• No results found

(Perchlorato κO)[3,6,14,21 tetra­aza 3,6 difur­yl 27,28 di­hydroxy 10,25 dimeth­yltetra­cyclo­[18 4 3 38,12 015,20]octa­cosa 8,10,12(28),13,17,19,21,23,25,27(1) deca­ene κ4N,N′,O,O′]copper(II) perchlorate di­methyl­formamide solvate

N/A
N/A
Protected

Academic year: 2020

Share "(Perchlorato κO)[3,6,14,21 tetra­aza 3,6 difur­yl 27,28 di­hydroxy 10,25 dimeth­yltetra­cyclo­[18 4 3 38,12 015,20]octa­cosa 8,10,12(28),13,17,19,21,23,25,27(1) deca­ene κ4N,N′,O,O′]copper(II) perchlorate di­methyl­formamide solvate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(Perchlorato-jO)[3,6,14,21-tetraaza-3,6-difuryl-

27,28-dihydroxy-10,25-dimethyltetracyclo-[18.4.3.3

8,12

.0

15,20

]octacosa-8,10,12(28),13,17,19,-21,23,25,27(1)-decaene-j

4

N,N

000

,O,O

000

]copper(II)

perchlorate dimethylformamide solvate

Gang-Chun Sun,aYi-Zhi Li,b Nai-Sheng Chena* and Liu-Fang Wangc

aInstitute of Functional Materials, Fuzhou

University, Fuzhou 35000, People’s Republic of China,bCoordination Chemistry Institute, State

Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China, andcState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.061 wRfactor = 0.140

Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

In the title complex, [Cu(C36H36N4O4)(ClO4)](ClO4)C3H7N,

the coordination number of the CuII atom is 5 and the coordination configuration is best described as distorted tetragonal–pyramidal. There is a 13-membered macrocyclic ring in the molecule. One perchlorate anion and the dimethylformamide molecule do not participate in coordina-tion. There are four intramolecular hydrogen bonds in the structure and these constrain the conformation of the macrocycle and enhance its stability.

Comment

It is of interest to investigate metallic complexes with macrocyclic binucleating ligands containing different binding sites, in order to reproduce the behaviour of certain metallo-proteins (Coughlinet al., 1984). In the course of our study in this field, we synthesized the title complex, (I).

In complex (I), the CuII atom lies at the centre of a

quadrilateral, which consists of two phenolic O atoms and two imino N atoms (O1, O2, N1 and N2). The average Cu—O and Cu—N bond lengths are 1.922 (2) and 1.938 (2) A˚ , respec-tively. The CuII atom deviates from the Cu1/O1/O2/N1/N2 plane by 0.0459 (11) A˚ . A perchlorate anion coordinates to the CuIIatom axially above this plane, with a Cu1—O5 bond length of 2.679 (2) A˚ , which is slightly longer than that of a reported perchlorate Cu—O distance [2.574 (2) A˚ ; Li et al., 1997]. Thus, the coordination number of the CuIIatom is 5 and the coordination configuration is best described as distorted tetragonal–pyramidal.

There is a 13-membered macrocyclic ring in the complex, which includes one Cu atom, two O atoms, two N atoms and eight C atoms. A second perchlorate anion and a

(2)

formamide molecule are present but do not participate in the coordination (Fig. 1).

There are four intramolecular hydrogen bonds in the structure of (I) (Table 1), which constrain the conformation of the macrocycle and enhance its stability.

Experimental

1,6-Bis(2-furyl)-2,5-bis(2-hydroxy-3-formyl-5-methylbenzyl)-2,5-diazahexane was synthesized according to our previously reported method (Sun et al., 2001). To a suspension of 1,6-bis(2-furyl)-2,5-bis(2-hydroxy-3-formyl-5-methylbenzyl)-2,5-diazahexane (1 mmol) in ethanol (5 ml) was added dropwise an ethanol solution (5 ml) of Cu(ClO4)6H2O (1 mmol), and the mixture was stirred until first it

became clear and then a green powder appeared. 1,2-Phenyl-enediamine (1 mmol) was added to the mixture and stirring was continued for 30 h at 313 K. After filtration of the mixture, yellow microcrystals were obtained. Single crystals of (I) suitable for X-ray structure determination were formed by diffusion of diethyl ether into a dimethylformamide solution of the complex.

