• No results found

catena Poly[[(2,2′ bi­pyridine)copper(II)] μ 5 nitro­isophthalato]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[(2,2′ bi­pyridine)copper(II)] μ 5 nitro­isophthalato]"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m158

Xiaoet al. [Cu(C8H3NO6)(C10H8N2)] doi:10.1107/S1600536804032970 Acta Cryst.(2005). E61, m158±m159 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[(2,2

000

-bipyridine)copper(II)]-l

-5-nitroisophthalato]

Hong-Ping Xiao,* Xin-Hua Li and Ya-Qian Cheng

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou, 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.040

wRfactor = 0.097

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [Cu(C8H3NO6)(C10H8N2)]n, the Cu

atom exists in a four-coordinate environment de®ned by two carboxyl O atoms belonging to two 5-nitroisophthalate dianions and two N atoms from a 2,20-bipyridine molecule. The 5-nitroisophthalate dianion acts as a bridge between two Cu atoms in a tris-monodentate coordination mode, resulting in a zigzag coordination polymer.

Comment

Following reports on the synthesis of one- and three-dimen-sional metal coordination polymers by using multicarboxylic acid ligands (Liuet al., 2002; Luet al., 2001; O0Keeffeet al., 2000; Yaghi et al., 2003) such as terephthalic acid (Zhuet al., 2004), isophthalic acid (Xiao et al., 2004) and 1,2,4,5-benzenetetracarboxylic acid (Longet al., 2003), we have used 5-nitroisophthalic acid in the synthesis of a coordination polymer, (I), of a copper(II) derivative in which the metal atom is chelated by 2,20-bipyridine. The CuIIatom has a

four-coordinate environment de®ned by two carboxyl O atoms belonging to two 5-nitroisophthalate dianions and two N atoms from the heterocycle (Fig. 1); the geometry is square planar. The 5-nitroisophthalate dianion functions as a bridge between two Cu atoms, giving rise to a zigzag chain (Fig. 2). The motif is similar to those of {[Cu(phen)(phth)(H2O)]

-H2ODMF}n (phen is 1,10-phenanthroline and phth is

isophthalate; Xiao et al., 2004) and {[Cu(2,20 -bipy)-(tp)(H2O)]H2ODMF}n(tp is terephthalate and 2,20-bipy is

2,20-bipyridine; Xiao & Zhu, 2003). The structure differs in the mode of bonding as well as the deprotonation of the carboxyl groups of the 5-nitroisophthalate anion compared with those noted in [CuCl(phen)2](C8H4NO6)2H2O (Yeet al., 2004). In

(I), the two carboxyl groups are deprotoned and they are involved in coordination to the Cu atoms, whereas in [CuCl(phen)2](C8H4NO6)2H2O, only one carboxyl group is

deprotoned.

(2)

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of 5-nitroisophthalic acid (0.3 mmol), Cu(CH3

-COO)2H2O (0.3 mmol), 2,2-bipyridine (0.3 mmol) and water

(8.0 ml) in a 15.0 ml telfon-lined stainless steel reactor. The solution was heated at 423 K for four days. After reaction, the vessel was slowly cooled to room temperature to give blue crystals.

Crystal data

[Cu(C8H3NO6)(C10H8N2)]

Mr= 428.84

Monoclinic,P21/c

a= 9.5529 (11) AÊ

b= 12.6089 (14) AÊ

c= 13.7463 (16) AÊ

= 95.238 (2)

V= 1648.8 (3) AÊ3

Z= 4

Dx= 1.728 Mg mÿ3

MoKradiation Cell parameters from 3556

re¯ections

= 2.2±28.0

= 1.37 mmÿ1

T= 298 (2) K Block, blue

0.300.220.13 mm Data collection

Bruker APEX area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.684,Tmax= 0.842

9984 measured re¯ections

3713 independent re¯ections 3266 re¯ections withI> 2(I)

Rint= 0.024

max= 27.5

h=ÿ12!12

k=ÿ7!16

l=ÿ17!17 Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.097

S= 1.05 3713 re¯ections 253 parameters

w= 1/[2(F

o2) + (0.0472P)2

+ 0.9168P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.36 e AÊÿ3 min=ÿ0.26 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO2 1.9149 (17)

