• No results found

2,2′ Di­bromo 3,3′,4,4′,5,5′,6,6′ octa­methyl 1,1′ bi­phenyl

N/A
N/A
Protected

Academic year: 2020

Share "2,2′ Di­bromo 3,3′,4,4′,5,5′,6,6′ octa­methyl 1,1′ bi­phenyl"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1499±o1500 DOI: 10.1107/S160053680401709X Hemamala Karunadasaet al. C20H24Br2

o1499

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,2

000

-Dibromo-3,3

000

,4,4

000

,5,5

000

,6,6

000

-octamethyl-1,1

000

-biphenyl

Hemamala Karunadasa,* Christina Leggett and Shaun Wong

College of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA

Correspondence e-mail: hemamala@berkeley.edu

Key indicators Single-crystal X-ray study T= 174 K

Mean(C±C) = 0.007 AÊ Disorder in main residue Rfactor = 0.038 wRfactor = 0.050

Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C29H24Br2, has crystallographic twofold rotation symmetry. The Br atom in the 2 position is disordered with the methyl group in the 6 position. The biphenyl bridge bond distance and the torsion angle between the rings are in good agreement with similar previously reported structures.

Comment

The title compound, (I), crystallizes in the space groupPbcn, with the molecule on a crystallographic twofold axis, which bisects the angle between the two rings. One half of the molecule consists of a benzene ring, to which are bonded a Br atom and four methyl groups. The Br atom is bonded in the 2 position and is disordered between the 2 and 6 positions. The methyl group in the 6 position is concomitantly disordered.

The major-component C2ÐBr1 distance is 1.871 (4) AÊ and the minor-component C6ÐBr2 distance is 1.809 (5) AÊ. The major-component C2ÐBr1 distance is comparable to the CÐ Br distances in 2,20-dibromobiphenyl (1.895 and 1.905 AÊ;

MacNeil & Decken, 1999).

The CÐC distance of the biphenyl bridge is 1.502 (9) AÊ, similar to that of 2,20-dibromobiphenyl (1.499 AÊ),

deca-chlorobiphenyl (1.522 AÊ; Pedersen, 1975) and decakis(di-chloromethyl)biphenyl (1.534 AÊ; Bialiet al., 1988).

The interplanar angle between the phenyl rings in the molecule is 85.2 (8). This compares well with the

corres-ponding angles in 2,20-dibromobiphenyl (86.0),

decachloro-biphenyl (86.7) and decakis(dichloromethyl)biphenyl (84.4).

Experimental

The title compound was synthesized according to a previously reported method (Shibataet al., 2003).

Crystal data

C20H24Br2

Mr= 424.22

Orthorhombic,Pbcn a= 13.530 (4) AÊ

b= 10.987 (4) AÊ

c= 11.916 (3) AÊ

V= 1771.4 (9) AÊ3

Z= 4

Dx= 1.591 Mg mÿ3

Mo Kradiation Cell parameters from 2260

re¯ections

= 2.4±24.0

= 4.59 mmÿ1

T= 174.2 K Block, colorless 0.290.210.13 mm

(2)

Data collection

Bruker SMART 1000 diffractometer

!scans

Absorption correction: multi-scan (Blessing, 1995)

Tmin= 0.280,Tmax= 0.554

7776 measured re¯ections

1483 independent re¯ections 1061 re¯ections withI> 3(I)

Rint= 0.046

max= 24.7

h=ÿ13!15

k=ÿ12!12

l=ÿ13!13

Re®nement

Re®nement onF R= 0.038

wR= 0.050

S= 1.85 1061 re¯ections 101 parameters

H-atom parameters constrained

w= 1/[2(F

o) + 0.00022|Fo|2]

(/)max< 0.001

max= 0.28 e AÊÿ3

min=ÿ0.35 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Br1ÐC2 1.871 (4)

Br2ÐC6 1.809 (5) C1ÐC1

i 1.502 (9)

C2ÐC1ÐC1iÐC2i ÿ83.7 (8) C2ÐC1ÐC1iÐC6i 95.6 (3) Symmetry code: (i) 1ÿx;y;3

2ÿz.