Crystal data

[Cu(C36H36N4O4)(ClO4)](ClO4

)-C3H7N

Mr= 924.22

Monoclinic,P21=n a= 9.717 (2) A˚ b= 27.863 (3) A˚ c= 14.902 (5) A˚ = 93.06 (2) V= 4028.9 (16) A˚3 Z= 4

Dx= 1.524 Mg m

3

MoKradiation Cell parameters from 1784

reflections = 2.0–25.5

= 0.75 mm1

T= 293 (2) K Prism, yellow 0.320.260.24 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin= 0.79,Tmax= 0.84

17 136 measured reflections

7914 independent reflections 6113 reflections withI> 2(I) Rint= 0.037

max= 26.0

h=11!11 k=16!34 l=14!18

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.061

wR(F2) = 0.140 S= 1.09 7914 reflections 543 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0743P)2

+ 0.9397P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.33 e A˚

3 min=0.75 e A˚

[image:2.610.45.294.72.266.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1A N3 0.97 1.96 2.716 (4) 133 O1—H1A O7 0.97 2.39 3.221 (3) 144 O2—H2B N4 0.97 2.10 2.832 (4) 131 O2—H2B O7 0.97 2.36 3.230 (3) 148

All H atoms were positioned geometrically and refined as riding, with C—H/O—H distances in the range 0.93–0.97 A˚ and with

Uiso(H) = 1.2 to 1.5 timesUeqof the parent atom.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 29671027 and 50272027) and the Postdoctoral Foundation of Fuzhou University.

References

Bruker (2000).SMART,SAINTandSHELXTL,XPREPandXP. Bruker AXS Inc., Madison, Wisconsin, USA.

Coughlin, P. K. & Lippard, S. J. (1984).J. Am. Chem. Soc.106, 2328–2336. Li, C., Kanehisa, N., Miyagi, Y., Nakao, Y., Takamizawa, S., Mori, W. & Kai, Y.

(1997).Bull. Chem. Soc. Jpn,70, 2429–2436.

Sun, G.-C., He, Z.-H., Li, Z.-J., Yuan, X.-D., Yang, Z.-J., Wang, G.-X., Wang, L.-F. & Liu, C.-R. (2001).Molecules,6, 1001–1005.

metal-organic papers

m1066

Sunet al. [Cu(C

[image:2.610.310.565.72.254.2]

36H36N4O4)(ClO4)](ClO4)C3H7N Acta Cryst.(2005). E61, m1065–m1066 Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.

Figure 2

[image:2.610.313.565.428.483.2]
(3)

supporting information

Acta Cryst. (2005). E61, m1065–m1066 [https://doi.org/10.1107/S1600536805011451]

(Perchlorato-

κ

O

)[3,6,14,21-tetraaza-3,6-difuryl-27,28-dihydroxy-10,25-di-

methyltetracyclo-[18.4.3.3

8,12

.0

15,20

]octacosa-8,10,12(28),13,17,19,21,23,25,27(1)-decaene-κ

4

N

,

N

,

O

,

O

]copper(II) perchlorate dimethylformamide solvate

Gang-Chun Sun, Yi-Zhi Li, Nai-Sheng Chen and Liu-Fang Wang

[3,6,14,21-Tetraaza-3,6-difuryl-10,25-dimethyl-27,28- dioxotetracyclo[18.4.3.38,12.015,20]octacosa-

8,10,12 (28),13,17,19,21,23,25,27 (1)-decaene-κ4N,N,O,O](perchlorato- κO)copper(II) perchlorate

dimethylformamide solvate

Crystal data

[Cu(C36H36N4O4)(ClO4)](ClO4)·C3H7N Mr = 924.22

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 9.717 (2) Å

b = 27.863 (3) Å

c = 14.902 (5) Å

β = 93.06 (2)°

V = 4028.9 (16) Å3 Z = 4

F(000) = 1916

Dx = 1.524 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1784 reflections

θ = 2.0–25.5°

µ = 0.75 mm−1 T = 293 K Prism, yellow

0.32 × 0.26 × 0.24 mm

Data collection

Bruker SMART Apex CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.79, Tmax = 0.84

17136 measured reflections 7914 independent reflections 6113 reflections with I > 2σ(I)

