• No results found

(Aceto­nitrile κN)(4′ phenyl 2,2′:6′,2′′ terpyridine κ3N)silver(I) hexa­fluoro­phosphate aceto­nitrile solvate

N/A
N/A
Protected

Academic year: 2020

Share "(Aceto­nitrile κN)(4′ phenyl 2,2′:6′,2′′ terpyridine κ3N)silver(I) hexa­fluoro­phosphate aceto­nitrile solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1106

Houet al. [Ag(C2H3N)(C21H15N3)]PF6C2H3N DOI: 10.1107/S1600536804016472 Acta Cryst.(2004). E60, m1106±m1107 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(Acetonitrile-

j

N

)(4

000

-phenyl-2,2

000

:6

000

,2

000000

-ter-pyridine-

j

3

N

)silver(I) hexafluorophosphate

acetonitrile solvate

Lei Hou,aDan Li,a* Ye-Gao Yin,a

Tao Wuaand Seik Weng Ngb

aDepartment of Chemistry, Shantou University,

Shantou, Guangdong 515063, People's Republic of China, andbDepartment of

Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.009 AÊ

Rfactor = 0.057

wRfactor = 0.178

Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [Ag(C2H3N)(C21H15N3)]PF6CH3CN, the

AgIatom is coordinated by a tridentate chelating 40

-phenyl-2,20:60,200-terpyridine ligand and an acetonitrile molecule, to

form a distorted square-planar geometry.

Comment

We have previously demonstrated that 40-phenyl-2,20:60,200

-terpyridine acts as a chelating tridentate ligand when coordi-nating to CuI, to form a ®ve-coordinate copper complex (Feng

et al., 2002). In this work, the ligand is used to coordinate to AgI, giving the title complex, (I).

In complex (I) (Fig. 1), the Ag centre is coordinated by three N atoms from the 40-phenyl-2,20:60,200-terpyridine ligand

and an N atom of the acetonitrile, showing an essentially square-planar geometry with constraints imposed by the

Received 29 June 2004 Accepted 6 July 2004 Online 17 July 2004

Figure 1

(2)

40-phenyl-2,20:60,200-terpyridyl ligand. The sum of the angles

about the Ag atom is 360.0.

It has been shown that 2,20:60,200-terpyridine-analogue

ligands and AgI form a series of dinuclear and polynuclear

moleculesviaAg Ag interactions. The anions and solvents, and the additional steric constraints of the substituents, are some of the factors which in¯uence the coordination and aggregation architecture of AgI±terpyridine systems (Baumet

al., 1998; Constableet al., 1998; Hannon et al., 2002). In the present study, a donor solvent, CH3CN, was used. It is not

surprising that only a mononuclear AgIcomplex was obtained.

Experimental

The 40-phenyl-2,20:60,200-terpyridine ligand was synthesized according

to the method of Constable et al. (1990). To an acetone solution (10 ml) of AgPF6(0.0253 g, 0.1 mmol) was added 40-phenyl-2,20:60,200 -terpyridine (0.0390 g, 0.1 mmol). A yellow precipitate was formed after stirring for 3 h and this was isolated by ®ltration. A solution of the resulting solid in acetonitrile was allowed to stand for 5 d and yellow prismatic crystals of (I) were obtained (yield 55%).

Crystal data

[Ag(C2H3N)(C21H15N3)]PF6C2H3N

Mr= 644.31

Monoclinic, P21=n a= 16.777 (1) AÊ

b= 7.8257 (6) AÊ

c= 19.447 (1) AÊ

= 90.356 (2)

V= 2553.2 (3) AÊ3

Z= 4

Dx= 1.676 Mg mÿ3

MoKradiation Cell parameters from 1971

re¯ections

= 2.4±20.3

= 0.92 mmÿ1

T= 295 (2) K Prism, yellow 0.200.180.12 mm Data collection

Bruker APEX CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.354,Tmax= 0.898 12 897 measured re¯ections

4488 independent re¯ections 3262 re¯ections withI> 2(I)

Rint= 0.038

max= 25.0

h=ÿ17!19

k=ÿ9!9

l=ÿ20!23 Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.057

wR(F2) = 0.178

S= 1.06 4488 re¯ections 345 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0996P)2

+ 1.6223P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 1.06 e AÊÿ3

min=ÿ0.42 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Ag1ÐN1 2.348 (5)

Ag1ÐN2 2.378 (4) Ag1ÐN3Ag1ÐN4 2.470 (5)2.187 (6)

N1ÐAg1ÐN2 69.3 (1)

N1ÐAg1ÐN3 136.4 (2)

N1ÐAg1ÐN4 127.2 (2)

N2ÐAg1ÐN3 67.1 (2)

N2ÐAg1ÐN4 163.4 (2)

N3ÐAg1ÐN4 96.4 (2)

The reported transmission factors are those calculated by SADABS(Bruker, 2002), which treats other effects simultaneously with absorption as part of the interframe scaling process. H atoms were placed in calculated positions [CÐH = 0.93 AÊ andUiso(H) = 1.2Ueq(C) for phenyl H atoms, and CÐH = 0.96 AÊ andUiso(H) = 1.5Ueq(C) for methyl H atoms], and were included in the re®nement in the riding-model approximation. The methyl groups were allowed to rotate as rigid groups. The ®nal difference map had a signi®cant peak near atom F3, but was otherwise featureless.