Cu1ÐO3i 1.9538 (16) Cu1ÐN1Cu1ÐN2 2.0046 (19)2.017 (2)

O2ÐCu1ÐO3i 98.71 (7)

O2ÐCu1ÐN1 91.11 (7) O3iÐCu1ÐN1 170.18 (7)

O2ÐCu1ÐN2 168.97 (8) O3iÐCu1ÐN2 89.94 (7)

N1ÐCu1ÐN2 80.32 (8)

Symmetry code: (i)x;ÿy‡1 2;z‡12.

H atoms were included in the re®nement in calculated positions in the riding-model approximation [CÐH = 0.93 AÊ and Uiso(H) =

1.2Ueq(C)].

Data collection:SMART(Bruker, 2002); cell re®nement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge ®nancial support by the Wenzhou Science and Technology Project of China (No. S2003A008).

References

Bruker (2002).SMART(Version 5.618),SAINT(Version 6.02a),SADABS

(Version 2.03) andXP. Bruker AXS Inc., Madison, Wisconsin, USA. Liu, G. F., Qiao, Z. P., Wang, H. Z., Chen, X. M. & Yang, G. (2002).New J.

Chem.26, 791±795.

Long, L. S., Ren, Y. P., Ma, L. H., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2003).Inorg. Chem. Commun.6, 690±693.

Lu, J. Y., Norman, C., Abboud, K. A. & Ison, A. (2001). Inorg. Chem. Commun.4, 459±461.

O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000).J. Solid State Chem.152, 3±20.

Sheldrick, G. M. (1997).SHELX97. University of GoÈttingen, Germany. Xiao, H. P., Li, X. H. & Hu, M. L (2004).Acta Cryst.E60, m468±m470. Xiao, H. P. & Zhu, L. G. (2003).Chin. J. Inorg. Chem.19, 1179±1183. Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim,

J. (2003).Nature(London),423, 705±714.

Ye, M. D., Xiao, H. P. & Hu, M. L. (2004).Acta Cryst.E60, m1516±m1518. Zhu, L. G., Xiao, H. P. & Lu, J. Y. (2004).Inorg. Chem. Commun.7, 94±96.

Figure 2

View of the zigzag chain of (I).

Figure 1

The coordination environment of the Cu atom in (I), with atom numbering, showing displacement ellipsoids at the 30% probability level [symmetry code: (i)x,ÿy+3

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m158–m159

supporting information

Acta Cryst. (2005). E61, m158–m159 [https://doi.org/10.1107/S1600536804032970]

catena

-Poly[[(2,2

-bipyridine)copper(II)]-

µ

-5-nitroisophthalato]

Hong-Ping Xiao, Xin-Hua Li and Ya-Qian Cheng

catena-Poly[[(2,2′-bipyridine)copper(II)]-µ-5-nitroisophthalato]

Crystal data

[Cu(C8H3NO6)(C10H8N2)] Mr = 428.84

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.5529 (11) Å

b = 12.6089 (14) Å

c = 13.7463 (16) Å

β = 95.238 (2)°

V = 1648.8 (3) Å3 Z = 4

F(000) = 868

Dx = 1.728 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3556 reflections

θ = 2.2–28.0°

µ = 1.37 mm−1 T = 298 K Block, blue

0.30 × 0.22 × 0.13 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: integration (SADABS; Bruker, 2002)

Tmin = 0.684, Tmax = 0.842

9984 measured reflections 3713 independent reflections 3266 reflections with I > 2σ(I)

Rint = 0.024

θmax = 27.5°, θmin = 2.1° h = −12→12

k = −7→16

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.097 S = 1.05 3713 reflections 253 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters not defined?

w = 1/[σ2(F

o2) + (0.0472P)2 + 0.9168P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.36 e Å−3

Δρmin = −0.26 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.63928 (3) 0.49329 (2) 0.439222 (19) 0.02441 (11)