Rint = 0.037

θmax = 26.0°, θmin = 1.5° h = −11→11

k = −16→34

l = −14→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.061 wR(F2) = 0.140 S = 1.09 7914 reflections 543 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0743P)2 + 0.9397P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.33 e Å−3

(4)

supporting information

sup-2 Acta Cryst. (2005). E61, m1065–m1066

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 6.5772 (0.0074) x + 2.3014 (0.0251) y + 11.4232 (0.0100) z = 6.3059 (0.0252)

* -0.0459 (0.0011) Cu1 * 0.0308 (0.0013) O1 * -0.0071 (0.0013) O2 * -0.0075 (0.0013) N1 * 0.0298 (0.0013) N2 Rms deviation of fitted atoms = 0.0285

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 −0.2009 (3) 0.93373 (13) −0.0449 (2) 0.0252 (7)

H1 −0.2721 0.9426 −0.0857 0.030*

C2 −0.0599 (3) 0.94964 (13) −0.0459 (2) 0.0265 (7)

H2 −0.0236 0.9705 −0.0872 0.032*

C3 0.0129 (3) 0.92754 (12) 0.0278 (2) 0.0221 (7)

H3 0.1061 0.9310 0.0441 0.026*

C4 −0.0809 (3) 0.89987 (13) 0.0708 (2) 0.0262 (7) C5 −0.0688 (4) 0.86921 (13) 0.1487 (2) 0.0280 (8)

H5C 0.0226 0.8552 0.1494 0.034*

H5D −0.1346 0.8431 0.1416 0.034*

C6 −0.0705 (3) 0.85641 (13) 0.3122 (2) 0.0271 (8)

H6A −0.1499 0.8355 0.3039 0.033*

H6B −0.0807 0.8736 0.3681 0.033*

C7 0.0605 (3) 0.82299 (14) 0.3266 (3) 0.0305 (8)

H7A 0.0370 0.7931 0.3554 0.037*

H7B 0.0880 0.8151 0.2667 0.037*

C8 0.3134 (4) 0.82592 (14) 0.3435 (3) 0.0319 (8)

H8A 0.3203 0.8326 0.2800 0.038*

H8B 0.3900 0.8418 0.3756 0.038*

C9 0.3259 (4) 0.77561 (14) 0.3573 (2) 0.0294 (8) C10 0.2920 (4) 0.73485 (14) 0.3015 (3) 0.0309 (8)

H10 0.2513 0.7357 0.2436 0.037*

C11 0.3319 (3) 0.69274 (12) 0.3508 (2) 0.0236 (7)

H11 0.3208 0.6612 0.3312 0.028*

C12 0.3916 (3) 0.70776 (12) 0.4351 (2) 0.0226 (7)

H12 0.4273 0.6876 0.4804 0.027*

C13 0.1660 (3) 0.84519 (13) 0.4718 (2) 0.0258 (7)

H13A 0.0711 0.8525 0.4836 0.031*

H13B 0.1849 0.8127 0.4926 0.031*

C14 0.2562 (4) 0.87831 (14) 0.5239 (2) 0.0292 (8) C15 0.3530 (3) 0.86246 (13) 0.5908 (2) 0.0246 (7)

(5)

C16 0.4361 (3) 0.89495 (13) 0.6385 (2) 0.0257 (7) C17 0.4235 (3) 0.94392 (12) 0.6198 (2) 0.0248 (7)

H17 0.4794 0.9658 0.6517 0.030*

C18 0.3288 (3) 0.95994 (13) 0.5545 (2) 0.0265 (8) C19 0.2454 (3) 0.92719 (13) 0.5073 (2) 0.0261 (7) C20 0.5378 (4) 0.87720 (15) 0.7135 (3) 0.0335 (9)

H20A 0.6293 0.8874 0.7012 0.050*

H20B 0.5348 0.8428 0.7163 0.050*

H20C 0.5129 0.8903 0.7700 0.050*

C21 0.3242 (4) 1.01129 (14) 0.5421 (3) 0.0323 (8)

H21 0.3858 1.0294 0.5779 0.039*

C22 0.2456 (4) 1.08476 (14) 0.4744 (2) 0.0286 (8) C23 0.3324 (4) 1.11602 (15) 0.5223 (3) 0.0325 (8)