Table 2

Contact distances (AÊ).

Br1 Br2ii 3.557 (2)

Br2 C11iii 3.502 (2) Br2 Br2

iv 3.532 (4)

Symmetry codes: (ii)x;ÿy;zÿ1

2; (iii)x;ÿy;12‡z; (iv) 1ÿx;ÿy;2ÿz.

Atoms C10 and C11 were inserted along the CÐBr bonds at a ®xed distance of 1.54 AÊ from the ring C atoms. The displacement parameters of these atoms were ®xed at 0.0456 AÊ2 because their positions are not well de®ned and the CÐBr distance is too short to allow for proper resolution of the disordered atoms. The Br1 atom occupancy was allowed to re®ne and then ®xed at 0.73. The occu-pancies of atoms Br2, C10 and C11 were tied appropriately to that of Br1.

Data collection:SMART(Bruker, 2003); cell re®nement:SAINT

(Bruker, 2003); data reduction: SAINT; program(s) used to solve structure:SIR97 (Altomareet al., 1999); program(s) used to re®ne

structure: TEXSAN (Molecular Structure Corporation & Rigaku, 1998); molecular graphics: TEXSAN; software used to prepare material for publication:TEXSAN.

The authors acknowledge Dr Fred Hollander, Dr Allen Oliver and Professor Kenneth N. Raymond for their invalu-able assistance. We also thank Karl Tupper for providing the sample.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115±119.

Biali, S. E., Kahr, B., Okamoto, Y., Aburatani, R. & Mislow, K. (1988).J. Am. Chem. Soc.110, 1917±1922.

Blessing, R. H. (1995).Acta Cryst.A51, 33±38.

Bruker (2003).SMART(Version 5.631) andSAINT(Version 6.40). Bruker AXS Inc., Madison, Wisconsin, USA.

MacNeil, D. D. & Decken, A. (1999).Acta Cryst.C55, 628±630.

Molecular Structure Corporation & Rigaku (1998).TEXSAN.Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

Pedersen, B. F. (1975).Acta Cryst.B31, 2931±2933.

Shibata, T., Tsuruta, H., Danjo, H. & Imamoto, T. (2003).J. Mol. Cat. A,196, 117±124.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o1499–o1500

supporting information

Acta Cryst. (2004). E60, o1499–o1500 [https://doi.org/10.1107/S160053680401709X]

2,2

-Dibromo-3,3

,4,4

,5,5

,6,6

-octamethyl-1,1

-biphenyl

Hemamala Karunadasa, Christina Leggett and Shaun Wong

(I)

Crystal data C20H24Br2 Mr = 424.22

Orthorhombic, Pbcn Hall symbol: -P 2n 2ab a = 13.530 (4) Å b = 10.987 (4) Å c = 11.916 (3) Å V = 1771.4 (9) Å3 Z = 4

F(000) = 856.00 Dx = 1.591 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 2260 reflections θ = 2.4–24.0°

µ = 4.59 mm−1 T = 174 K Block, colorless 0.29 × 0.21 × 0.13 mm

Data collection Bruker SMART 1000

diffractometer ω scans

Absorption correction: multi-scan (Blessing, 1995)

Tmin = 0.280, Tmax = 0.554

7776 measured reflections

1483 independent reflections 1061 reflections with I > 3σ(I) Rint = 0.046

θmax = 24.7° h = −13→15 k = −12→12 l = −13→13

Refinement Refinement on F R[F2 > 2σ(F2)] = 0.038 wR(F2) = 0.050 S = 1.85 1061 reflections 101 parameters

H-atom parameters constrained w = 1/[σ2(F

o) + 0.00022|Fo|2]

(Δ/σ)max = 0.0004

Δρmax = 0.28 e Å−3

Δρmin = −0.35 e Å−3

Special details

Refinement. Refinement using reflections with F2 > 3.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 3.0 σ(F2) is used only for

calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Br1 0.51423 (5) 0.30856 (6) 0.58452 (5) 0.0328 (2) 0.73

Br2 0.5631 (2) −0.0719 (2) 0.8885 (2) 0.0435 (7) 0.27

C1 0.5548 (3) 0.1223 (4) 0.7401 (3) 0.023 (1)

(4)

C3 0.6999 (3) 0.2099 (4) 0.6462 (4) 0.028 (1)

C4 0.7598 (3) 0.1318 (4) 0.7077 (4) 0.031 (1)

C5 0.7193 (4) 0.0475 (4) 0.7826 (4) 0.031 (2)

C6 0.6175 (3) 0.0418 (4) 0.7977 (4) 0.027 (1)

C7 0.7430 (4) 0.3007 (4) 0.5645 (4) 0.040 (2)

C8 0.8722 (4) 0.1364 (5) 0.6924 (5) 0.047 (2)

C9 0.7856 (4) −0.0392 (5) 0.8466 (5) 0.050 (2)

C10 0.5712 −0.0551 0.8752 0.0456* 0.73

C11 0.5287 0.2909 0.5984 0.0456* 0.27

H1 0.7893 0.3511 0.6023 0.0477*

H2 0.7752 0.2585 0.5053 0.0477*

H3 0.6914 0.3496 0.5344 0.0477*

H4 0.8893 0.2055 0.6486 0.0567*

H5 0.8938 0.0646 0.6553 0.0567*

H6 0.9031 0.1420 0.7637 0.0567*

H7 0.8321 0.0061 0.8894 0.0600*

H8 0.7467 −0.0879 0.8953 0.0600*

H9 0.8198 −0.0900 0.7951 0.0600*

H10 0.5019 −0.0424 0.8796 0.0547* 0.73

H11 0.5840 −0.1338 0.8457 0.0547* 0.73

H12 0.5993 −0.0486 0.9480 0.0547* 0.73

H13 0.5533 0.3717 0.6038 0.0547* 0.27

H14 0.5268 0.2670 0.5218 0.0547* 0.27

H15 0.4640 0.2875 0.6290 0.0547* 0.27

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0289 (4) 0.0322 (4) 0.0374 (4) 0.0051 (3) 0.0004 (3) 0.0080 (3)

Br2 0.053 (2) 0.041 (1) 0.037 (1) 0.0124 (10) 0.0117 (9) 0.0174 (9)

C1 0.024 (2) 0.020 (3) 0.027 (3) −0.001 (2) 0.004 (2) −0.005 (2)

C2 0.023 (3) 0.021 (3) 0.028 (3) 0.001 (2) 0.001 (2) −0.001 (2)

C3 0.027 (3) 0.029 (3) 0.030 (3) −0.001 (2) 0.006 (2) −0.008 (2)

C4 0.018 (3) 0.035 (3) 0.039 (3) 0.002 (2) 0.002 (2) −0.014 (2)

C5 0.031 (3) 0.033 (3) 0.031 (3) 0.009 (2) −0.003 (2) −0.009 (2)

C6 0.031 (3) 0.026 (3) 0.025 (3) 0.005 (2) 0.002 (2) −0.002 (2)

C7 0.034 (3) 0.038 (3) 0.047 (3) −0.001 (2) 0.013 (2) 0.005 (3)

C8 0.027 (3) 0.051 (4) 0.064 (4) 0.003 (3) 0.003 (3) −0.005 (3)

C9 0.044 (3) 0.049 (3) 0.057 (4) 0.023 (3) −0.003 (3) 0.001 (3)

Geometric parameters (Å, º)

Br1—C2 1.871 (4) C7—H2 0.950

Br2—C6 1.809 (5) C7—H3 0.950

C1—C1i 1.502 (9) C8—H4 0.950

C1—C2 1.395 (6) C8—H5 0.950

C1—C6 1.405 (6) C8—H6 0.950

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o1499–o1500

C2—C11 1.549 (4) C9—H8 0.950

C3—C4 1.389 (6) C9—H9 0.950

C3—C7 1.511 (6) C10—H10 0.950

C4—C5 1.399 (7) C10—H11 0.950

C4—C8 1.532 (6) C10—H12 0.950

C5—C6 1.390 (6) C11—H13 0.950

C5—C9 1.514 (6) C11—H14 0.950

C6—C10 1.542 (4) C11—H15 0.950

C7—H1 0.950

Br1···Br2ii 3.557 (2) Br2···Br2iv 3.532 (4)

