• No results found

1 [4,5 Bis(benz­yl­oxy) 2 methyl­phen­yl]ethanone

N/A
N/A
Protected

Academic year: 2020

Share "1 [4,5 Bis(benz­yl­oxy) 2 methyl­phen­yl]ethanone"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2393–o2394 doi:10.1107/S1600536806017764 Xiaet al. C

23H22O3

o2393

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[4,5-Bis(benzyloxy)-2-methylphenyl]ethanone

Chun-Nian Xia,aGuang-Xiang Zhong,aWei-Xiao Hu,a* Wei Zhouaand Guo-Hong Wangb

aCollege of Pharmaceutical Science, Zhejiang

University of Technology, Hangzhou 310014, People’s Republic of China, andbZhejiang Shou

& Fu Chemicals Ltd, Dongdu Qiaotou, Jinyun, Zhejiang 321400, People’s Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.009 A˚

Rfactor = 0.061

wRfactor = 0.243

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 25 April 2006 Accepted 12 May 2006

#2006 International Union of Crystallography

All rights reserved

Crystals of the title compound, C23H22O3, were conveniently synthesized according to the method of Patil, Matier & Khuong [(1990). Eur. Patent No. 373592]. The molecule consists of two planar segments that pack to give columns two molecules wide.

Comment

The title compound, (I), is useful in the synthesis of dihydroxybenzoate esters used as antiglaucoma and -blocking agents. They are useful for the treatment of glau-coma, or for lowering intraocular pressure, since they remain stable when applied topically to the eye but rapidly metabolize as they are absorbed (Patilet al., 1990).

Compound (I) consists of two major components. The C10– C15 phenyl ring is approximately perpendicular to the mean plane [0.008 (3) A˚ ] through the remaining non-H atoms [dihedral angle between the planes is 87.45 (18)]. The

[image:1.610.267.394.335.421.2]

mol-ecules pack into columns, two molmol-ecules wide, with the C8– C20 planar system forming the walls of the column and the C10–C15 phenyl rings extending into the middle of the columns (Fig. 2). Selected bond lengths and angles are listed in Table 1.

Experimental

Compound (I) was obtained by the method of Patil et al. (1990). Crystals suitable for structure analysis were obtained by slow evaporation of a solution in a mixture of petroleum ether and acetic acid (8:2) as brown crystalline cubes (m.p. 329–331 K). Elemental analysis calculated: C 79.74, H 6.40%; found: C 79.77, H 6.57%.

Crystal data

C23H22O3

Mr= 346.41

Monoclinic,P21=n

a= 9.1070 (17) A˚

b= 14.681 (3) A˚

c= 14.121 (3) A˚

= 99.320 (16) V= 1863.1 (7) A˚3

Z= 4

Dx= 1.235 Mg m 3

MoKradiation

= 0.08 mm 1

(2)

Data collection

Enraf–Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.945,Tmax= 0.983

3771 measured reflections

3338 independent reflections 1184 reflections withI> 2(I)

Rint= 0.040 max= 25.2

3 standard reflections frequency: 60 min intensity decay: 0.3%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.061

wR(F2) = 0.243

S= 1.02 3338 reflections 238 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1108P)2

+ 0.1962P] whereP= (Fo

2

+ 2Fc 2

)/3 (/)max= 0.001

max= 0.37 e A˚ 3

min= 0.22 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.0107 (18)

Table 1

Selected geometric parameters (A˚ ,).

O1—C7 1.253 (6) O2—C3 1.378 (5) O2—C9 1.420 (5) O3—C4 1.351 (5)

O3—C16 1.435 (5) C7—C8 1.457 (7) C9—C10 1.483 (6) C16—C17 1.489 (6) C6—C1—C2 120.1 (4)

C6—C1—C7 123.4 (5) O1—C7—C8 119.7 (5) O1—C7—C1 119.6 (5)

C8—C7—C1 120.7 (5) O2—C9—C10 113.9 (4) O3—C16—C17 108.9 (4)

H atoms bonded to C atoms were placed in calculated positions and refined using a riding model, withUiso(H) = 1.2Ueq(parent atom)

[or 1.5Ueq(methyl C)], with C—H distances of 0.96–0.97 A˚ , and

0.93 A˚ for those bonded to benzene rings.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4, PSI and

EAC (Enraf–Nonius, 1994); program(s) used to solve structure:

SHELXS97(Sheldrick, 1997); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.05; Farrugia, 1999); software used to prepare material for publication:SHELXL97.