O1 0.69814 (19) 0.36958 (18) 0.27940 (14) 0.0496 (5)

(4)

O3 0.54050 (18) 0.12488 (13) −0.00557 (11) 0.0316 (4)

O4 0.4132 (2) 0.20218 (17) −0.13129 (14) 0.0586 (6)

O5 0.2053 (2) 0.61591 (18) 0.05076 (16) 0.0626 (7)

O6 0.1410 (3) 0.5108 (2) −0.06762 (17) 0.0803 (10)

N1 0.75910 (19) 0.61592 (15) 0.40514 (13) 0.0255 (4)

N2 0.7737 (2) 0.49919 (15) 0.56109 (15) 0.0295 (5)

N3 0.2168 (3) 0.5340 (2) 0.00489 (16) 0.0424 (6)

C1 0.7367 (2) 0.67571 (19) 0.32486 (17) 0.0313 (5)

H1 0.6605 0.6603 0.2801 0.038*

C2 0.8230 (3) 0.7593 (2) 0.3064 (2) 0.0431 (7)

H2 0.8053 0.8001 0.2502 0.052*

C3 0.9360 (3) 0.7813 (2) 0.3728 (2) 0.0509 (8)

H3 0.9970 0.8365 0.3612 0.061*

C4 0.9584 (3) 0.7214 (2) 0.4562 (2) 0.0416 (6)

H4 1.0334 0.7363 0.5022 0.050*

C5 0.8678 (2) 0.63852 (19) 0.47103 (16) 0.0275 (5)

C6 0.8790 (2) 0.56972 (19) 0.55786 (16) 0.0279 (5)

C7 0.9881 (2) 0.5748 (2) 0.63163 (18) 0.0349 (6)

H7 1.0607 0.6234 0.6282 0.042*

C8 0.9876 (3) 0.5067 (2) 0.70998 (19) 0.0405 (7)

H8 1.0615 0.5071 0.7590 0.049*

C9 0.8762 (3) 0.4379 (2) 0.71497 (19) 0.0434 (7)

H9 0.8723 0.3930 0.7683 0.052*

C10 0.7707 (3) 0.4371 (2) 0.63936 (18) 0.0390 (6)

H10 0.6948 0.3915 0.6432 0.047*

C11 0.5921 (2) 0.42224 (19) 0.25698 (16) 0.0295 (5)

C12 0.5083 (2) 0.40583 (18) 0.15967 (16) 0.0265 (5)

C13 0.4049 (3) 0.47762 (19) 0.12727 (17) 0.0290 (5)

H13 0.3879 0.5373 0.1641 0.035*

C14 0.3277 (2) 0.4589 (2) 0.03931 (17) 0.0292 (5)

C15 0.3491 (2) 0.37116 (19) −0.01775 (16) 0.0289 (5)

H15 0.2952 0.3609 −0.0768 0.035*

C16 0.4521 (2) 0.29879 (18) 0.01453 (16) 0.0253 (5)

C17 0.5311 (2) 0.31728 (18) 0.10303 (16) 0.0274 (5)

H17 0.6009 0.2692 0.1248 0.033*

C18 0.4699 (3) 0.20208 (19) −0.04856 (17) 0.0306 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.02518 (17) 0.02655 (17) 0.02028 (16) −0.00525 (11) −0.00451 (11) 0.00048 (10)

O1 0.0341 (10) 0.0678 (14) 0.0433 (11) 0.0121 (10) −0.0161 (8) −0.0090 (10)

O2 0.0382 (10) 0.0291 (9) 0.0224 (8) −0.0058 (7) −0.0079 (7) −0.0012 (6)

O3 0.0389 (9) 0.0287 (9) 0.0259 (8) 0.0109 (7) −0.0042 (7) −0.0025 (7)

O4 0.0857 (16) 0.0521 (13) 0.0325 (10) 0.0363 (12) −0.0251 (10) −0.0152 (9)

O5 0.0792 (16) 0.0522 (13) 0.0526 (13) 0.0394 (12) −0.0136 (11) −0.0133 (11)

