metal-organic papers
m512
Frank Weberet al. [SrI2(C4H10O2)3] doi:10.1107/S1600536804031617 Acta Cryst.(2005). E61, m512–m513
Acta Crystallographica Section E Structure Reports Online
ISSN 1600-5368
The tris(dimethoxyethane) adduct of strontium
iodide
Frank Weber, Gotthelf Wolmersha¨user and Helmut Sitzmann*
Fachbereich Chemie, Universita¨t Kaiserslautern, Erwin-Schro¨dinger-Straße, 67663 Kaiserslautern, Germany
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study
T= 293 K
Mean(C–C) = 0.013 A˚
Rfactor = 0.037
wRfactor = 0.092
Data-to-parameter ratio = 21.5
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography Printed in Great Britain – all rights reserved
Strontium iodide was prepared from strontium metal and ammonium iodide in liquid ammonia and crystallized as the dimethoxyethane adduct, namely 2
O,O0)diiodostrontium(II), [SrI
2(C4H10O2)3]. High purity
and crystallinity, solubility, and ease of preparation are characteristics of this anhydrous starting material.
Comment
The reaction of strontium metal with a solution of ammonium iodide in liquid ammonia followed the published procedure for the synthesis of ytterbium diiodide (Tilleyet al., 1990). The single-crystal structure of the title tris(dimethoxyethane) complex, (I), obtained from dimethoxyethane (DME) solu-tion, shows a bent I—Sr—I unit with an angle of 158.9 (2).
The six O donor atoms of the three DME ligands are arranged in a puckered chair-like fashion around the Sr ion, with Sr—O distances between 2.631 (4) and 2.656 (4) A˚ . The average Sr—O distance of 2.644 A˚ is slightly longer than that found for seven-coordinated [SrI2(THF)5] (2.567 A˚ ; THF is
tetrahydrofuran; Ruhlandt-Sengeet al., 1995) and significantly longer than the average distance of 2.44 A˚ found in [SrI2{O P(NMe2)3}4] (Barret al., 1989).
The bite angles of the DME ligands vary from 60.22 (18) to 63.37 (14) (average 61.58). The O—Sr—O angles between
adjacent O donor sites of different DME ligands are in the range 67.3 (2)–74.1 (2). The sum of the six O—Sr—O angles is 398.45 and this reflects the significant deviation of the O atoms (between 1.082 and 0.945 A˚ ) from the calculated least-squares plane through the O atoms. The same coordination number and a similar coordination geometry have been found for [SrI2(bipy)3] (bipy is 2,20-bipyridine; Skeltonet al., 1996).
Experimental
Strontium metal (0.88 g, 10.0 mmol) was dissolved in a refluxing solution of ammonium iodide (2.90 g, 20.0 mmol) in liquid ammonia (100 ml). The solvent was allowed to evaporate and the residue was dissolved in boiling dimethoxyethane. The extract was filtered and allowed to cool slowly to 293 K. Colourless crystals of (I) up to
several millimeters in size were obtained in 4.67 g yield (7.64 mmol; 76.4%). Analysis for C12H30O6I2Sr (611.79), calculated: C 23.56,
H 4.94%; found: C 23.10, H 4.77%.
Crystal data
[SrI2(C4H10O2)3]
Mr= 611.78
Monoclinic, P21
a= 8.5222 (8) A˚
b= 10.6245 (7) A˚
c= 12.3742 (12) A˚
= 93.697 (11) V= 1118.08 (17) A˚3
Z= 2
Dx= 1.817 Mg m 3 MoKradiation Cell parameters from 8000
reflections
= 2.4–25.9
= 5.19 mm1
T= 293 (2) K Block, colourless 0.540.360.33 mm
Data collection
Stoe IPDS diffractometer
’scans
Absorption correction: analytical (ABSTinPLATON; Spek, 2003)
Tmin= 0.083,Tmax= 0.227 15 530 measured reflections 4209 independent reflections
3735 reflections withI> 2(I)
Rint= 0.091
max= 25.7
h=10!10
k=12!12
l=15!15
Refinement
Refinement onF2
R[F2> 2(F2)] = 0.037
wR(F2) = 0.092
S= 1.05 4209 reflections 196 parameters
H-atom parameters constrained
w= 1/[2(F
o2) + (0.045P)2]
whereP= (Fo2+ 2Fc2)/3
(/)max= 0.013 max= 0.61 e A˚
3 min=0.98 e A˚
3
Absolute structure: Flack (1983), with 2236 Friedel pairs Flack parameter = 0.074 (9)
H atoms were included in calculated positions, with C—H = 0.97 A˚ (methylene) and 0.96 A˚ (methyl), and were included in the refine-ment in the riding-model approximation, withUiso= 1.2 times (or 1.5
times for methyl)Ueq(C).
Data collection: EXPOSE in IPDS (Stoe & Cie, 1997); cell refinement: CELL in IPDS (Stoe & Cie, 1997); data reduction: INTEGRATEinIPDS(Stoe & Cie, 1997); program(s) used to solve structure:SIR97 (Altomareet al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXTL.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.
Barr, D., Brooker, M. J., Doyle, S. R., Drake, S. R., Raithby, P. R., Snaith, R. & Wright, D. S. (1989).J. Chem. Soc. Chem. Commun.pp. 893–895. Bruker (1998).SHELXTL.Version 5.10. Bruker AXS, Karlsruhe, Germany. Flack, H. D. (1983).Acta Cryst.A39, 876–881.
Ruhlandt-Senge, K., Davis, K., Dalal, S., Englich, U. & Senge, M. O. (1995).
Inorg. Chem.34, 2587–2592.
Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Skelton, B. W., Waters, A. F. & White, A. H. (1996).Aust. J. Chem.49, 99–115. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.
Stoe & Cie (1997).IPDS.Version 2.83. Stoe & Cie, Darmstadt, Germany. Tilley, T. D., Boncella, J. M., Berg, J. M., Burns, C. J. & Andersen, R. A. (1990).
[image:2.610.308.563.72.309.2]Inorg. Synth.27, 146–149. Figure 1
supporting information
sup-1 Acta Cryst. (2005). E61, m512–m513
supporting information
Acta Cryst. (2005). E61, m512–m513 [https://doi.org/10.1107/S1600536804031617]
The tris(dimethoxyethane) adduct of strontium iodide
Frank Weber, Gotthelf Wolmersh
ä
user and Helmut Sitzmann
tris(1,2-dimethoxyethane-κ2O,O′)diiodostrontium(II)
Crystal data [SrI2(C4H10O2)3]
Mr = 611.78
Monoclinic, P21
Hall symbol: P 2yb a = 8.5222 (8) Å b = 10.6245 (7) Å c = 12.3742 (12) Å β = 93.697 (11)° V = 1118.08 (17) Å3
Z = 2
F(000) = 588 Dx = 1.817 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8000 reflections θ = 2.4–25.9°
µ = 5.19 mm−1
T = 293 K
Transparent block, colourless 0.54 × 0.36 × 0.33 mm
Data collection Stoe IPDS
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 18.4 pixels mm-1
φ–oscillation scans
Absorption correction: analytical (ABST in PLATON; Spek, 2000) Tmin = 0.083, Tmax = 0.227
15530 measured reflections 4209 independent reflections 3735 reflections with I > 2σ(I) Rint = 0.091
θmax = 25.7°, θmin = 3.0°
h = −10→10 k = −12→12 l = −15→15
Refinement Refinement on F2
Least-squares matrix: full R[F2 > 2σ(F2)] = 0.037
wR(F2) = 0.092
S = 1.05 4209 reflections 196 parameters 1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained w = 1/[σ2(F
o2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.013
Δρmax = 0.61 e Å−3
Δρmin = −0.98 e Å−3
Absolute structure: Flack (1983), with 2236 Friedel pairs
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
supporting information
sup-3 Acta Cryst. (2005). E61, m512–m513
H24B 0.2286 0.3935 0.9662 0.176* H24C 0.2913 0.2936 1.0517 0.176* C31 −0.0388 (10) 0.3572 (13) 0.7298 (10) 0.116 (4) H31A −0.1044 0.4192 0.7609 0.173* H31B −0.0501 0.2782 0.7662 0.173* H31C −0.0698 0.3475 0.6543 0.173* C32 0.1541 (14) 0.5091 (9) 0.6866 (10) 0.091 (3) H32A 0.0660 0.5666 0.6889 0.110* H32B 0.1701 0.4907 0.6113 0.110* C33 0.2956 (10) 0.5676 (7) 0.7378 (6) 0.068 (2) H33A 0.3249 0.6401 0.6959 0.081* H33B 0.2753 0.5959 0.8101 0.081* C34 0.5610 (12) 0.5346 (9) 0.7817 (9) 0.082 (3) H34A 0.5929 0.5955 0.7302 0.123* H34B 0.6404 0.4707 0.7915 0.123* H34C 0.5472 0.5753 0.8497 0.123*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
I1 0.0657 (3) 0.0813 (3) 0.04703 (19) −0.0060 (3) −0.00721 (16) 0.0027 (3) I2 0.0771 (3) 0.0604 (3) 0.0556 (2) −0.0044 (3) −0.02037 (19) −0.0011 (2) Sr1 0.0373 (2) 0.0355 (2) 0.0379 (2) 0.0005 (3) 0.00093 (16) 0.0011 (2) O11 0.056 (3) 0.050 (3) 0.044 (2) −0.0056 (19) 0.0114 (17) 0.0001 (16) O12 0.054 (3) 0.041 (2) 0.065 (3) 0.006 (2) −0.003 (2) 0.0051 (18) O21 0.065 (4) 0.061 (3) 0.055 (3) −0.014 (3) 0.006 (2) 0.002 (2) O22 0.082 (3) 0.083 (3) 0.052 (2) −0.001 (4) 0.0170 (19) −0.014 (3) O31 0.044 (3) 0.068 (3) 0.080 (4) 0.008 (2) −0.002 (2) 0.006 (3) O32 0.058 (3) 0.037 (2) 0.083 (3) 0.002 (2) 0.000 (2) −0.005 (2) C11 0.085 (6) 0.078 (5) 0.066 (5) −0.016 (5) 0.010 (4) 0.025 (4) C12 0.055 (4) 0.074 (5) 0.062 (4) −0.002 (4) 0.017 (3) −0.016 (3) C13 0.059 (4) 0.055 (4) 0.077 (5) 0.018 (3) −0.002 (4) −0.018 (3) C14 0.104 (8) 0.052 (5) 0.091 (7) 0.016 (5) −0.015 (6) 0.012 (4) C21 0.087 (7) 0.065 (5) 0.084 (6) −0.024 (5) 0.008 (5) −0.012 (4) C22 0.088 (7) 0.100 (7) 0.075 (5) −0.034 (5) 0.018 (5) 0.021 (5) C23 0.147 (10) 0.120 (9) 0.053 (5) −0.031 (8) 0.026 (6) 0.015 (5) C24 0.164 (12) 0.122 (9) 0.069 (6) 0.001 (8) 0.034 (7) −0.041 (6) C31 0.034 (4) 0.137 (10) 0.175 (12) 0.003 (5) 0.007 (5) 0.007 (8) C32 0.088 (7) 0.062 (5) 0.119 (8) 0.023 (5) −0.030 (6) 0.005 (5) C33 0.084 (6) 0.048 (4) 0.070 (5) 0.012 (4) 0.006 (4) −0.004 (3) C34 0.062 (5) 0.052 (5) 0.131 (9) −0.009 (4) −0.008 (6) −0.007 (4)
Geometric parameters (Å, º)
Sr1—O32 2.638 (5) C21—H21A 0.9600 Sr1—O11 2.646 (4) C21—H21B 0.9600 Sr1—O21 2.653 (5) C21—H21C 0.9600 Sr1—O12 2.656 (4) C22—C23 1.459 (14) O11—C12 1.410 (8) C22—H22A 0.9700 O11—C11 1.439 (8) C22—H22B 0.9700 O12—C13 1.410 (9) C23—H23A 0.9700 O12—C14 1.454 (9) C23—H23B 0.9700 O21—C22 1.419 (10) C24—H24A 0.9600 O21—C21 1.441 (9) C24—H24B 0.9600 O22—C23 1.372 (13) C24—H24C 0.9600 O22—C24 1.409 (11) C31—H31A 0.9600 O31—C32 1.414 (12) C31—H31B 0.9600 O31—C31 1.422 (10) C31—H31C 0.9600 O32—C33 1.405 (9) C32—C33 1.464 (14) O32—C34 1.405 (10) C32—H32A 0.9700 C11—H11A 0.9600 C32—H32B 0.9700 C11—H11B 0.9600 C33—H33A 0.9700 C11—H11C 0.9600 C33—H33B 0.9700 C12—C13 1.462 (11) C34—H34A 0.9600 C12—H12A 0.9700 C34—H34B 0.9600 C12—H12B 0.9700 C34—H34C 0.9600 C13—H13A 0.9700
supporting information
sup-5 Acta Cryst. (2005). E61, m512–m513