Data collection:SMART(Bruker, 2002); cell re®nement:SAINT (Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (grant No. 021240) and the University of Malaya for supporting this study.

References

Baum, G., Constable, E. C., Fenske, D., Housecrofe, C. E. & Kulke, T. (1998).

Chem. Commun.pp. 2659±2660.

Bruker (2002).SADABS,SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Constable, E. C., Edwards, A. J., Haire, G. R., Hannon, M. J. & Raithby, P. R. (1998).Polyhedron,17, 243±253.

Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990).Inorg. Chim. Acta,178, 47±54.

Feng, Q., Li, D., Yin, Y.-G., Feng, X.-L. & Cai, J.-W. (2002).Acta Chim. Sin.60, 2167±2171.

Hannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. & Alcock, N. W. (2002).Chem. Eur. J.8, 2225±2238.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, m1106–m1107

supporting information

Acta Cryst. (2004). E60, m1106–m1107 [https://doi.org/10.1107/S1600536804016472]

(Acetonitrile-

κ

N)(4

-phenyl-2,2

:6

,2

′′

-terpyridine-

κ

3

N)silver(I)

hexafluoro-phosphate acetonitrile solvate

Lei Hou, Dan Li, Ye-Gao Yin, Tao Wu and Seik Weng Ng

(Acetonitrile-κN)(4′-phenyl-2,2′:6′,2′′-terpyridine-κ3N)silver(I) hexafluorophosphate acetonitrile solvate

Crystal data

[Ag(C2H3N)(C21H15N3)]PF6·C2H3N Mr = 644.31

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 16.777 (1) Å

b = 7.8257 (6) Å

c = 19.447 (1) Å

β = 90.356 (2)°

V = 2553.2 (3) Å3 Z = 4

F(000) = 1288

Dx = 1.676 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1971 reflections

θ = 2.4–20.3°

µ = 0.92 mm−1 T = 295 K Prism, yellow

0.20 × 0.18 × 0.12 mm

Data collection

Bruker APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.354, Tmax = 0.898

12897 measured reflections 4488 independent reflections 3262 reflections with I > 2σ(I)

Rint = 0.038

θmax = 25.0°, θmin = 1.6° h = −17→19

k = −9→9

l = −20→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.178 S = 1.06 4488 reflections 345 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0996P)2 + 1.6223P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.06 e Å−3

Δρmin = −0.42 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

P1 0.49678 (9) 0.8129 (2) 0.13043 (8) 0.0564 (4) F1 0.5325 (5) 0.709 (1) 0.1899 (4) 0.198 (4) F2 0.5194 (4) 0.6598 (9) 0.0861 (5) 0.198 (4) F3 0.4604 (6) 0.915 (2) 0.0740 (4) 0.229 (4) F4 0.4730 (5) 0.957 (1) 0.1773 (5) 0.208 (5) F5 0.4137 (3) 0.7281 (8) 0.1435 (3) 0.135 (2) F6 0.5801 (3) 0.8920 (8) 0.1226 (4) 0.166 (3) N1 0.5466 (3) 0.3825 (6) 0.3786 (2) 0.047 (1) N2 0.5507 (2) 0.3044 (5) 0.5131 (2) 0.040 (1) N3 0.6778 (3) 0.4362 (6) 0.5784 (2) 0.052 (1) N4 0.7557 (3) 0.6140 (8) 0.4294 (3) 0.073 (2) N5 0.2496 (5) 0.006 (1) 0.4065 (4) 0.100 (2) C1 0.5498 (4) 0.4129 (9) 0.3092 (3) 0.063 (2) C2 0.4950 (4) 0.3500 (9) 0.2642 (3) 0.067 (2) C3 0.4342 (4) 0.2517 (9) 0.2884 (3) 0.064 (2) C4 0.4296 (3) 0.2179 (8) 0.3581 (3) 0.052 (1) C5 0.4876 (3) 0.2857 (7) 0.4021 (3) 0.043 (1) C6 0.4871 (3) 0.2517 (6) 0.4782 (3) 0.039 (1) C7 0.4242 (3) 0.1685 (6) 0.5100 (3) 0.040 (1) C8 0.4289 (3) 0.1299 (6) 0.5798 (3) 0.040 (1) C9 0.4968 (3) 0.1842 (7) 0.6145 (3) 0.043 (1) C10 0.5558 (3) 0.2730 (6) 0.5803 (3) 0.040 (1) C11 0.6279 (3) 0.3443 (7) 0.6170 (3) 0.043 (1) C12 0.6407 (4) 0.3224 (8) 0.6864 (3) 0.057 (2) C13 0.7067 (4) 0.3943 (9) 0.7168 (3) 0.062 (2) C14 0.7579 (4) 0.4885 (8) 0.6782 (4) 0.063 (2) C15 0.7415 (4) 0.5046 (8) 0.6094 (4) 0.066 (2) C16 0.3645 (3) 0.0342 (7) 0.6145 (3) 0.042 (1) C17 0.3106 (3) −0.0636 (7) 0.5786 (3) 0.048 (1) C18 0.2506 (3) −0.1518 (8) 0.6107 (3) 0.060 (2) C19 0.2430 (4) −0.1433 (9) 0.6815 (3) 0.068 (2) C20 0.2968 (5) −0.049 (1) 0.7182 (4) 0.077 (2) C22 0.3562 (4) 0.0411 (8) 0.6863 (3) 0.062 (2) C23 0.8130 (4) 0.6851 (8) 0.4243 (3) 0.063 (2) C24 0.8867 (4) 0.779 (1) 0.4170 (5) 0.098 (3) C25 0.1925 (5) −0.066 (1) 0.4147 (4) 0.071 (2) C26 0.1195 (5) −0.157 (1) 0.4270 (5) 0.097 (3)