O6 0.090 (2) 0.089 (2) 0.0523 (15) 0.0562 (15) −0.0422 (15) −0.0247 (12)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m158–m159

N2 0.0292 (11) 0.0350 (12) 0.0232 (10) −0.0003 (8) −0.0048 (8) 0.0006 (8)

N3 0.0479 (14) 0.0461 (13) 0.0312 (12) 0.0224 (11) −0.0064 (10) −0.0008 (10)

C1 0.0298 (12) 0.0313 (13) 0.0317 (12) −0.0033 (10) −0.0025 (10) 0.0006 (10) C2 0.0478 (16) 0.0374 (15) 0.0429 (15) −0.0093 (12) −0.0029 (12) 0.0102 (12) C3 0.0526 (17) 0.0399 (16) 0.0586 (18) −0.0227 (13) −0.0045 (15) 0.0066 (14) C4 0.0372 (14) 0.0418 (15) 0.0431 (15) −0.0154 (12) −0.0102 (12) −0.0038 (12)

C5 0.0239 (11) 0.0283 (12) 0.0295 (11) −0.0007 (9) −0.0017 (9) −0.0079 (9)

C6 0.0250 (11) 0.0321 (13) 0.0263 (11) 0.0014 (9) 0.0003 (9) −0.0099 (9)

C7 0.0258 (12) 0.0448 (15) 0.0327 (13) 0.0019 (11) −0.0060 (10) −0.0133 (11)

C8 0.0372 (15) 0.0559 (18) 0.0261 (12) 0.0111 (12) −0.0103 (11) −0.0116 (11) C9 0.0472 (16) 0.0569 (18) 0.0248 (12) 0.0098 (14) −0.0045 (11) 0.0030 (12) C10 0.0409 (14) 0.0456 (16) 0.0293 (13) −0.0023 (12) −0.0025 (11) 0.0044 (11) C11 0.0296 (12) 0.0328 (13) 0.0247 (11) −0.0082 (10) −0.0048 (9) 0.0004 (10) C12 0.0262 (11) 0.0294 (12) 0.0230 (11) −0.0018 (9) −0.0030 (9) −0.0001 (9) C13 0.0344 (13) 0.0265 (12) 0.0255 (11) 0.0012 (10) −0.0014 (10) −0.0032 (9) C14 0.0313 (12) 0.0284 (12) 0.0267 (11) 0.0071 (10) −0.0038 (10) 0.0026 (10)

C15 0.0327 (12) 0.0327 (13) 0.0200 (10) 0.0025 (10) −0.0051 (9) 0.0008 (9)

C16 0.0277 (11) 0.0247 (11) 0.0230 (11) 0.0004 (9) −0.0008 (9) 0.0005 (9)

C17 0.0266 (11) 0.0266 (12) 0.0278 (11) 0.0015 (9) −0.0039 (9) 0.0014 (9)

C18 0.0332 (12) 0.0310 (13) 0.0264 (12) 0.0049 (10) −0.0032 (10) −0.0030 (10)

Geometric parameters (Å, º)

Cu1—O2 1.9149 (17) C4—C5 1.383 (3)

Cu1—O3i 1.9538 (16) C4—H4 0.9300

Cu1—N1 2.0046 (19) C5—C6 1.471 (3)

Cu1—N2 2.017 (2) C6—C7 1.388 (3)

O1—C11 1.227 (3) C7—C8 1.377 (4)

O2—C11 1.281 (3) C7—H7 0.9300

O3—C18 1.296 (3) C8—C9 1.379 (4)

O3—Cu1ii 1.9538 (16) C8—H8 0.9300

O4—C18 1.214 (3) C9—C10 1.380 (4)

O5—N3 1.220 (3) C9—H9 0.9300

O6—N3 1.213 (3) C10—H10 0.9300

N1—C1 1.338 (3) C11—C12 1.509 (3)

N1—C5 1.345 (3) C12—C13 1.383 (3)

N2—C10 1.333 (3) C12—C17 1.390 (3)

N2—C6 1.346 (3) C13—C14 1.378 (3)

