• No results found

Phenyl 4 toluene­sulfonate: supramolecular aggregation through weak C—H⋯O and C—H⋯π interactions

N/A
N/A
Protected

Academic year: 2020

Share "Phenyl 4 toluene­sulfonate: supramolecular aggregation through weak C—H⋯O and C—H⋯π interactions"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o690

Manivannanet al. C

13H12O3S doi:10.1107/S1600536805001029 Acta Cryst.(2005). E61, o690–o692 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Phenyl 4-toluenesulfonate: supramolecular

aggregation through weak C—H

O and

C—H

p

interactions

Vadivelu Manivannan,a

Nagarajan Vembu,b*‡ Maruthai Nallu,bKandasamy Sivakumarc and Anthony Lindend

aDepartment of Physics, Presidency College,

Chennai 600 005, India,bDepartment of

Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India,cDepartment of

Physics, Anna University, Chennai 600 025, India, anddInstitute of Organic Chemistry,

University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

‡ Correspondence address: Department of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, Tamil Nadu, India.

Correspondence e-mail: vembu57@yahoo.com

Key indicators

Single-crystal X-ray study T= 173 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.067 wRfactor = 0.177

Data-to-parameter ratio = 20.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the crystal structure of the title compound, C13H12O3S, the

dihedral angle between the mean planes of the 4-tolyl and

phenyl rings is 52.6 (1). There are weak C—H O hydrogen

bonds, which generate rings of graph-set motifs R1

2

(4) and

R2 1

(9). The supramolecular aggregation is completed by the

presence of van der Waals short contacts and C—H

interactions.

Comment

Aromatic sulfonates are used in monitoring the merging of

lipids (Yachiet al., 1989) and in many other fields (Spunginet

al., 1992; Tharakanet al., 1992; Alfordet al., 1991; Jianget al., 1990; Narayanan & Krakow, 1983). The crystal structure of the title compound was determined because of the biological importance of its analogues. A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen,

2002) revealed 16 structures [refcodes KAWDAN (Niestrojet

al., 1998), FIXCAQ (Chinnakali et al., 1999), NEDXUP,

NEDYAW and NEDYIE (Gallucci et al., 1998), NUNCII

(Goswamiet al., 1998), RASSOT (Is¸iket al., 1997), RELVUZ

(Bott et al., 1996), SIMVUF (Bindalet al., 1990), TCPTOS

(Wieczorek & Galdecki, 1978), TEBFOV (Princeet al., 1991),

TMPDTS (Wieczoreket al., 1975), TSMIPH (Sarkar & Gupta,

1980), WOHCUR (Meents et al., 2000), ZZZBDA10

(Wiec-zorek, 1980) and MIWHIJ (Lee et al., 2001)] that are closely

related to the title compound in having benzene rings attached

to the sulfonate group. The S—C, S—O and S O bond

lengths (Table 1) are comparable to those found in related structures (Vembu, Nallu, Garrison & Youngs, 2003a,b,c,d,e,f; Vembu, Nallu, Spencer & Howard, 2003a,b,c,d,e,f,g; Vembuet al., 2003; Vembu, Nallu, Durmuset al., 2004a,b,c). The mole-cular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The dihedral angle between

[image:1.610.272.390.587.646.2]

the mean planes of the C1–C6 and C8–C13 rings is 52.6 (1).

Fig. 2 shows a Newman projection along the S1—O3 bond, with atom C8 at the top for reference. Helical nomenclature is

followed in assigning + or synclinal and +antiperiplanar

conformations. Since the C1—S1—O3—C8 torsion angle is

72.1 (2), which corresponds to asynclinal conformation,

the dihedral angle between the two aromatic planes is, as

expected, large [52.6 (1)].

(2)

The crystal structure of (I) is stabilized by weak C—H O

interactions (Table 2). The H O distances found in (I) agree

with those found for weak C—H O bonds (Desiraju &

Steiner, 1999). The C2—H2 O1i and C13—H13 O1i

interactions (see Table 2 for symmetry codes) together constitute a pair of bifurcated acceptor bonds generating a

ring of graph set R1

2(9). The C5—H5 O3

iii

and C5—

H5 O2iii interactions together form a pair of bifurcated

donor bonds generating a ring of graph setR2

1(4). This motif

can be considered as a symmetrical three-center

hydrogen-bonded chelate, as the difference in H Adistances andD—

H Aangles are 0.02 A˚ and 19.7, respectively, and the sum

of the angles around the chelating H atom is 341. There are a

few other C—H O, C—H and van der Waals

interac-tions, which contribute to the supramolecular aggregation (Fig. 3) of the title compound.

Experimental

4-Toluenesulfonyl chloride (4.7 mmol), dissolved in acetone (4 ml), was added dropwise to phenol (4.3 mmol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated compound (2.9 mmol, yield 67%) was filtered off and recrystallized from aqueous ethanol.

Crystal data

C13H12O3S

Mr= 248.29 Orthorhombic,Pca21

a= 25.149 (4) A˚

b= 7.976 (5) A˚

c= 5.916 (4) A˚

V= 1186.7 (10) A˚3

Z= 4

Dx= 1.390 Mg m

3

MoKradiation

Cell parameters from 25 reflections

= 15–19 = 0.27 mm1

T= 173 (2) K Thick plate, colorless 0.500.330.15 mm

Data collection

Rigaku AFC-5Rdiffractometer

!scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.946,Tmax= 0.963

3909 measured reflections 3277 independent reflections 2819 reflections withI> 2(I)

Rint= 0.052 max= 30.0

h=35!35

k=11!10

l=8!8 3 standard reflections

every 150 reflections intensity decay: none

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.067

wR(F2) = 0.177

S= 1.09 3277 reflections 157 parameters

H-atom parameters constrained

w= 1/[2(F2

o) + (0.1163P)2 + 0.1087P]

whereP= (F2

o+ 2F2c)/3 (/)max= 0.001 max= 0.60 e A˚

3 min=1.40 e A˚ 3

Absolute structure: (Flack, 1983), 1386 Friedel pairs

Flack parameter:0.07 (12)

organic papers

Acta Cryst.(2005). E61, o690–o692 Manivannanet al. C

[image:2.610.45.294.70.247.2]

13H12O3S

o691

Figure 3

[image:2.610.312.564.70.306.2]

Packing of the title molecule, viewed down thec axis. Dashed lines indicate hydrogen bonds.

Figure 1

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids. H atoms have been omitted.

Figure 2

[image:2.610.56.235.319.502.2]
(3)

Table 1

Selected geometric parameters (A˚ ,).

S1—O2 1.427 (2)

S1—O1 1.431 (3)

S1—O3 1.611 (2)

S1—C1 1.754 (3)

O3—C8 1.410 (3)

O2—S1—O1 120.98 (17)

O2—S1—O3 103.05 (13)

O1—S1—O3 108.36 (14)

O2—S1—C1 110.40 (14)

O1—S1—C1 108.99 (14)

O3—S1—C1 103.50 (13)

C8—O3—S1 117.68 (18)

O2—S1—O3—C8 172.8 (2)

O1—S1—O3—C8 43.5 (3)

[image:3.610.43.296.266.380.2]

C1—S1—O3—C8 72.1 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C13—H13 O1i

0.93 2.76 3.643 (4) 158

C2—H2 O2ii

0.93 2.99 3.761 (4) 141

C5—H5 O3iii

0.93 2.78 3.649 (4) 155

C5—H5 O2iii 0.93 2.76 3.484 (4) 135

C7—H7B O2iv

0.96 2.98 3.543 (5) 119

C7—H7C O2v

0.96 2.53 3.406 (4) 152

C10—H10 O3vi 0.93 2.89 3.644 (4) 140

C3—H3 Cg1ii

0.93 2.83 3.58 138

C9—H9 Cg2vii

0.93 2.92 3.64 135

C11—H11 Cg1viii

0.93 3.33 4.09 141

C12—H12 Cg2ix 0.93 3.08 3.84 141

Symmetry codes: (i)x;y;zþ1; (ii)xþ1 2;y;zþ

1

2; (iii)x;yþ1;z; (iv)x;yþ1;zþ1;

(v) xþ1 2;yþ1;zþ

1

2; (vi) xþ1;yþ1;z 1

2; (vii) x;yþ1;z 1 2; (viii)

x;yþ2;z1

2; (ix)x;yþ2;zþ 1

2. Notes:Cg1 andCg2 are the ceentroids of

the C1–C6 and C8–C13 rings, respectively.

All H atoms were included in calculated positions, with aromatic C—H distances of 0.93 A˚ and methyl C—H distances of 0.96 A˚, and refined with a riding model. Their displacement parameters were tied to common free varibles which were refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement:MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Mole-cular Structure Corporation, 1999); program(s) used to solve struc-ture: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication:SHELXL97.

References

Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991).Virology,

183, 611–619.

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bindal, R. D., Golab, J. T. & Katzenellenbogen, J. A. (1990).J. Am. Chem. Soc.

112, 7861–7868.

Bott, S. G., Obrey, S. J., Marchand, A. P. & Kumar, K. A. (1996).J. Chem. Crystallogr.26, 677–681.

Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1999).

Acta Cryst.C55, 944–946.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.

Etter, M. C. (1990).Acc. Chem. Res.23, 120–126. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Gallucci, J. C., Hart, D. J. & Young, D. G. J. (1998).Acta Cryst.B54, 73–81. Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Razak, I. A. &

Fun, H.-K. (1998).Acta Cryst.C54, 954–955.

Is¸ik, S., Aygun, M., Sasmaz, S., Kendi, E., Buyukgungor, O. & Erdonmez, A. (1997).Acta Cryst.C53, 593–594.

Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990).J. Immunol. Methods,134, 139–149.

Lee, Y. H., Seo, J., Yoon, I., Park, K.-M. & Lee, S. S. (2001).Anal. Sci.17, 805– 806.

Meents, A., Barbier, B., Euler, H., Kirfel, A., Schwierz, H. & Vogtle, F. (2000).

Z. Kristallogr. New Cryst. Struct.215, 115–116.

Molecular Structure Corporation (1991).MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1999).TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Narayanan, C. S. & Krakow, J. S. (1983).Nucleic Acids Res.11, 2701–2716. Niestroj, A. J., Bruhn, C. & Maier, M. E. J. (1998).Prakt. Chem.340, 175. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Prince, P., Fronczek, F. R. & Gandour, R. D. (1991).Acta Cryst.C47, 2220– 2222.

Sarkar, P. B. & Gupta, S. P. S. (1980).Cryst. Struct. Commun.9, 973. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992).FEBS Lett.

311, 155–160.

Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992).J. Chromatogr.595, 103–111.

Vembu, N., Nallu, M., Durumus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004a).Acta Cryst.E60, o1–o3.

Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004b).Acta Cryst.C60, o65–o68.

Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004c).Acta Cryst.C60, o248–o251.

Vembu, N., Nallu, M., Garrison, J. Hindi, K. & Youngs, W. J. (2003).Acta Cryst.

E59, o830–o832.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378–o380.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503–o505.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776–o779.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d).Acta Cryst.E59, o936–o938.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e).Acta Cryst.E59, o939–o941.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003f).Acta Cryst.E59, o1019–o1021.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a).Acta Cryst.

E59, o1009–o1011.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b).Acta Cryst.

E59, o1033–o1035.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c).Acta Cryst.

E59, o1213–o1215.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003d).Acta Cryst.

E59, o1216–o1219.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003e).Acta Cryst.

E59, o1379–o1382.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003f).Acta Cryst.

E59, o1387–o1389.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003g).Acta Cryst.

E59, o1390–o1392.

Wieczorek, M. W. & Galdecki, Z. (1978).Pol. J. Chem.52, 1001. Wieczorek, M. W. (1980).Acta Cryst.B36, 1513–1515.

Wieczorek, M. W., Bokii, N. G. & Struchkov, Yu. T. (1975).Acta Cryst.B31, 2603–2606.

Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989).Biochim. Biophys. Acta,978, 1–7.

organic papers

o692

Manivannanet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o690–o692

supporting information

Acta Cryst. (2005). E61, o690–o692 [https://doi.org/10.1107/S1600536805001029]

Phenyl 4-toluenesulfonate: supramolecular aggregation through weak C

H

···

O

and C

H

···

π

interactions

Vadivelu Manivannan, Nagarajan Vembu, Maruthai Nallu, Kandasamy Sivakumar and Anthony

Linden

Phenyl 4-toluenesulfonate

Crystal data

C13H12O3S Mr = 248.29

Orthorhombic, Pca21

Hall symbol: P 2c -2ac

a = 25.149 (4) Å

b = 7.976 (5) Å

c = 5.916 (4) Å

V = 1186.7 (10) Å3 Z = 4

F(000) = 520

Dx = 1.390 Mg m−3

Melting point = 367–368 K Mo radiation, λ = 0.71069 Å Cell parameters from 25 reflections

θ = 15–19°

µ = 0.27 mm−1 T = 173 K Plate, colorless 0.50 × 0.33 × 0.15 mm

Data collection

Rigaku AFC-5R diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.946, Tmax = 0.963

3909 measured reflections

3277 independent reflections 2819 reflections with I > 2σ(I)

Rint = 0.052

θmax = 30.0°, θmin = 2.6° h = −35→35

k = −11→10

l = −8→8

3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.067 wR(F2) = 0.177 S = 1.09 3277 reflections 157 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1163P)2 + 0.1087P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.60 e Å−3

Δρmin = −1.40 e Å−3

Absolute structure: (Flack, 1983), 1386 Friedel pairs?

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o690–o692 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.34695 (2) 0.69543 (8) 0.44852 (13) 0.02728 (19) O1 0.36778 (11) 0.7369 (3) 0.2305 (4) 0.0381 (5) O2 0.30335 (9) 0.5822 (3) 0.4718 (5) 0.0418 (6) O3 0.39332 (8) 0.6063 (2) 0.5929 (4) 0.0287 (4) C1 0.33453 (10) 0.8811 (4) 0.5984 (5) 0.0237 (5) C2 0.30789 (11) 0.8722 (4) 0.8058 (5) 0.0268 (5) H2 0.2964 0.7699 0.8632 0.055 (4)* C3 0.29905 (11) 1.0202 (4) 0.9237 (5) 0.0293 (6) H3 0.2813 1.0159 1.0614 0.055 (4)* C4 0.31605 (12) 1.1749 (4) 0.8415 (5) 0.0285 (6) C5 0.34174 (12) 1.1797 (4) 0.6319 (6) 0.0308 (6) H5 0.3526 1.2821 0.5725 0.055 (4)* C6 0.35127 (12) 1.0336 (4) 0.5115 (5) 0.0290 (6) H6 0.3688 1.0379 0.3732 0.055 (4)* C7 0.30695 (14) 1.3344 (5) 0.9751 (7) 0.0412 (8) H7A 0.3371 1.4071 0.9581 0.083 (11)* H7B 0.3023 1.3072 1.1319 0.083 (11)* H7C 0.2757 1.3898 0.9199 0.083 (11)* C8 0.44463 (11) 0.6773 (4) 0.5835 (5) 0.0268 (5) C9 0.47793 (12) 0.6383 (4) 0.4047 (5) 0.0318 (6) H9 0.4662 0.5698 0.2876 0.055 (4)* C10 0.52921 (13) 0.7034 (4) 0.4036 (5) 0.0371 (7) H10 0.5521 0.6782 0.2850 0.055 (4)* C11 0.54647 (13) 0.8061 (5) 0.5794 (7) 0.0400 (8) H11 0.5807 0.8503 0.5770 0.055 (4)* C12 0.51273 (13) 0.8425 (5) 0.7578 (6) 0.0394 (7) H12 0.5244 0.9110 0.8749 0.055 (4)* C13 0.46117 (13) 0.7769 (4) 0.7629 (5) 0.0335 (7) H13 0.4385 0.7994 0.8833 0.055 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o690–o692

O3 0.0305 (9) 0.0282 (10) 0.0272 (9) 0.0022 (7) −0.0014 (8) 0.0034 (8) C1 0.0238 (10) 0.0289 (13) 0.0183 (10) 0.0032 (9) −0.0010 (9) 0.0002 (10) C2 0.0309 (12) 0.0304 (14) 0.0190 (11) 0.0002 (10) −0.0005 (10) 0.0065 (11) C3 0.0307 (11) 0.0389 (15) 0.0183 (11) 0.0019 (10) 0.0012 (10) 0.0019 (12) C4 0.0289 (12) 0.0326 (14) 0.0240 (12) 0.0031 (11) −0.0027 (10) −0.0017 (11) C5 0.0362 (14) 0.0294 (14) 0.0267 (15) −0.0051 (11) 0.0024 (11) 0.0013 (12) C6 0.0332 (12) 0.0319 (15) 0.0219 (11) −0.0022 (11) 0.0031 (9) −0.0004 (10) C7 0.0463 (16) 0.0402 (17) 0.0372 (18) 0.0077 (13) −0.0025 (15) −0.0108 (16) C8 0.0294 (12) 0.0282 (13) 0.0227 (11) 0.0014 (9) −0.0016 (10) 0.0019 (11) C9 0.0350 (14) 0.0367 (15) 0.0238 (13) 0.0034 (12) −0.0020 (11) −0.0077 (12) C10 0.0353 (14) 0.0484 (18) 0.0276 (16) 0.0036 (12) 0.0051 (12) −0.0081 (14) C11 0.0321 (14) 0.055 (2) 0.0330 (15) −0.0025 (13) −0.0011 (14) −0.0089 (15) C12 0.0363 (15) 0.052 (2) 0.0298 (15) −0.0009 (14) −0.0044 (13) −0.0141 (15) C13 0.0364 (14) 0.0451 (18) 0.0189 (12) 0.0045 (13) −0.0014 (10) −0.0048 (12)

Geometric parameters (Å, º)

S1—O2 1.427 (2) C6—H6 0.9300

S1—O1 1.431 (3) C7—H7A 0.9600

S1—O3 1.611 (2) C7—H7B 0.9600

S1—C1 1.754 (3) C7—H7C 0.9600

O3—C8 1.410 (3) C8—C9 1.384 (4)

C1—C6 1.386 (4) C8—C13 1.390 (4)

C1—C2 1.400 (4) C9—C10 1.390 (4)

C2—C3 1.388 (4) C9—H9 0.9300

C2—H2 0.9300 C10—C11 1.394 (5)

C3—C4 1.394 (4) C10—H10 0.9300

C3—H3 0.9300 C11—C12 1.385 (5)

C4—C5 1.399 (4) C11—H11 0.9300

C4—C7 1.515 (4) C12—C13 1.398 (5)

C5—C6 1.387 (4) C12—H12 0.9300

C5—H5 0.9300 C13—H13 0.9300

O2—S1—O1 120.98 (17) C4—C7—H7A 109.5 O2—S1—O3 103.05 (13) C4—C7—H7B 109.5 O1—S1—O3 108.36 (14) H7A—C7—H7B 109.5 O2—S1—C1 110.40 (14) C4—C7—H7C 109.5 O1—S1—C1 108.99 (14) H7A—C7—H7C 109.5 O3—S1—C1 103.50 (13) H7B—C7—H7C 109.5 C8—O3—S1 117.68 (18) C9—C8—C13 122.1 (3) C6—C1—C2 121.0 (3) C9—C8—O3 119.6 (3) C6—C1—S1 120.0 (2) C13—C8—O3 118.2 (3) C2—C1—S1 119.1 (2) C8—C9—C10 118.7 (3)

C3—C2—C1 118.3 (3) C8—C9—H9 120.6

C3—C2—H2 120.9 C10—C9—H9 120.6

C1—C2—H2 120.9 C9—C10—C11 120.3 (3) C2—C3—C4 121.9 (3) C9—C10—H10 119.8

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o690–o692

C4—C3—H3 119.1 C12—C11—C10 120.1 (3) C3—C4—C5 118.3 (3) C12—C11—H11 120.0 C3—C4—C7 121.0 (3) C10—C11—H11 120.0 C5—C4—C7 120.6 (3) C11—C12—C13 120.4 (3) C6—C5—C4 120.8 (3) C11—C12—H12 119.8

C6—C5—H5 119.6 C13—C12—H12 119.8

C4—C5—H5 119.6 C8—C13—C12 118.4 (3) C1—C6—C5 119.6 (3) C8—C13—H13 120.8

C1—C6—H6 120.2 C12—C13—H13 120.8

C5—C6—H6 120.2

O2—S1—O3—C8 172.8 (2) C7—C4—C5—C6 178.5 (3) O1—S1—O3—C8 43.5 (3) C2—C1—C6—C5 0.3 (4) C1—S1—O3—C8 −72.1 (2) S1—C1—C6—C5 −179.4 (2) O2—S1—C1—C6 −143.2 (2) C4—C5—C6—C1 0.9 (4) O1—S1—C1—C6 −8.1 (3) S1—O3—C8—C9 −82.7 (3) O3—S1—C1—C6 107.1 (2) S1—O3—C8—C13 101.1 (3) O2—S1—C1—C2 37.1 (3) C13—C8—C9—C10 −1.1 (5) O1—S1—C1—C2 172.2 (2) O3—C8—C9—C10 −177.1 (3) O3—S1—C1—C2 −72.6 (2) C8—C9—C10—C11 −0.1 (5) C6—C1—C2—C3 −0.6 (4) C9—C10—C11—C12 0.7 (6) S1—C1—C2—C3 179.1 (2) C10—C11—C12—C13 −0.1 (6) C1—C2—C3—C4 −0.2 (4) C9—C8—C13—C12 1.6 (5) C2—C3—C4—C5 1.3 (4) O3—C8—C13—C12 177.7 (3) C2—C3—C4—C7 −178.8 (3) C11—C12—C13—C8 −1.0 (5) C3—C4—C5—C6 −1.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2···O2 0.93 2.76 3.044 (4) 99

C6—H6···O1 0.93 2.54 2.921 (4) 105

C9—H9···O1 0.93 2.83 3.058 (4) 95

C2—H2···O1i 0.93 2.83 3.122 (4) 100

C13—H13···O1i 0.93 2.76 3.643 (4) 158

C2—H2···O2ii 0.93 2.99 3.761 (4) 141

C5—H5···O3iii 0.93 2.78 3.649 (4) 155

C5—H5···O2iii 0.93 2.76 3.484 (4) 135

C7—H7B···O2iv 0.96 2.98 3.543 (5) 119

C7—H7C···O2v 0.96 2.53 3.406 (4) 152

C10—H10···O3vi 0.93 2.89 3.644 (4) 140

C3—H3···Cg1ii 0.93 2.83 3.577 138

C9—H9···Cg2vii 0.93 2.92 3.638 135

C11—H11···Cg1viii 0.93 3.33 4.094 141

C12—H12···Cg2ix 0.93 3.08 3.843 141

Figure

Fig. 2 shows a Newman projection along the S1—O3 bond,
Figure 1
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

Preposition sense disambiguation was one of the SemEval 2007 tasks (Litkowski and Hargraves, 2007), and was subsequently explored in a number of papers using supervised

The results of Granger Test based on rolling window Bootstrap method illustrates that there is time-varying granger relation between short-term capital flow and

Analyzed interrelated problems are: (i) stability of interfirm R&D cooperation, (ii) organization of interfirm R&D cooperation, (iii) asymmetries between

The standard mean deviation of the studied variables for Gonion- Gnathion/Sella Nasion(Go-Gn/SN), Infradental-Menton (vertical), Lower Facial Height (ANS-Menton) showed higher

Also, unlike in Tsionas and Kumbhakar (2014) we find that a posteriori persistent inefficiency distribution

In order to test our second hypo- thesis, POS blocks that contain more closed class than open class tags are removed from the queries, on the assumption that these blocks are

Although both domains contain a large number of English in- clusions, their type-token ratio amounts to 0.29 in the internet data and 0.15 in the space travel data (Table 1),

The table reports the daily average gross return (i.e. before transaction costs) obtained by the each portfolio policy alongside each covariance model over the out-of-sample