H23 0.3997 1.1040 0.5630 0.039*

C24 0.3194 (4) 1.16523 (15) 0.5098 (3) 0.0311 (8)

H24 0.3779 1.1861 0.5421 0.037*

C25 0.2188 (4) 1.18335 (14) 0.4488 (2) 0.0296 (8)

H25 0.2106 1.2163 0.4397 0.035*

C26 0.1343 (4) 1.15296 (13) 0.4036 (2) 0.0280 (8)

H26 0.0665 1.1648 0.3631 0.034*

C27 0.1446 (4) 1.10234 (13) 0.4146 (2) 0.0255 (7) C28 −0.0385 (4) 1.07764 (13) 0.3044 (2) 0.0283 (8)

H28 −0.0490 1.1102 0.2922 0.034*

C29 −0.1226 (4) 1.04769 (13) 0.2560 (2) 0.0295 (8) C30 −0.2101 (4) 1.06826 (15) 0.1891 (2) 0.0322 (8)

H30 −0.2076 1.1012 0.1789 0.039*

C31 −0.3017 (4) 1.03928 (13) 0.1372 (2) 0.0286 (8) C32 −0.3019 (4) 0.99021 (14) 0.1513 (3) 0.0306 (8)

H32 −0.3600 0.9707 0.1156 0.037*

C33 −0.2157 (3) 0.96983 (13) 0.2184 (2) 0.0249 (7) C34 −0.1260 (4) 0.99819 (13) 0.2688 (2) 0.0269 (7) C35 −0.2213 (4) 0.91738 (13) 0.2429 (2) 0.0276 (8)

H35A −0.2870 0.9013 0.2017 0.033*

H35B −0.2541 0.9143 0.3029 0.033*

C36 −0.3933 (4) 1.05836 (14) 0.0639 (2) 0.0325 (8)

H36A −0.4809 1.0661 0.0870 0.049*

H36B −0.4058 1.0347 0.0174 0.049*

H36C −0.3533 1.0867 0.0397 0.049*

C37 0.4832 (4) 0.84587 (15) 0.0831 (3) 0.0375 (9)

H37A 0.4966 0.8742 0.0479 0.056*

H37B 0.5712 0.8327 0.1024 0.056*

H37C 0.4330 0.8540 0.1347 0.056*

C38 0.4688 (4) 0.78517 (16) −0.0397 (3) 0.0399 (10)

H38A 0.4724 0.8026 −0.0951 0.060*

H38B 0.4188 0.7558 −0.0501 0.060*

H38C 0.5608 0.7780 −0.0169 0.060*

C39 0.2577 (4) 0.80581 (13) 0.0385 (2) 0.0276 (8)

(6)

supporting information

sup-4 Acta Cryst. (2005). E61, m1065–m1066

Cl1 0.31789 (9) 0.95423 (3) 0.24048 (6) 0.02622 (19) Cl2 0.70596 (8) 0.74491 (3) 0.22272 (5) 0.02455 (19) Cu1 0.10210 (4) 1.003902 (14) 0.40453 (3) 0.02437 (13) N1 0.0573 (3) 1.06757 (11) 0.36926 (19) 0.0261 (6) N2 0.2435 (3) 1.03449 (12) 0.4864 (2) 0.0338 (7) N3 −0.0804 (3) 0.89212 (11) 0.2396 (2) 0.0303 (7) N4 0.1815 (3) 0.84695 (11) 0.3735 (2) 0.0279 (7) N5 0.4004 (3) 0.81387 (11) 0.0250 (2) 0.0289 (7) O1 −0.0440 (2) 0.97528 (9) 0.33290 (15) 0.0233 (5)

H1A −0.0033 0.9484 0.3027 0.028*

O2 0.1470 (2) 0.93968 (9) 0.44671 (15) 0.0242 (5)