N3—C14 1.467 (3) C13—H13 0.9300

C1—C2 1.376 (3) C14—C15 1.382 (3)

C1—H1 0.9300 C15—C16 1.385 (3)

C2—C3 1.377 (4) C15—H15 0.9300

C2—H2 0.9300 C16—C17 1.392 (3)

C3—C4 1.374 (4) C16—C18 1.515 (3)

C3—H3 0.9300 C17—H17 0.9300

O2—Cu1—O3i 98.71 (7) C8—C7—H7 120.4

(6)

O3i—Cu1—N1 170.18 (7) C7—C8—C9 119.2 (2)

O2—Cu1—N2 168.97 (8) C7—C8—H8 120.4

O3i—Cu1—N2 89.94 (7) C9—C8—H8 120.4

N1—Cu1—N2 80.32 (8) C8—C9—C10 118.8 (3)

C11—O2—Cu1 111.11 (15) C8—C9—H9 120.6

C18—O3—Cu1ii 130.20 (15) C10—C9—H9 120.6

C1—N1—C5 119.5 (2) N2—C10—C9 122.3 (3)

C1—N1—Cu1 125.16 (15) N2—C10—H10 118.8

C5—N1—Cu1 115.37 (15) C9—C10—H10 118.8

C10—N2—C6 119.1 (2) O1—C11—O2 125.0 (2)

C10—N2—Cu1 126.14 (18) O1—C11—C12 120.5 (2)

C6—N2—Cu1 114.70 (16) O2—C11—C12 114.5 (2)

O6—N3—O5 123.6 (2) C13—C12—C17 119.3 (2)

O6—N3—C14 117.9 (2) C13—C12—C11 120.1 (2)

O5—N3—C14 118.5 (2) C17—C12—C11 120.6 (2)

N1—C1—C2 122.1 (2) C14—C13—C12 118.7 (2)

N1—C1—H1 119.0 C14—C13—H13 120.7

C2—C1—H1 119.0 C12—C13—H13 120.7

C1—C2—C3 118.6 (3) C13—C14—C15 122.7 (2)

C1—C2—H2 120.7 C13—C14—N3 119.0 (2)

C3—C2—H2 120.7 C15—C14—N3 118.3 (2)

C4—C3—C2 119.7 (3) C14—C15—C16 118.9 (2)

C4—C3—H3 120.1 C14—C15—H15 120.6

C2—C3—H3 120.1 C16—C15—H15 120.6

C3—C4—C5 119.1 (2) C15—C16—C17 118.9 (2)

C3—C4—H4 120.4 C15—C16—C18 117.43 (19)

C5—C4—H4 120.4 C17—C16—C18 123.7 (2)

N1—C5—C4 121.1 (2) C12—C17—C16 121.6 (2)

N1—C5—C6 114.5 (2) C12—C17—H17 119.2

C4—C5—C6 124.4 (2) C16—C17—H17 119.2

N2—C6—C7 121.3 (2) O4—C18—O3 126.7 (2)

N2—C6—C5 114.67 (19) O4—C18—C16 118.1 (2)

C7—C6—C5 124.0 (2) O3—C18—C16 115.13 (19)

C8—C7—C6 119.1 (2)

References

Related documents

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

This paper will discuss the problem of management and development of cash waqf funds included in the freezing of Muslims to endowments, understanding that is still wrong

In this research, correlation is used to determine the data correlation between the dependent variables (ROA) and independent variables (CGI, Current Ratio, Credit Risk,

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'

De: im (in+dem) internationalen , these words often remain unaligned resulting in gaps in the sequences, and so fragmented paral- lel segments are formed. To allow a small num- ber

3.1 Vanilla Transformer Language Models In order to apply Transformer or self-attention to language modeling, the central problem is how to train a Transformer to effectively encode

In a parallel work, Press and Smith ( 2018 ) pro- pose an “eager translation” model which also out- puts target-side words before the whole input sen- tence is fed in, but there

The results of the study showed that physical fitness components i.e., lower limb strength, agility, dynamic balance and hand eye coordination showed significant