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053). We also acknowledge financial support by the Science and Technology Department of Zhejiang Province (grant No. 2005 C23022).

References

Enraf–Nonius (1994).XCAD4,PSI, EACandCAD-4 EXPRESS. Enraf– Nonius, Delft, The Netherlands.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351– 359.

Patil, G., Matier, W. L. & Khuong, H. X. (1990). Eur. Patent No. 373592. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

[image:2.610.316.563.71.249.2]

Go¨ttingen, Germany.

Figure 1

The structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2

[image:2.610.47.298.72.208.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2393–o2394

supporting information

Acta Cryst. (2006). E62, o2393–o2394 [https://doi.org/10.1107/S1600536806017764]

1-[4,5-Bis(benzyloxy)-2-methylphenyl]ethanone

Chun-Nian Xia, Guang-Xiang Zhong, Wei-Xiao Hu, Wei Zhou and Guo-Hong Wang

1-[4,5-Bis(benzyloxy)-2-methylphenyl]ethanone

Crystal data

C23H22O3

Mr = 346.41 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 9.1070 (17) Å

b = 14.681 (3) Å

c = 14.121 (3) Å

β = 99.320 (16)°

V = 1863.1 (7) Å3

Z = 4

F(000) = 736

Dx = 1.235 Mg m−3

Melting point = 329–331 K Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 9.7–12.4°

µ = 0.08 mm−1

T = 298 K Cube, brown

0.30 × 0.30 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.945, Tmax = 0.983

3771 measured reflections

3338 independent reflections 1184 reflections with I > 2σ(I)

Rint = 0.040

θmax = 25.2°, θmin = 2.0°

h = −10→10

k = 0→17

l = −1→16

3 standard reflections every 60 min intensity decay: 0.3%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.061

wR(F2) = 0.243

S = 1.02 3338 reflections 238 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1108P)2 + 0.1962P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.37 e Å−3

Δρmin = −0.22 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Experimental. IR (KBr, cm-1): 1668, 1601, 1568, 1519, 1371, 1267, 1254, 1204, 1153, 1054, 748, 733. 1H NMR

(CDCl3): 7.46–7.31 (m, 12H, Ph—H), 5.20 (s, 2H, CH2), 5.16 (s, 2H, CH2), 2.47 (s, 3H, CH3), 2.45 (s, 3H, CH3). EIMS

m/z (%): 347 (3.2, M + 1), 346 (6.2, M+), 255 (3.4), 181 (8.4), 92 (9.5), 91?(100), 65 (13.8), 43 (6.1).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.0061 (4) 0.1097 (3) 0.1888 (3) 0.1207 (15)

O2 0.3573 (4) 0.2071 (2) −0.1227 (2) 0.0834 (10)

O3 0.3898 (3) 0.0341 (2) −0.1416 (2) 0.0731 (9)

C6 0.1873 (5) 0.0278 (4) 0.0639 (3) 0.0706 (12)

C1 0.1645 (5) 0.1201 (4) 0.0727 (3) 0.0686 (13)

C2 0.2211 (5) 0.1827 (3) 0.0100 (3) 0.0726 (13)

H2 0.2070 0.2449 0.0172 0.087*

C3 0.2959 (5) 0.1522 (3) −0.0603 (3) 0.0655 (12)

C4 0.3153 (5) 0.0588 (3) −0.0703 (3) 0.0652 (12)

C5 0.2615 (5) −0.0003 (3) −0.0079 (3) 0.0692 (13)

H5 0.2764 −0.0624 −0.0150 0.083*

C7 0.0846 (6) 0.1599 (4) 0.1454 (4) 0.0859 (15)

C8 0.0962 (7) 0.2568 (4) 0.1678 (4) 0.107 (2)

H8A 0.0483 0.2912 0.1136 0.161*

H8B 0.1992 0.2737 0.1820 0.161*

H8C 0.0488 0.2692 0.2223 0.161*

C9 0.3638 (6) 0.3026 (3) −0.1064 (3) 0.0756 (14)

H9A 0.2636 0.3252 −0.1067 0.091*

H9B 0.4023 0.3317 −0.1590 0.091*

C10 0.4576 (6) 0.3294 (3) −0.0149 (3) 0.0681 (13)

C11 0.4160 (7) 0.4016 (4) 0.0368 (4) 0.1027 (19)

H11 0.3285 0.4326 0.0136 0.123*

C12 0.4992 (14) 0.4293 (6) 0.1212 (6) 0.156 (4)

H12 0.4700 0.4788 0.1548 0.187*

C13 0.6222 (15) 0.3839 (10) 0.1537 (8) 0.186 (7)

H13 0.6786 0.4034 0.2109 0.223*

C14 0.6733 (11) 0.3095 (8) 0.1087 (9) 0.161 (5)

H14 0.7589 0.2780 0.1349 0.194*

C15 0.5858 (7) 0.2842 (4) 0.0195 (5) 0.1042 (19)

H15 0.6166 0.2363 −0.0157 0.125*

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2393–o2394

C17 0.4799 (5) −0.0734 (3) −0.2445 (3) 0.0639 (12)

C18 0.5077 (6) −0.0020 (4) −0.3012 (4) 0.0886 (16)

H18 0.4780 0.0563 −0.2869 0.106*

C19 0.5784 (7) −0.0148 (4) −0.3786 (5) 0.116 (2)

H19 0.5962 0.0351 −0.4158 0.139*

C20 0.6231 (7) −0.0989 (5) −0.4024 (5) 0.114 (2)

H20 0.6711 −0.1074 −0.4551 0.137*

C21 0.5957 (7) −0.1690 (5) −0.3476 (5) 0.112 (2)

H21 0.6255 −0.2270 −0.3631 0.134*

C22 0.5252 (6) −0.1588 (4) −0.2690 (4) 0.0942 (16)

H22 0.5082 −0.2093 −0.2326 0.113*

C23 0.1385 (6) −0.0460 (4) 0.1308 (3) 0.0925 (17)

H23A 0.2129 −0.0519 0.1869 0.139*

H23B 0.1266 −0.1032 0.0975 0.139*

H23C 0.0457 −0.0285 0.1494 0.139*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.120 (3) 0.147 (4) 0.109 (3) −0.030 (3) 0.060 (3) −0.011 (3)

O2 0.123 (3) 0.068 (2) 0.066 (2) −0.0134 (19) 0.0372 (19) −0.0058 (17)

O3 0.094 (2) 0.066 (2) 0.0640 (19) −0.0006 (17) 0.0249 (17) 0.0006 (16)

C6 0.066 (3) 0.076 (3) 0.066 (3) −0.015 (3) 0.000 (2) −0.002 (3)

C1 0.056 (3) 0.104 (4) 0.048 (3) −0.010 (3) 0.013 (2) −0.007 (3)

C2 0.076 (3) 0.077 (3) 0.064 (3) −0.010 (3) 0.010 (2) −0.003 (3)

C3 0.072 (3) 0.081 (4) 0.047 (2) −0.008 (3) 0.019 (2) 0.003 (3)

C4 0.073 (3) 0.065 (3) 0.056 (3) −0.011 (2) 0.007 (2) −0.002 (3)

C5 0.076 (3) 0.071 (3) 0.060 (3) −0.007 (2) 0.009 (3) 0.001 (3)

C7 0.076 (3) 0.101 (4) 0.083 (4) −0.015 (3) 0.023 (3) 0.001 (3)

C8 0.121 (5) 0.088 (4) 0.125 (5) 0.011 (4) 0.057 (4) −0.008 (4)

C9 0.095 (4) 0.067 (4) 0.068 (3) 0.007 (3) 0.025 (3) 0.007 (3)

C10 0.081 (4) 0.070 (3) 0.055 (3) −0.016 (3) 0.019 (3) 0.004 (3)

C11 0.141 (5) 0.091 (4) 0.085 (4) −0.030 (4) 0.046 (4) −0.017 (3)

C12 0.244 (11) 0.144 (8) 0.095 (6) −0.100 (8) 0.070 (7) −0.040 (5)

C13 0.167 (12) 0.259 (17) 0.119 (8) −0.134 (13) −0.018 (8) 0.055 (10)

C14 0.093 (6) 0.200 (11) 0.185 (11) −0.039 (7) 0.003 (7) 0.116 (9)

C15 0.074 (4) 0.119 (5) 0.119 (5) −0.014 (4) 0.013 (4) 0.041 (4)

C16 0.071 (3) 0.064 (3) 0.075 (3) 0.000 (2) 0.002 (3) 0.003 (2)

C17 0.054 (3) 0.066 (3) 0.069 (3) −0.001 (2) 0.002 (2) −0.011 (3)

C18 0.112 (4) 0.076 (4) 0.086 (4) 0.006 (3) 0.042 (3) −0.002 (3)

C19 0.152 (5) 0.088 (4) 0.122 (5) 0.007 (4) 0.064 (5) −0.005 (4)

C20 0.121 (5) 0.119 (6) 0.111 (5) 0.016 (4) 0.047 (4) −0.012 (4)

C21 0.122 (5) 0.091 (5) 0.128 (5) 0.020 (4) 0.038 (4) −0.033 (4)

C22 0.108 (4) 0.063 (3) 0.111 (4) 0.005 (3) 0.013 (4) −0.001 (3)

(6)

Geometric parameters (Å, º)

O1—C7 1.253 (6) C11—H11 0.9300

O2—C3 1.378 (5) C12—C13 1.320 (14)

O2—C9 1.420 (5) C12—H12 0.9300

O3—C4 1.351 (5) C13—C14 1.381 (13)

O3—C16 1.435 (5) C13—H13 0.9300

C6—C5 1.369 (6) C14—C15 1.427 (12)

C6—C1 1.381 (6) C14—H14 0.9300

C6—C23 1.549 (7) C15—H15 0.9300

C1—C2 1.428 (6) C16—C17 1.489 (6)

C1—C7 1.472 (6) C16—H16A 0.9700

C2—C3 1.368 (6) C16—H16B 0.9700

C2—H2 0.9300 C17—C18 1.367 (6)

C3—C4 1.393 (6) C17—C22 1.383 (6)

C4—C5 1.382 (6) C18—C19 1.370 (7)

C5—H5 0.9300 C18—H18 0.9300

C7—C8 1.457 (7) C19—C20 1.359 (7)

C8—H8A 0.9599 C19—H19 0.9300

C8—H8B 0.9599 C20—C21 1.336 (8)

C8—H8C 0.9599 C20—H20 0.9300

C9—C10 1.483 (6) C21—C22 1.377 (8)

C9—H9A 0.9700 C21—H21 0.9300

C9—H9B 0.9700 C22—H22 0.9300

C10—C15 1.361 (7) C23—H23A 0.9599

C10—C11 1.375 (7) C23—H23B 0.9599

C11—C12 1.367 (10) C23—H23C 0.9599

C3—O2—C9 119.1 (3) C13—C12—H12 120.9

C4—O3—C16 117.6 (3) C11—C12—H12 120.9

C5—C6—C1 117.5 (4) C12—C13—C14 124.7 (13)

C5—C6—C23 117.8 (5) C12—C13—H13 117.6

C1—C6—C23 124.7 (5) C14—C13—H13 117.6

C6—C1—C2 120.1 (4) C13—C14—C15 115.5 (11)

C6—C1—C7 123.4 (5) C13—C14—H14 122.3

C2—C1—C7 116.5 (5) C15—C14—H14 122.3

C3—C2—C1 120.8 (4) C10—C15—C14 120.8 (7)

C3—C2—H2 119.6 C10—C15—H15 119.6

C1—C2—H2 119.6 C14—C15—H15 119.6

C2—C3—O2 125.0 (4) O3—C16—C17 108.9 (4)

C2—C3—C4 118.9 (4) O3—C16—H16A 109.9

O2—C3—C4 116.1 (4) C17—C16—H16A 109.9

O3—C4—C5 125.5 (4) O3—C16—H16B 109.9

O3—C4—C3 115.2 (4) C17—C16—H16B 109.9

C5—C4—C3 119.3 (4) H16A—C16—H16B 108.3

C6—C5—C4 123.5 (4) C18—C17—C22 117.3 (5)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2393–o2394

O1—C7—C8 119.7 (5) C17—C18—C19 121.2 (5)

O1—C7—C1 119.6 (5) C17—C18—H18 119.4

C8—C7—C1 120.7 (5) C19—C18—H18 119.4

C7—C8—H8A 109.5 C20—C19—C18 121.4 (6)

C7—C8—H8B 109.5 C20—C19—H19 119.3

H8A—C8—H8B 109.5 C18—C19—H19 119.3

C7—C8—H8C 109.5 C21—C20—C19 117.7 (6)

H8A—C8—H8C 109.5 C21—C20—H20 121.1

H8B—C8—H8C 109.5 C19—C20—H20 121.1

O2—C9—C10 113.9 (4) C20—C21—C22 122.6 (6)

O2—C9—H9A 108.8 C20—C21—H21 118.7

C10—C9—H9A 108.8 C22—C21—H21 118.7

O2—C9—H9B 108.8 C21—C22—C17 119.9 (5)

C10—C9—H9B 108.8 C21—C22—H22 120.1

H9A—C9—H9B 107.7 C17—C22—H22 120.1

C15—C10—C11 118.7 (5) C6—C23—H23A 109.5

C15—C10—C9 121.4 (5) C6—C23—H23B 109.5

C11—C10—C9 119.8 (5) H23A—C23—H23B 109.5

C12—C11—C10 122.0 (7) C6—C23—H23C 109.5

C12—C11—H11 119.0 H23A—C23—H23C 109.5

C10—C11—H11 119.0 H23B—C23—H23C 109.5

C13—C12—C11 118.2 (11)

C5—C6—C1—C2 −1.7 (6) C2—C1—C7—C8 −15.2 (7)

C23—C6—C1—C2 176.7 (4) C3—O2—C9—C10 63.0 (5)

C5—C6—C1—C7 179.0 (4) O2—C9—C10—C15 36.9 (6)

C23—C6—C1—C7 −2.6 (7) O2—C9—C10—C11 −143.5 (4)

C6—C1—C2—C3 1.2 (7) C15—C10—C11—C12 0.0 (8)

C7—C1—C2—C3 −179.4 (4) C9—C10—C11—C12 −179.5 (5)

C1—C2—C3—O2 −178.5 (4) C10—C11—C12—C13 −0.8 (11)

C1—C2—C3—C4 0.3 (7) C11—C12—C13—C14 −0.4 (16)

C9—O2—C3—C2 9.3 (7) C12—C13—C14—C15 2.1 (15)

C9—O2—C3—C4 −169.5 (4) C11—C10—C15—C14 1.8 (8)

C16—O3—C4—C5 6.1 (6) C9—C10—C15—C14 −178.6 (5)

C16—O3—C4—C3 −175.1 (4) C13—C14—C15—C10 −2.8 (11)

C2—C3—C4—O3 179.8 (4) C4—O3—C16—C17 176.6 (4)

O2—C3—C4—O3 −1.3 (6) O3—C16—C17—C18 −9.9 (6)

C2—C3—C4—C5 −1.3 (7) O3—C16—C17—C22 170.7 (4)

O2—C3—C4—C5 177.6 (4) C22—C17—C18—C19 −0.4 (8)

C1—C6—C5—C4 0.8 (7) C16—C17—C18—C19 −179.7 (5)

C23—C6—C5—C4 −177.8 (4) C17—C18—C19—C20 0.3 (10)

O3—C4—C5—C6 179.6 (4) C18—C19—C20—C21 0.0 (10)

C3—C4—C5—C6 0.8 (7) C19—C20—C21—C22 −0.2 (10)

C6—C1—C7—O1 −15.6 (8) C20—C21—C22—C17 0.0 (9)

C2—C1—C7—O1 165.1 (5) C18—C17—C22—C21 0.3 (7)

Figure

Table 1.Experimental
Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical