o Nitro­benzoic acid anhydride

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o3191–o3192 doi:10.1107/S1600536806024639 Huelgaset al. C

14H8N2O7

o3191

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

o

-Nitrobenzoic acid anhydride

Gabriela Huelgas,a‡ Leticia Quintero,bCecilia Anaya de Parrodiaand Sylvain Berne`sc*

aDepartamento de Ciencias

Quı´mico-Biolo´gicas, Universidad de las Ame´ricas Puebla, Santa Catarina Ma´rtir s/n, 72820 Cholula, Puebla, Mexico.bFacultad de Ciencias

Quı´micas, Beneme´rita Universidad Auto´noma de Puebla, Puebla, Mexico, andcDEP, Facultad de Ciencias Quı´micas, UANL, Guerrero y Progreso s/n, Col. Trevin˜o, 64570 Monterrey, NL, Mexico

‡ Current address: Facultad de Ciencias Quı´micas, Beneme´rita Universidad Auto´noma de Puebla, Puebla, Mexico

Correspondence e-mail: sylvain_bernes@hotmail.com

Key indicators

Single-crystal X-ray study T= 296 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.048 wRfactor = 0.130

Data-to-parameter ratio = 19.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 22 June 2006 Accepted 27 June 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C14H8N2O7, is a symmetrically

substi-tuted acyclic anhydride. The nitro groups are twisted with respect to the benzene rings; these are almost coplanar, with a dihedral angle of 9.07 (9).

Comment

The title molecule, (I), although being a symmetrically substituted anhydride, lies on a general position (Fig. 1). The conformation of the anhydride unit (O1/C2/O3/C13/O14) may be defined by the pseudo-torsion angle O3 C2 C13 O14 of 27.65 (15). A search of the Cambridge Structural Database

(CSD; Version 5.27, updated May 2006; Allen, 2002) indicates that acyclic anhydrides crystallize with almost unrestricted conformations. Observed |O C C O| angles range from

ca 6 (Graham et al., 1996) to 95 (Schubert et al., 1988),

contrasting with succinic and related cyclic anhydrides, for which observed absolute torsion angles fall in the range 0–25.

The nitro groups in (I) are twisted with respect to their carrier benzene rings, with dihedral angles of 45.16 (13) and 79.68 (12) for the N10- and N21-nitro groups, respectively.

Such a lack of delocalization of the nitrobenzene units is not uncommon and is, in the present case, dictated by the vicinity of the carbonyl groups. The arrangement of the NO2 and

anhydride groups in (I) allows the benzene rings (C4–C9 and C15–C20) to be almost coplanar, with a dihedral angle of 9.07 (9).

A totally different molecular structure had been described for the isomericm-nitrobenzoic acid anhydride (Gło´wkaet al., 1990). In that case, no hindering interactions occur for the nitro groups, which are nearly coplanar with their respective benzene rings (dihedral angles: 10.5 and 14.8), while the

dihedral angle between the benzene rings is 27.0. As a

(2)

Experimental

A solution of (S)-anthracen-9-ylmethyl-(-phenylethyl)amine (4.51 g, 14.4 mmol) and Et3N (2.92 g, 28.8 mmol) in CH2Cl2(10 ml)

was added slowly to an ice-cooled solution of 2-nitrobenzoyl chloride (3.30 g, 16.3 mmol) in CH2Cl2 (10 ml). The resulting mixture was

allowed to warm to 298 K and stirred for 2 h. The solution was quenched with 25 ml of H2O, extracted with 325 ml of CH2Cl2, and

the combined organic phases were dried with magnesium sulfate. The solvent was then removed under reduced pressure. The crude product was purified by flash chromatography on deactivated silica gel (Et3N/

SiO2 = 2.5%v/v, hexanes–EtOAc, 80:20) to afford (Ra,S )-2-nitro-N-anthracen-9-ylmethyl-N-(-phenylethyl)benzamide (Ra indicates

axial chirality) (1.74 g, 5.72 mmol, 39.7% yield; Huelgaset al., 2006) and (I) (0.773 g, 2.45 mmol, 30.0% yield). Compound (I) was recrystallized from hexane/CH2Cl2(5:1), affording colourless crystals

(m.p. 405–406 K).

Crystal data

C14H8N2O7

Mr= 316.22

Monoclinic,P21=c

a= 7.9365 (10) A˚

b= 16.1757 (14) A˚

c= 11.0023 (8) A˚

= 103.798 (7) V= 1371.7 (2) A˚3

Z= 4

Dx= 1.531 Mg m 3

MoKradiation

= 0.13 mm 1

T= 296 (1) K Prism, colourless 0.600.440.28 mm

Data collection

Siemens P4 diffractometer

!scans

Absorption correction: none 7531 measured reflections 3994 independent reflections 2935 reflections withI> 2(I)

Rint= 0.029

max= 30.0

3 standard reflections every 97 reflections intensity decay: 1%

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.048

wR(F2) = 0.130

S= 1.03 3994 reflections 208 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0542P)2

+ 0.2914P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.24 e A˚ 3 min= 0.24 e A˚ 3

Table 1

Selected torsion angles ().