H2B 0.1647 0.9213 0.3932 0.029*

O3 −0.2124 (2) 0.90239 (9) 0.02836 (16) 0.0248 (5) O4 0.3879 (2) 0.75839 (8) 0.43880 (16) 0.0272 (5) O5 0.2721 (2) 1.00169 (9) 0.26882 (17) 0.0289 (6) O6 0.3663 (3) 0.96044 (10) 0.15609 (17) 0.0335 (6) O7 0.2016 (2) 0.92078 (9) 0.23772 (17) 0.0286 (5) O8 0.4193 (2) 0.93619 (8) 0.30244 (16) 0.0259 (5) O9 0.6513 (3) 0.78369 (11) 0.2674 (2) 0.0420 (7) O10 0.8474 (2) 0.74792 (10) 0.22660 (17) 0.0319 (6) O11 0.6653 (3) 0.70062 (11) 0.24467 (18) 0.0365 (6) O12 0.6573 (3) 0.74450 (10) 0.13739 (18) 0.0358 (6) O13 0.1864 (3) 0.81083 (10) 0.10146 (18) 0.0370 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

C22 0.0326 (18) 0.0263 (19) 0.0281 (19) −0.0029 (15) 0.0130 (15) 0.0010 (15) C23 0.0311 (18) 0.035 (2) 0.032 (2) −0.0048 (16) 0.0069 (15) −0.0014 (17) C24 0.0263 (16) 0.035 (2) 0.031 (2) −0.0034 (15) −0.0044 (15) −0.0052 (17) C25 0.0309 (17) 0.0250 (19) 0.034 (2) 0.0000 (15) 0.0097 (15) −0.0016 (16) C26 0.0324 (17) 0.0243 (18) 0.0282 (19) 0.0044 (15) 0.0090 (14) −0.0013 (15) C27 0.0309 (16) 0.0193 (17) 0.0270 (18) −0.0012 (14) 0.0069 (14) 0.0026 (14) C28 0.0332 (18) 0.0251 (19) 0.0278 (19) 0.0059 (15) 0.0131 (15) 0.0031 (15) C29 0.043 (2) 0.0207 (17) 0.0254 (18) 0.0017 (16) 0.0089 (15) 0.0019 (15) C30 0.042 (2) 0.0260 (19) 0.0289 (19) −0.0001 (16) 0.0066 (16) 0.0016 (16) C31 0.0304 (17) 0.0219 (18) 0.033 (2) 0.0075 (15) 0.0003 (15) 0.0002 (15) C32 0.0312 (17) 0.027 (2) 0.033 (2) −0.0012 (15) −0.0074 (15) 0.0010 (15) C33 0.0256 (16) 0.0203 (17) 0.0295 (18) 0.0031 (14) 0.0085 (13) 0.0028 (15) C34 0.0301 (16) 0.0239 (18) 0.0274 (18) 0.0028 (15) 0.0079 (14) −0.0010 (15) C35 0.0316 (17) 0.0231 (18) 0.0287 (19) −0.0055 (15) 0.0080 (15) −0.0001 (15) C36 0.0334 (18) 0.033 (2) 0.030 (2) 0.0151 (17) −0.0082 (15) 0.0045 (17) C37 0.040 (2) 0.033 (2) 0.042 (2) −0.0074 (17) 0.0188 (17) −0.0075 (18) C38 0.039 (2) 0.040 (2) 0.041 (2) −0.0039 (18) 0.0125 (18) −0.0038 (19) C39 0.0326 (17) 0.0213 (18) 0.0298 (19) 0.0002 (15) 0.0109 (15) 0.0010 (15) Cl1 0.0331 (4) 0.0150 (4) 0.0313 (4) −0.0001 (3) 0.0087 (3) 0.0013 (3) Cl2 0.0320 (4) 0.0167 (4) 0.0258 (4) 0.0003 (3) 0.0087 (3) 0.0001 (3) Cu1 0.0325 (2) 0.0163 (2) 0.0251 (2) 0.00019 (17) 0.00895 (17) −0.00022 (17) N1 0.0342 (15) 0.0205 (14) 0.0250 (15) 0.0017 (13) 0.0147 (12) 0.0004 (13) N2 0.0283 (15) 0.0354 (19) 0.0371 (18) −0.0023 (14) −0.0032 (13) −0.0010 (15) N3 0.0343 (15) 0.0253 (16) 0.0321 (17) −0.0029 (13) 0.0089 (13) −0.0030 (13) N4 0.0258 (14) 0.0278 (16) 0.0313 (17) 0.0010 (12) 0.0111 (12) −0.0009 (13) N5 0.0286 (14) 0.0281 (17) 0.0310 (16) −0.0049 (13) 0.0123 (12) −0.0086 (14) O1 0.0265 (11) 0.0221 (12) 0.0226 (12) 0.0020 (10) 0.0132 (9) 0.0047 (10) O2 0.0226 (11) 0.0269 (13) 0.0232 (12) 0.0058 (10) 0.0022 (9) −0.0003 (10) O3 0.0241 (11) 0.0238 (13) 0.0269 (13) −0.0006 (10) 0.0064 (9) −0.0020 (10) O4 0.0324 (12) 0.0189 (12) 0.0318 (13) −0.0020 (10) 0.0148 (10) 0.0003 (10) O5 0.0323 (12) 0.0231 (13) 0.0330 (14) −0.0048 (10) 0.0166 (10) −0.0098 (11) O6 0.0362 (13) 0.0329 (15) 0.0325 (14) −0.0047 (12) 0.0119 (11) −0.0025 (12) O7 0.0349 (13) 0.0216 (13) 0.0303 (14) −0.0027 (10) 0.0114 (10) 0.0036 (10) O8 0.0340 (12) 0.0162 (12) 0.0281 (13) 0.0040 (10) 0.0069 (10) 0.0021 (10) O9 0.0335 (14) 0.0434 (17) 0.0501 (18) −0.0146 (13) 0.0101 (12) −0.0101 (14) O10 0.0289 (12) 0.0329 (14) 0.0350 (14) −0.0019 (11) 0.0135 (10) −0.0048 (12) O11 0.0302 (13) 0.0414 (17) 0.0383 (16) −0.0032 (12) 0.0055 (11) 0.0017 (13) O12 0.0306 (13) 0.0405 (17) 0.0369 (15) −0.0012 (12) 0.0059 (11) −0.0014 (13) O13 0.0490 (15) 0.0307 (15) 0.0327 (15) 0.0034 (12) 0.0154 (12) 0.0029 (12)

Geometric parameters (Å, º)

C1—O3 1.407 (4) C23—H23 0.9300

C1—C2 1.441 (5) C24—C25 1.393 (5)

C1—H1 0.9300 C24—H24 0.9300

C2—C3 1.415 (5) C25—C26 1.337 (5)

C2—H2 0.9300 C25—H25 0.9300

(8)

supporting information

sup-6 Acta Cryst. (2005). E61, m1065–m1066

C3—H3 0.9300 C26—H26 0.9300

C4—O3 1.396 (4) C27—N1 1.433 (5)

C4—C5 1.441 (5) C28—N1 1.335 (5)

C5—N3 1.507 (4) C28—C29 1.350 (5)

C5—H5C 0.9700 C28—H28 0.9300

C5—H5D 0.9700 C29—C34 1.393 (5)

C6—N3 1.470 (5) C29—C30 1.398 (5)

C6—C7 1.583 (5) C30—C31 1.403 (5)

C6—H6A 0.9700 C30—H30 0.9300

C6—H6B 0.9700 C31—C32 1.383 (5)

C7—N4 1.493 (5) C31—C36 1.471 (5)

C7—H7A 0.9700 C32—C33 1.392 (5)

C7—H7B 0.9700 C32—H32 0.9300

C8—C9 1.421 (5) C33—C34 1.370 (5)

C8—N4 1.499 (4) C33—C35 1.508 (5)

C8—H8A 0.9700 C34—O1 1.369 (4)

C8—H8B 0.9700 C35—N3 1.542 (5)

C9—O4 1.410 (4) C35—H35A 0.9700

C9—C10 1.436 (5) C35—H35B 0.9700

C10—C11 1.427 (5) C36—H36A 0.9600

C10—H10 0.9300 C36—H36B 0.9600

C11—C12 1.419 (5) C36—H36C 0.9600

C11—H11 0.9300 C37—N5 1.456 (5)

C12—O4 1.412 (4) C37—H37A 0.9600

C12—H12 0.9300 C37—H37B 0.9600

C13—C14 1.466 (5) C37—H37C 0.9600

C13—N4 1.482 (4) C38—N5 1.441 (5)

C13—H13A 0.9700 C38—H38A 0.9600

C13—H13B 0.9700 C38—H38B 0.9600

C14—C19 1.387 (5) C38—H38C 0.9600

C14—C15 1.405 (5) C39—O13 1.204 (4)