H1 0.5912 0.4793 0.2922 0.076*

H2 0.4988 0.3736 0.2175 0.081*

H3 0.3961 0.2078 0.2583 0.077*

H4 0.3885 0.1510 0.3754 0.062*

H7 0.3791 0.1385 0.4847 0.048*

H9 0.5028 0.1605 0.6611 0.051*

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, m1106–m1107

H18 0.2151 −0.2173 0.5849 0.072* H19 0.2020 −0.2010 0.7037 0.082* H20 0.2930 −0.0446 0.7659 0.092* H22 0.3913 0.1069 0.7124 0.074* H24a 0.9161 0.7335 0.3789 0.147* H24b 0.9178 0.7674 0.4583 0.147* H24c 0.8752 0.8971 0.4089 0.147* H26a 0.0823 −0.0835 0.4497 0.145* H26b 0.1303 −0.2549 0.4554 0.145* H26c 0.0972 −0.1944 0.3839 0.145*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C23 0.053 (4) 0.053 (4) 0.082 (4) 0.004 (3) 0.017 (3) 0.000 (3) C24 0.054 (4) 0.074 (5) 0.165 (8) −0.017 (4) 0.022 (5) 0.006 (5) C25 0.074 (5) 0.071 (5) 0.068 (4) 0.003 (4) −0.009 (4) 0.003 (4) C26 0.072 (5) 0.097 (6) 0.122 (7) −0.006 (5) 0.003 (5) 0.002 (5)

Geometric parameters (Å, º)

Ag1—N1 2.348 (5) C13—C14 1.361 (9)

Ag1—N2 2.378 (4) C14—C15 1.37 (1)

Ag1—N3 2.470 (5) C16—C17 1.373 (8)

Ag1—N4 2.187 (6) C16—C22 1.406 (8)

P1—F3 1.485 (6) C17—C18 1.374 (8)

P1—F4 1.508 (6) C18—C19 1.385 (9)

P1—F2 1.525 (6) C19—C20 1.37 (1)

P1—F1 1.533 (6) C20—C22 1.370 (9)

P1—F6 1.537 (5) C23—C24 1.444 (9)

P1—F5 1.565 (5) C25—C26 1.44 (1)

N1—C5 1.329 (7) C1—H1 0.93

N1—C1 1.373 (7) C2—H2 0.93

N2—C6 1.327 (6) C3—H3 0.93

N2—C10 1.334 (6) C4—H4 0.93

N3—C15 1.336 (8) C7—H7 0.93

N3—C11 1.339 (7) C9—H9 0.93

N4—C23 1.116 (8) C12—H12 0.93

N5—C25 1.12 (1) C13—H13 0.93

C1—C2 1.357 (9) C14—H14 0.93

C2—C3 1.363 (9) C15—H15 0.93

C3—C4 1.384 (8) C17—H17 0.93

C4—C5 1.397 (7) C18—H18 0.93

C5—C6 1.504 (7) C19—H19 0.93

C6—C7 1.388 (7) C20—H20 0.93

C7—C8 1.392 (7) C22—H22 0.93

C8—C9 1.388 (7) C24—H24a 0.96

C8—C16 1.481 (7) C24—H24b 0.96

C9—C10 1.382 (7) C24—H24c 0.96

C10—C11 1.508 (7) C26—H26a 0.96

C11—C12 1.376 (8) C26—H26b 0.96

C12—C13 1.372 (8) C26—H26c 0.96

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, m1106–m1107

F3—P1—F1 178.5 (6) C20—C22—C16 120.5 (6) F4—P1—F1 92.7 (6) N4—C23—C24 179.2 (8) F2—P1—F1 84.9 (5) N5—C25—C26 178.7 (9)

F3—P1—F6 94.6 (5) C2—C1—H1 118.6

F4—P1—F6 90.1 (4) N1—C1—H1 118.6

F2—P1—F6 91.8 (4) C1—C2—H2 120.4

F1—P1—F6 86.4 (4) C3—C2—H2 120.4

F3—P1—F5 89.1 (5) C2—C3—H3 120.2

F4—P1—F5 88.9 (4) C4—C3—H3 120.2

F2—P1—F5 89.0 (3) C3—C4—H4 120.5

F1—P1—F5 89.8 (4) C5—C4—H4 120.5

F6—P1—F5 176.0 (4) C6—C7—H7 120.1

C5—N1—C1 118.1 (5) C8—C7—H7 120.1

C5—N1—Ag1 119.2 (3) C10—C9—H9 119.7 C1—N1—Ag1 122.4 (4) C8—C9—H9 119.7 C6—N2—C10 119.3 (4) C13—C12—H12 120.3 C6—N2—Ag1 118.5 (3) C11—C12—H12 120.3 C10—N2—Ag1 122.0 (3) C14—C13—H13 120.2 C15—N3—C11 117.6 (5) C12—C13—H13 120.2 C15—N3—Ag1 123.7 (4) C13—C14—H14 121.2 C11—N3—Ag1 118.7 (3) C15—C14—H14 121.2 C23—N4—Ag1 171.9 (6) N3—C15—H15 118.0 C2—C1—N1 122.7 (6) C14—C15—H15 118.0 C1—C2—C3 119.2 (6) C16—C17—H17 118.9 C2—C3—C4 119.5 (6) C18—C17—H17 118.9 C3—C4—C5 119.0 (6) C17—C18—H18 120.0 N1—C5—C4 121.6 (5) C19—C18—H18 120.0 N1—C5—C6 116.6 (5) C20—C19—H19 120.6 C4—C5—C6 121.8 (5) C18—C19—H19 120.6 N2—C6—C7 122.0 (5) C19—C20—H20 119.3 N2—C6—C5 116.0 (4) C22—C20—H20 119.3 C7—C6—C5 122.0 (5) C20—C22—H22 119.8 C6—C7—C8 119.8 (5) C16—C22—H22 119.8 C9—C8—C7 116.7 (5) C23—C24—H24a 109.5 C9—C8—C16 122.1 (5) C23—C24—H24b 109.5 C7—C8—C16 121.2 (5) H24a—C24—H24b 109.5 C10—C9—C8 120.6 (5) C23—C24—H24c 109.5 N2—C10—C9 121.5 (5) H24a—C24—H24c 109.5 N2—C10—C11 116.2 (4) H24b—C24—H24c 109.5 C9—C10—C11 122.2 (4) C25—C26—H26a 109.5 N3—C11—C12 121.5 (5) C25—C26—H26b 109.5 N3—C11—C10 115.9 (5) H26a—C26—H26b 109.5 C12—C11—C10 122.6 (5) C25—C26—H26c 109.5 C13—C12—C11 119.5 (6) H26a—C26—H26c 109.5 C14—C13—C12 119.7 (6) H26b—C26—H26c 109.5

(8)

References

Related documents

By this way, starting from an already known metaphor, we will be able to identify other non lit- eral uses of words which may appear at the same context, estimating the

The essential oils extracted from these herbs, especially cinnamon bark illustrated potent medicinal properties including antimicrobial (against planktonic cariogenic

Covariates include: quartic in age, region effects, year effects, job tenure, functional limitations, current/former smoker, never exercise, obesity, current alcohol

Our similarity measure wmfvec exploits the same information (sense defini- tions) elesk and ldavec use, and outperforms them significantly on four standardized data sets.. To our

To select the lexical indicators that best predict demographics, we con- struct a regression problem in which term frequen- cies are the predictors and demographic attributes are

This is claimed by the very fact that the typical traditional systemic risk model condones the unfair treatment of solely the financial sector as mentioned in the

We got slightly less mean values in parasympathetic tests in Type D when compared to non-Type D and got slight decrease in mean value of fall in systolic BP on standing in Type

This paper focuses on an exact implementation of the linearised form of lattice minimum Bayes- risk (LMBR) decoding using general purpose weighted finite state transducer (WFST)