C13—O1—C2—C4 175.96 (11) O1—C2—C4—C5 44.38 (16) C4—C9—N10—O11 44.7 (2)

C2—O1—C13—C15 154.97 (12) O1—C13—C15—C16 9.59 (19) C15—C20—N21—O23 80.84 (19)

H atoms were placed in idealized positions and refined as riding on their parent C atoms, with C—H = 0.93 A˚ andUiso(H) = 1.2Ueq(C).

Data collection: XSCANS (Siemens, 1996); cell refinement:

XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure:SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

This work was supported by CONACyT, Consejo Nacional de CienciayTecnologı´a (project No. V39500-Q and Scholar-ship No. 144893). SB is grateful to Universidad Auto´noma de Puebla (Mexico) for providing diffractometer time.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Gło´wka, M. L., Iwanicka, I. & Krol, I. (1990).J. Crystallogr. Spectrosc. Res.20, 519–523.

Graham, J. E., Bunce, R. A. & Holt, E. M. (1996).Acta Cryst.C52, 436–438. Huelgas, G., Berne`s, S., Quintero, L., Juaristi, E., Anaya de Parrodi, C. &

Walsh, P. J. (2006). In preparation.

Lynch, D. E., Hayer, R., Bagga, S. & Parsons, S. (2000).Aust. J. Chem.53, 593– 596.

Schubert, U., Kron, J. & Ho¨rnig, H. (1988).J. Organomet. Chem.355, 243–256. Sheldrick, G. M. (1998).SHELXTL-Plus. Release 5.10. Siemens Analytical

X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996).XSCANS. Version 2.21. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o3191–o3192

supporting information

Acta Cryst. (2006). E62, o3191–o3192 [https://doi.org/10.1107/S1600536806024639]

o

-Nitrobenzoic acid anhydride

Gabriela Huelgas, Leticia Quintero, Cecilia Anaya de Parrodi and Sylvain Bern

è

s

o-Nitrobenzoic acid anhydride

Crystal data C14H8N2O7 Mr = 316.22

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 7.9365 (10) Å b = 16.1757 (14) Å c = 11.0023 (8) Å β = 103.798 (7)° V = 1371.7 (2) Å3 Z = 4

F(000) = 648 Dx = 1.531 Mg m−3

Melting point = 405–406 K Mo radiation, λ = 0.71073 Å Cell parameters from 85 reflections θ = 4.7–12.5°

µ = 0.13 mm−1 T = 296 K Prism, colourless 0.60 × 0.44 × 0.28 mm

Data collection Siemens P4

diffractometer

Radiation source: fine-focus sealed tube, FN4 Graphite monochromator

ω scans

7531 measured reflections 3994 independent reflections 2935 reflections with I > 2σ(I)

Rint = 0.029

θmax = 30.0°, θmin = 2.3° h = −11→6

k = −1→22 l = −15→15

3 standard reflections every 97 reflections intensity decay: 1%

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.130 S = 1.03 3994 reflections 208 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0542P)2 + 0.2914P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.24 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.24894 (11) 0.58378 (6) 0.39785 (9) 0.0387 (2)

C2 0.09787 (16) 0.57999 (8) 0.30530 (12) 0.0364 (3)

(4)

C4 0.09360 (16) 0.50375 (8) 0.22881 (11) 0.0339 (3)

C5 0.23826 (18) 0.47882 (9) 0.18863 (14) 0.0416 (3)

H5A 0.3442 0.5050 0.2194 0.050*

C6 0.2260 (2) 0.41500 (10) 0.10265 (15) 0.0507 (4)

H6A 0.3237 0.3987 0.0760 0.061*

C7 0.0700 (2) 0.37575 (11) 0.05673 (15) 0.0562 (4)

H7A 0.0628 0.3334 −0.0014 0.067*

C8 −0.0761 (2) 0.39873 (11) 0.09618 (14) 0.0509 (4)

H8A −0.1815 0.3721 0.0657 0.061*

C9 −0.06163 (17) 0.46206 (9) 0.18165 (12) 0.0392 (3)

N10 −0.21612 (17) 0.48223 (9) 0.22704 (15) 0.0550 (3)

O11 −0.1987 (2) 0.49045 (11) 0.33896 (14) 0.0780 (4)

O12 −0.35384 (18) 0.48700 (13) 0.14957 (18) 0.1003 (6)

C13 0.27554 (17) 0.64721 (9) 0.48530 (13) 0.0387 (3)

O14 0.16167 (14) 0.68366 (9) 0.51471 (13) 0.0676 (4)

C15 0.46336 (16) 0.66157 (8) 0.53712 (12) 0.0336 (3)

C16 0.59048 (17) 0.62448 (9) 0.48733 (13) 0.0408 (3)

H16A 0.5586 0.5858 0.4234 0.049*

C17 0.76400 (18) 0.64463 (10) 0.53228 (14) 0.0461 (3)

H17A 0.8476 0.6194 0.4983 0.055*

C18 0.81354 (18) 0.70195 (10) 0.62712 (14) 0.0451 (3)

H18A 0.9301 0.7155 0.6561 0.054*

C19 0.69033 (19) 0.73923 (9) 0.67909 (14) 0.0438 (3)

H19A 0.7229 0.7777 0.7432 0.053*

C20 0.51868 (17) 0.71829 (8) 0.63426 (12) 0.0358 (3)

N21 0.39428 (17) 0.75813 (9) 0.69675 (12) 0.0480 (3)

O22 0.3534 (2) 0.82906 (9) 0.66836 (16) 0.0834 (5)

O23 0.3474 (2) 0.71963 (11) 0.77679 (15) 0.0847 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0303 (5) 0.0401 (5) 0.0430 (5) 0.0023 (4) 0.0034 (4) −0.0080 (4)

C2 0.0291 (6) 0.0368 (6) 0.0422 (6) 0.0002 (5) 0.0065 (5) −0.0006 (5)

O3 0.0462 (6) 0.0478 (6) 0.0726 (8) 0.0153 (5) −0.0057 (5) −0.0088 (5)

C4 0.0310 (6) 0.0352 (6) 0.0343 (6) −0.0002 (5) 0.0054 (5) 0.0016 (5)

C5 0.0341 (7) 0.0424 (7) 0.0491 (7) 0.0011 (5) 0.0116 (6) 0.0010 (6)

C6 0.0529 (9) 0.0531 (9) 0.0510 (8) 0.0088 (7) 0.0224 (7) −0.0024 (7)

C7 0.0689 (11) 0.0547 (9) 0.0450 (8) 0.0006 (8) 0.0136 (8) −0.0136 (7)

C8 0.0486 (8) 0.0530 (9) 0.0472 (8) −0.0096 (7) 0.0037 (6) −0.0101 (7)

C9 0.0330 (6) 0.0453 (7) 0.0383 (6) −0.0024 (5) 0.0067 (5) −0.0017 (6)

N10 0.0376 (7) 0.0602 (8) 0.0704 (9) −0.0099 (6) 0.0192 (6) −0.0084 (7)

O11 0.0770 (10) 0.0975 (11) 0.0725 (9) −0.0078 (8) 0.0437 (8) −0.0154 (8)

O12 0.0313 (7) 0.1512 (17) 0.1128 (13) 0.0003 (8) 0.0060 (7) −0.0193 (12)

C13 0.0314 (6) 0.0418 (7) 0.0442 (7) −0.0022 (5) 0.0116 (5) −0.0086 (5)

O14 0.0324 (5) 0.0861 (9) 0.0857 (9) −0.0021 (6) 0.0168 (5) −0.0437 (7)

C15 0.0286 (6) 0.0354 (6) 0.0370 (6) −0.0003 (5) 0.0083 (5) −0.0018 (5)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o3191–o3192

C17 0.0317 (7) 0.0584 (9) 0.0504 (8) 0.0027 (6) 0.0141 (6) −0.0017 (7)

C18 0.0312 (6) 0.0532 (8) 0.0494 (8) −0.0077 (6) 0.0067 (6) 0.0047 (6)

C19 0.0409 (7) 0.0437 (7) 0.0451 (7) −0.0088 (6) 0.0066 (6) −0.0053 (6)

C20 0.0346 (6) 0.0347 (6) 0.0390 (6) −0.0004 (5) 0.0105 (5) −0.0020 (5)

N21 0.0430 (7) 0.0514 (7) 0.0496 (7) 0.0007 (6) 0.0109 (5) −0.0156 (6)

O22 0.0912 (11) 0.0575 (8) 0.1053 (12) 0.0259 (8) 0.0313 (9) −0.0118 (8)

O23 0.0953 (11) 0.0980 (11) 0.0798 (9) 0.0075 (9) 0.0583 (9) 0.0018 (9)

Geometric parameters (Å, º)

O1—C2 1.3768 (15) N10—O12 1.218 (2)

O1—C13 1.3878 (16) C13—O14 1.1868 (17)

C2—O3 1.1854 (17) C13—C15 1.4818 (18)

C2—C4 1.4889 (18) C15—C16 1.3933 (18)

C4—C5 1.3850 (19) C15—C20 1.3976 (18)

C4—C9 1.3917 (18) C16—C17 1.3866 (19)

C5—C6 1.388 (2) C16—H16A 0.9300

C5—H5A 0.9300 C17—C18 1.381 (2)

C6—C7 1.376 (2) C17—H17A 0.9300

C6—H6A 0.9300 C18—C19 1.383 (2)

C7—C8 1.382 (2) C18—H18A 0.9300

C7—H7A 0.9300 C19—C20 1.3760 (19)

C8—C9 1.377 (2) C19—H19A 0.9300

C8—H8A 0.9300 C20—N21 1.4786 (18)

C9—N10 1.4667 (19) N21—O23 1.2075 (19)

N10—O11 1.213 (2) N21—O22 1.213 (2)

C2—O1—C13 120.48 (10) O14—C13—O1 123.81 (12)

O3—C2—O1 124.52 (13) O14—C13—C15 125.36 (13)

O3—C2—C4 124.70 (12) O1—C13—C15 110.82 (11)

O1—C2—C4 110.69 (10) C16—C15—C20 117.29 (12)

C5—C4—C9 117.86 (12) C16—C15—C13 122.51 (12)

C5—C4—C2 120.85 (12) C20—C15—C13 120.06 (11)

C9—C4—C2 120.72 (12) C17—C16—C15 120.61 (13)

C4—C5—C6 120.37 (14) C17—C16—H16A 119.7

C4—C5—H5A 119.8 C15—C16—H16A 119.7

C6—C5—H5A 119.8 C18—C17—C16 120.46 (14)

C7—C6—C5 120.28 (14) C18—C17—H17A 119.8

C7—C6—H6A 119.9 C16—C17—H17A 119.8

C5—C6—H6A 119.9 C17—C18—C19 120.20 (13)

C6—C7—C8 120.61 (15) C17—C18—H18A 119.9

C6—C7—H7A 119.7 C19—C18—H18A 119.9

C8—C7—H7A 119.7 C20—C19—C18 118.79 (13)

C9—C8—C7 118.37 (15) C20—C19—H19A 120.6

C9—C8—H8A 120.8 C18—C19—H19A 120.6

C7—C8—H8A 120.8 C19—C20—C15 122.63 (13)

C8—C9—C4 122.50 (14) C19—C20—N21 116.10 (12)

(6)

C4—C9—N10 120.19 (12) O23—N21—O22 124.44 (16)

O11—N10—O12 124.73 (16) O23—N21—C20 118.06 (14)

O11—N10—C9 117.88 (14) O22—N21—C20 117.39 (14)

O12—N10—C9 117.35 (15)

C13—O1—C2—O3 7.5 (2) C2—O1—C13—O14 25.9 (2)

C13—O1—C2—C4 −175.96 (11) C2—O1—C13—C15 −154.97 (12)

O3—C2—C4—C5 132.16 (16) O14—C13—C15—C16 −171.34 (16)

O1—C2—C4—C5 −44.38 (16) O1—C13—C15—C16 9.59 (19)

O3—C2—C4—C9 −39.0 (2) O14—C13—C15—C20 4.3 (2)

O1—C2—C4—C9 144.42 (12) O1—C13—C15—C20 −174.77 (11)

C9—C4—C5—C6 0.9 (2) C20—C15—C16—C17 −0.9 (2)

C2—C4—C5—C6 −170.53 (13) C13—C15—C16—C17 174.87 (14)

C4—C5—C6—C7 −0.1 (2) C15—C16—C17—C18 −0.1 (2)

C5—C6—C7—C8 −0.5 (3) C16—C17—C18—C19 0.7 (2)

C6—C7—C8—C9 0.4 (3) C17—C18—C19—C20 −0.2 (2)

C7—C8—C9—C4 0.4 (2) C18—C19—C20—C15 −0.8 (2)

C7—C8—C9—N10 −176.79 (15) C18—C19—C20—N21 177.94 (13)

C5—C4—C9—C8 −1.0 (2) C16—C15—C20—C19 1.4 (2)

C2—C4—C9—C8 170.41 (14) C13—C15—C20—C19 −174.50 (13)

C5—C4—C9—N10 176.04 (13) C16—C15—C20—N21 −177.34 (13)

C2—C4—C9—N10 −12.5 (2) C13—C15—C20—N21 6.8 (2)

C8—C9—N10—O11 132.56 (17) C19—C20—N21—O23 −97.94 (18)

C4—C9—N10—O11 −44.7 (2) C15—C20—N21—O23 80.84 (19)

C8—C9—N10—O12 −45.2 (2) C19—C20—N21—O22 78.32 (18)

Figure

Table 1

Table 1

p.2

References

Updating...