C15—C16 1.384 (5) C39—N5 1.430 (4)

C15—H15 0.9300 C39—H39 0.9300

C16—C17 1.397 (5) Cl1—O6 1.377 (3)

C16—C20 1.534 (4) Cl1—O8 1.407 (3)

C17—C18 1.377 (5) Cl1—O7 1.464 (3)

C17—H17 0.9300 Cl1—O5 1.465 (2)

C18—C19 1.387 (5) Cl2—O12 1.333 (3)

C18—C21 1.443 (5) Cl2—O11 1.342 (3)

C19—O2 1.327 (4) Cl2—O10 1.375 (3)

C20—H20A 0.9600 Cl2—O9 1.389 (3)

C20—H20B 0.9600 Cu1—N1 1.894 (3)

C20—H20C 0.9600 Cu1—O1 1.905 (2)

C21—N2 1.285 (5) Cu1—O2 1.938 (2)

C21—H21 0.9300 Cu1—N2 1.981 (3)

C22—C27 1.380 (5) Cu1—O5 2.679 (2)

C22—C23 1.384 (5) O1—H1A 0.9700

(9)

C23—C24 1.389 (5)

O3—C1—C2 108.3 (3) C25—C26—H26 119.8

O3—C1—H1 125.9 C27—C26—H26 118.0

C2—C1—H1 125.9 C22—C27—C26 118.0 (3)

C3—C2—C1 107.1 (3) C22—C27—N1 116.6 (3)

C3—C2—H2 126.4 C26—C27—N1 125.4 (3)

C1—C2—H2 126.4 N1—C28—C29 129.5 (4)

C4—C3—C2 106.8 (3) N1—C28—H28 114.3

C4—C3—H3 126.6 C29—C28—H28 116.2

C2—C3—H3 126.6 C28—C29—C34 123.8 (4)

C3—C4—O3 111.9 (3) C28—C29—C30 117.1 (3) C3—C4—C5 132.7 (3) C34—C29—C30 119.0 (4) O3—C4—C5 115.3 (3) C29—C30—C31 120.1 (4)

C4—C5—N3 117.8 (3) C29—C30—H30 120.0

C4—C5—H5C 106.5 C31—C30—H30 120.0

N3—C5—H5C 105.8 C32—C31—C30 119.4 (3)

C4—C5—H5D 109.4 C32—C31—C36 117.6 (3)

N3—C5—H5D 109.5 C30—C31—C36 122.8 (3)

H5C—C5—H5D 107.3 C31—C32—C33 120.4 (3)

N3—C6—C7 121.2 (3) C31—C32—H32 119.8

N3—C6—H6A 107.0 C33—C32—H32 119.8

C7—C6—H6A 107.0 C34—C33—C32 120.0 (3)

N3—C6—H6B 107.0 C34—C33—C35 117.2 (3)

C7—C6—H6B 107.0 C32—C33—C35 122.8 (3)

H6A—C6—H6B 106.8 O1—C34—C33 116.3 (3)

N4—C7—C6 114.1 (3) O1—C34—C29 122.7 (3)

N4—C7—H7A 112.1 C33—C34—C29 121.0 (3)

C6—C7—H7A 111.0 C33—C35—N3 113.0 (3)

N4—C7—H7B 106.4 C33—C35—H35A 109.0

C6—C7—H7B 105.5 N3—C35—H35A 109.0

H7A—C7—H7B 107.3 C33—C35—H35B 109.0

C9—C8—N4 114.2 (3) N3—C35—H35B 109.0

C9—C8—H8A 108.7 H35A—C35—H35B 107.8

N4—C8—H8A 108.7 C31—C36—H36A 109.1

C9—C8—H8B 108.7 C31—C36—H36B 109.6

N4—C8—H8B 108.7 H36A—C36—H36B 109.5

H8A—C8—H8B 107.6 C31—C36—H36C 109.6

O4—C9—C8 119.3 (3) H36A—C36—H36C 109.5 O4—C9—C10 107.7 (3) H36B—C36—H36C 109.5 C8—C9—C10 132.9 (4) N5—C37—H37A 105.3 C11—C10—C9 107.7 (3) N5—C37—H37B 113.5 C11—C10—H10 126.1 H37A—C37—H37B 109.5

C9—C10—H10 126.1 N5—C37—H37C 109.4

C12—C11—C10 107.5 (3) H37A—C37—H37C 109.5 C12—C11—H11 126.3 H37B—C37—H37C 109.5

C10—C11—H11 126.3 N5—C38—H38A 109.5

(10)

supporting information

sup-8 Acta Cryst. (2005). E61, m1065–m1066

O4—C12—H12 125.7 H38A—C38—H38B 109.5

C11—C12—H12 125.7 N5—C38—H38C 109.5

C14—C13—N4 114.4 (3) H38A—C38—H38C 109.5 C14—C13—H13A 108.7 H38B—C38—H38C 109.5 N4—C13—H13A 108.7 O13—C39—N5 134.0 (4)

C14—C13—H13B 108.7 O13—C39—H39 113.0

N4—C13—H13B 108.7 N5—C39—H39 113.0

H13A—C13—H13B 107.6 O6—Cl1—O8 112.53 (16) C19—C14—C15 118.4 (3) O6—Cl1—O7 110.80 (16) C19—C14—C13 119.1 (3) O8—Cl1—O7 107.67 (15) C15—C14—C13 122.4 (3) O6—Cl1—O5 105.88 (16) C16—C15—C14 120.6 (3) O8—Cl1—O5 110.25 (15) C16—C15—H15 119.7 O7—Cl1—O5 109.70 (14) C14—C15—H15 119.7 O12—Cl2—O11 97.51 (18) C15—C16—C17 119.6 (3) O12—Cl2—O10 110.09 (16) C15—C16—C20 119.9 (3) O11—Cl2—O10 110.63 (17) C17—C16—C20 120.4 (3) O12—Cl2—O9 109.78 (18) C18—C17—C16 120.3 (3) O11—Cl2—O9 118.27 (17) C18—C17—H17 119.8 O10—Cl2—O9 109.83 (16)

C16—C17—H17 119.8 N1—Cu1—O1 94.77 (12)

C17—C18—C19 119.7 (3) N1—Cu1—O2 177.19 (11) C17—C18—C21 115.3 (3) O1—Cu1—O2 86.75 (10) C19—C18—C21 125.0 (3) N1—Cu1—N2 84.82 (14) O2—C19—C18 123.6 (3) O1—Cu1—N2 175.49 (12) O2—C19—C14 115.1 (3) O2—Cu1—N2 93.49 (12) C18—C19—C14 121.3 (3) C28—N1—C27 124.9 (3) C16—C20—H20A 109.5 C28—N1—Cu1 122.6 (3) C16—C20—H20B 109.5 C27—N1—Cu1 112.4 (2) H20A—C20—H20B 109.5 C21—N2—C22 124.6 (3) C16—C20—H20C 109.5 C21—N2—Cu1 124.1 (3) H20A—C20—H20C 109.5 C22—N2—Cu1 111.3 (2) H20B—C20—H20C 109.5 C6—N3—C5 111.7 (3) N2—C21—C18 126.6 (4) C6—N3—C35 108.0 (3)

N2—C21—H21 116.7 C5—N3—C35 109.3 (3)

C18—C21—H21 116.7 C13—N4—C7 109.2 (3)

C27—C22—C23 120.2 (4) C13—N4—C8 114.5 (3) C27—C22—N2 114.8 (3) C7—N4—C8 110.5 (3) C23—C22—N2 124.9 (3) C39—N5—C38 119.5 (3) C22—C23—C24 120.2 (4) C39—N5—C37 121.5 (3) C22—C23—H23 119.9 C38—N5—C37 118.5 (3) C24—C23—H23 119.9 C34—O1—Cu1 125.8 (2) C23—C24—C25 120.1 (3) C34—O1—H1A 105.9

C23—C24—H24 119.9 Cu1—O1—H1A 105.9

C25—C24—H24 119.9 C19—O2—Cu1 127.2 (2) C26—C25—C24 119.3 (4) C19—O2—H2B 105.5

C26—C25—H25 120.3 Cu1—O2—H2B 105.5

C24—C25—H25 120.3 C4—O3—C1 105.9 (2)

(11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1A···N3 0.97 1.96 2.716 (4) 133

O1—H1A···O7 0.97 2.39 3.221 (3) 144

O2—H2B···N4 0.97 2.10 2.832 (4) 131

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical