4)

C11—Re1—Re2 87.2 (4) N1*′—Re4—Re3 90.1 (3)

N1—Re1—Re2 89.8 (2) N1*—Re4—Re3 89.9 (3)

N1′—Re1—Re2 90.9 (3) C2*—N1*—C6* 117.6 (11)

C24—Re2—C22 97.6 (6) C2*—N1*—Re4 118.4 (8)

C24—Re2—C21 92.0 (6) C6*—N1*—Re4 124.0 (8)

C22—Re2—C21 90.4 (6) N1*—C2*—C3* 124.4 (13)

C24—Re2—C25 97.8 (6) N1*—C2*—C2*′ 114.8 (10)

C22—Re2—C25 164.5 (5) C3*—C2*—C2*′ 120.8 (12)

C21—Re2—C25 90.9 (6) C2*—C3*—C4* 116.9 (13)

C24—Re2—C23 95.3 (5) C5*—C4*—C3* 119.3 (13)

(10)

supporting information

sup-8

Acta Cryst. (2001). E57, m378–m379

C21—Re2—C23 172.6 (6) N1*—C6*—C5* 121.9 (13)

C25—Re2—C23 89.5 (5) C6*′—N1*′—C2*′ 118.6 (11)

C24—Re2—Re1 175.3 (4) C6*′—N1*′—Re4 125.3 (9)

C22—Re2—Re1 83.7 (4) C2*′—N1*′—Re4 115.9 (8)

C21—Re2—Re1 83.5 (4) N1*′—C2*′—C3*′ 119.0 (13)

C25—Re2—Re1 81.1 (4) N1*′—C2*′—C2* 116.1 (10)

C23—Re2—Re1 89.3 (4) C3*′—C2*′—C2* 124.9 (12)

C6—N1—C2 117.5 (11) C4*′—C3*′—C2*′ 119.8 (14)

C6—N1—Re1 124.6 (9) C3*′—C4*′—C5*′ 120.1 (13)

C2—N1—Re1 117.9 (8) C6*′—C5*′—C4*′ 118.7 (15)

N1—C2—C3 122.0 (12) N1*′—C6*′—C5*′ 123.6 (14)

N1—C2—C2′ 115.8 (10) O31—C31—Re3 177.0 (13)

C3—C2—C2′ 122.1 (11) O32—C32—Re3 178.6 (12)

C2—C3—C4 119.1 (12) O33—C33—Re3 178.3 (12)

C5—C4—C3 118.8 (13) O34—C34—Re3 176.6 (12)

C4—C5—C6 119.5 (14) O35—C35—Re3 178.5 (11)

N1—C6—C5 123.1 (13) O41—C41—Re4 177.4 (13)

C6′—N1′—C2′ 118.1 (11) O42—C42—Re4 175.9 (12)

C6′—N1′—Re1 124.5 (9) O43—C43—Re4 178.6 (13)

C2′—N1′—Re1 117.4 (8) C2—C3—H3 120.4

N1′—C2′—C3′ 121.5 (12) C4—C3—H3 120.5

N1′—C2′—C2 113.9 (10) C5—C4—H4 120.6

C3′—C2′—C2 124.7 (12) C3—C4—H4 120.6

C2′—C3′—C4′ 120.2 (13) C4—C5—H5 120.3

C5′—C4′—C3′ 117.8 (13) C6—C5—H5 120.3

C4′—C5′—C6′ 119.9 (13) N1—C6—H6 118.4

N1′—C6′—C5′ 122.4 (13) C5—C6—H6 118.4

O11—C11—Re1 179.7 (14) C2′—C3′—H3′ 119.9

O12—C12—Re1 175.1 (12) C4′—C3′—H3′ 119.9

O13—C13—Re1 175.6 (13) C5′—C4′—H4′ 121.1

O21—C21—Re2 179.5 (14) C3′—C4′—H4′ 121.1

O22—C22—Re2 177.7 (13) C4′—C5′—H5′ 120.1

O23—C23—Re2 177.9 (12) C6′—C5′—H5′ 120.1

O24—C24—Re2 177.2 (13) N1′—C6′—H6′ 118.8

O25—C25—Re2 178.7 (11) C5′—C6′—H6′ 118.8

C34—Re3—C32 91.2 (6) C2*—C3*—H3* 121.5

C34—Re3—C33 97.2 (5) C4*—C3*—H3* 121.5

C32—Re3—C33 171.5 (5) C5*—C4*—H4* 120.4

C34—Re3—C31 97.9 (6) C3*—C4*—H4* 120.4

C32—Re3—C31 89.8 (6) C4*—C5*—H5* 120.1

C33—Re3—C31 87.8 (5) C6*—C5*—H5* 120.1

C34—Re3—C35 97.0 (6) N1*—C6*—H6* 119.0

C32—Re3—C35 92.2 (5) C5*—C6*—H6* 119.0

C33—Re3—C35 88.0 (5) C4*′—C3*′—H3*B 120.1

C31—Re3—C35 164.9 (6) C2*′—C3*′—H3*B 120.1

C34—Re3—Re4 173.0 (4) C3*′—C4*′—H4*B 119.9

C32—Re3—Re4 82.4 (4) C5*′—C4*′—H4*B 119.9

(11)

C31—Re3—Re4 85.0 (4) C4*′—C5*′—H5*B 120.7

C35—Re3—Re4 80.5 (4) N1*′—C6*′—H6*B 118.2

Figure

Figure 1

Figure 1

p.4

References