Br2···C11iii 3.502 (2)

C1—C1i—C2i 120.7 (4) H1—C7—H3 109.5

C1—C1i—C6i 121.3 (4) H2—C7—H3 109.5

C2—C1—C6 118.0 (4) C4—C8—H4 109.5

Br1—C2—C1 118.3 (3) C4—C8—H5 109.5

Br1—C2—C3 119.1 (3) C4—C8—H6 109.5

C1—C2—C3 122.6 (4) H4—C8—H5 109.5

C1—C2—C11 118.5 (3) H4—C8—H6 109.5

C3—C2—C11 118.9 (3) H5—C8—H6 109.5

C2—C3—C4 117.7 (4) C5—C9—H7 109.5

C2—C3—C7 120.8 (4) C5—C9—H8 109.5

C4—C3—C7 121.5 (4) C5—C9—H9 109.5

C3—C4—C5 121.1 (4) H7—C9—H8 109.5

C3—C4—C8 119.7 (5) H7—C9—H9 109.5

C5—C4—C8 119.1 (4) H8—C9—H9 109.5

C4—C5—C6 120.0 (4) C6—C10—H10 109.5

C4—C5—C9 120.4 (4) C6—C10—H11 109.5

C6—C5—C9 119.6 (4) C6—C10—H12 109.5

Br2—C6—C1 118.8 (3) H10—C10—H11 109.5

Br2—C6—C5 120.7 (4) H10—C10—H12 109.5

C1—C6—C5 120.5 (4) H11—C10—H12 109.5

C1—C6—C10 118.8 (4) C2—C11—H13 109.5

C5—C6—C10 120.7 (4) C2—C11—H14 109.5

C3—C7—H1 109.5 C2—C11—H15 109.5

C3—C7—H2 109.5 H13—C11—H14 109.5

C3—C7—H3 109.5 H13—C11—H15 109.5

H1—C7—H2 109.5 H14—C11—H15 109.5

Br1—C2—C1—C1i −2.2 (6) C2—C1—C6—C5 2.7 (6)

Br1—C2—C1—C6 178.5 (3) C2—C1—C6—C10 −175.6 (3)

Br1—C2—C3—C4 179.3 (3) C2—C3—C4—C5 1.8 (7)

Br1—C2—C3—C7 0.7 (6) C2—C3—C4—C8 −179.0 (4)

Br2—C6—C1—C1i 5.2 (6) C3—C2—C1—C6 −1.7 (6)

Br2—C6—C1—C2 −175.5 (3) C3—C4—C5—C6 −0.8 (7)

Br2—C6—C5—C4 176.7 (4) C3—C4—C5—C9 178.4 (4)

(6)

C1—C1i—C2i—C3i 177.6 (4) C4—C5—C6—C10 176.7 (4)

C1—C1i—C2i—C11i −2.1 (6) C5—C4—C3—C7 −179.6 (4)

C1—C1i—C6i—C5i −176.6 (4) C6—C1—C1i—C6i −85.1 (8)

C1—C1i—C6i—C10i 5.1 (6) C6—C1—C2—C11 178.6 (3)

C1—C2—C3—C4 −0.5 (7) C6—C5—C4—C8 180.0 (4)

C1—C2—C3—C7 −179.2 (4) C7—C3—C2—C11 0.5 (6)

C1—C6—C5—C4 −1.5 (7) C7—C3—C4—C8 −0.4 (7)

C1—C6—C5—C9 179.3 (4) C8—C4—C5—C9 −0.8 (7)

C2—C1—C1i—C2i −83.7 (8) C9—C5—C6—C10 −2.5 (6)

C2—C1—C1i—C6i 95.6 (3)

References

Related documents

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

This model posits four types of health beliefs that affect an individual’s health behavior, in this case, the decision to seek mental health services: perceived

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

Using a nationwide database of hospital admissions, we established that diverticulitis patients admitted to hospitals that encounter a low volume of diverticulitis cases have

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from