• No results found

5 Chloro 1 (4 chloro­phen­yl) 4 (2 meth­oxy­benzoyl­hydrazonometh­yl) 3 methyl 1H pyrazole

N/A
N/A
Protected

Academic year: 2020

Share "5 Chloro 1 (4 chloro­phen­yl) 4 (2 meth­oxy­benzoyl­hydrazonometh­yl) 3 methyl 1H pyrazole"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2361–o2362 doi:10.1107/S1600536806017922 Wenet al. C

19H16Cl2N4O2

o2361

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

5-Chloro-1-(4-chlorophenyl)-4-(2-methoxy-benzoylhydrazonomethyl)-3-methyl-1

H

-pyrazole

Li-Rong Wen, Li-Na Zhai, Peng Liu and Ming Li*

College of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China

Correspondence e-mail: liming928@263.net

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.035

wRfactor = 0.091

Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 19 April 2006 Accepted 15 May 2006

#2006 International Union of Crystallography

All rights reserved

In the title molecule, C19H16Cl2N4O2, all bond lengths and

angles show normal values. The two benzene rings make a dihedral angle of 12.55 (2). The crystal packing is stabilized

by weak intermolecular C—H N hydrogen bonds and van der Waals forces.

Comment

Arylpyrazoles have a widespread occurrence as substructures in a large variety of compounds with important biological activities and pharmacological properties (Nizar & James, 2002). In the course of our systematic studies aimed at the synthesis of new bioactive compounds, we have synthesized the title compound, (I) (Fig. 1).

The bond lengths and angles (Table 1) in (I) are as expected for this type of compound. The pyrazole ring is planar, the largest deviation from planarity being 0.003 (4) A˚ for atom C8, and forms a dihedral angle of 50.45 (4) with the C1–C6

benzene ring. The two benzene rings, C1–C6 and C13–C18, make a dihedral angle of 12.55 (2).

The crystal packing (Fig. 2) is stabilized by weak inter-molecular C—H N hydrogen bonds (Table 2) and van der Waals forces.

Experimental

[image:1.610.208.461.639.732.2]

To anhydrous ethanol (15 ml), a mixture of 2-methyloxybenzoyl-hydrazide (3 mmol, 0.500 g) and 5-chloro-1-(4-chlorophenyl)-3-methyl-1H-4-pyrazolaldehyde (3 mmol, 0.765 g), synthesized according to Li et al.(2004), was added and refluxed for 5 h. The solvent was removed under reduced pressure and the residue was recrystallized from ethanol (m.p. 458 K).

Figure 1

(2)

Crystal data

C19H16Cl2N4O2

Mr= 403.26

Monoclinic,P21=n a= 9.3332 (10) A˚

b= 16.7115 (19) A˚

c= 12.3865 (14) A˚

= 101.839 (2) V= 1890.8 (4) A˚3

Z= 4

Dx= 1.417 Mg m

3

MoKradiation

= 0.37 mm1

T= 293 (2) K Block, colourless 0.280.220.20 mm

Data collection

Bruker APEX-II CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.885,Tmax= 0.998

(expected range = 0.824–0.929)

10116 measured reflections 3338 independent reflections 2462 reflections withI> 2(I)

Rint= 0.020

max= 25.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.035

wR(F2) = 0.091

S= 1.04 3338 reflections 246 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0403P)2

+ 0.4272P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.21 e A˚

3

min=0.22 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

O1—C12 1.222 (2) O2—C14 1.365 (2) N1—C7 1.354 (2) N1—N2 1.374 (2)

N2—C9 1.316 (3) N3—C11 1.278 (2) C7—C8 1.367 (3) C8—C9 1.418 (3) C7—N1—N2 109.78 (17)

C9—N2—N1 105.69 (15) N1—C7—C8 109.05 (17)

[image:2.610.45.297.71.218.2]

C7—C8—C9 103.59 (18) N2—C9—C8 111.88 (18)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N4—H4A O2 0.86 1.98 2.617 (2) 130 C2—H2 N3i

0.93 2.54 3.421 (2) 158

Symmetry code: (i)xþ1 2;yþ

1 2;z

1 2.

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 A˚ and N—H = 0.86 A˚, and included in the final cycles of refinement using a riding model, withUiso(H) set to 1.2Ueq(C,N) for

CH and NH groups and 1.5Ueq(C) for methyl groups.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT (Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 20572057).

References

Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Li, M., Wen, L. R., Jing, S. X., Zhao, G. L. & Yang, H. Z. (2004).Chin. J. Struct. Chem.23, 366–370.

Nizar, H. & James, B. (2002).Tetrahedron Lett.43, 2171–2173. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2361–o2362

supporting information

Acta Cryst. (2006). E62, o2361–o2362 [https://doi.org/10.1107/S1600536806017922]

5-Chloro-1-(4-chlorophenyl)-4-(2-methoxybenzoylhydrazonomethyl)-3-methyl-1

H

-pyrazole

Li-Rong Wen, Li-Na Zhai, Peng Liu and Ming Li

5-Chloro-1-(4-chlorophenyl)-4-(2-methoxybenzoylhydrazonomethyl)- 3-methyl-1H-pyrazole

Crystal data

C19H16Cl2N4O2 Mr = 403.26 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 9.3332 (10) Å

b = 16.7115 (19) Å

c = 12.3865 (14) Å

β = 101.839 (2)°

V = 1890.8 (4) Å3

Z = 4

F(000) = 832

Dx = 1.417 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 2774 reflections

θ = 2.4–22.6°

µ = 0.37 mm−1

T = 293 K

Block, colourless 0.28 × 0.22 × 0.20 mm

Data collection

Bruker APEX-II CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.885, Tmax = 0.998

10116 measured reflections 3338 independent reflections 2462 reflections with I > 2σ(I)

Rint = 0.020

θmax = 25.0°, θmin = 2.1°

h = −11→9

k = −19→19

l = −10→14

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.091

S = 1.04

3338 reflections 246 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0403P)2 + 0.4272P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.21 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 1.07602 (8) 0.20432 (4) −0.36420 (6) 0.0985 (3)

Cl2 0.86797 (6) 0.08248 (3) 0.10691 (4) 0.06968 (19)

O1 0.20930 (19) 0.07607 (9) 0.31458 (14) 0.0843 (5)

O2 0.47333 (17) −0.12149 (8) 0.39147 (12) 0.0699 (4)

N1 0.67297 (18) 0.13615 (9) −0.06804 (13) 0.0565 (4)

N2 0.52624 (19) 0.15084 (9) −0.10476 (14) 0.0596 (4)

N3 0.42112 (19) 0.05855 (9) 0.19518 (14) 0.0579 (4)

N4 0.41514 (19) 0.01509 (9) 0.28839 (13) 0.0589 (4)

H4A 0.4834 −0.0187 0.3133 0.071*

C1 0.7711 (2) 0.22835 (11) −0.18525 (17) 0.0622 (6)

H1 0.7073 0.2677 −0.1705 0.075*

C2 0.8641 (3) 0.24387 (12) −0.25472 (18) 0.0676 (6)

H2 0.8638 0.2939 −0.2875 0.081*

C3 0.9582 (2) 0.18512 (13) −0.27609 (17) 0.0643 (6)

C4 0.9602 (2) 0.11053 (12) −0.22811 (17) 0.0620 (5)

H4 1.0244 0.0714 −0.2427 0.074*

C5 0.8668 (2) 0.09466 (11) −0.15877 (16) 0.0597 (5)

H5 0.8669 0.0444 −0.1264 0.072*

C6 0.7727 (2) 0.15344 (11) −0.13705 (15) 0.0539 (5)

C7 0.6954 (2) 0.10023 (11) 0.03204 (16) 0.0536 (5)

C8 0.5637 (2) 0.09034 (10) 0.06236 (15) 0.0530 (5)

C9 0.4618 (2) 0.12378 (11) −0.02696 (16) 0.0552 (5)

C10 0.2998 (2) 0.13076 (14) −0.03946 (19) 0.0742 (6)

H10A 0.2779 0.1679 0.0140 0.111*

H10B 0.2595 0.0793 −0.0281 0.111*

H10C 0.2577 0.1495 −0.1123 0.111*

C11 0.5412 (2) 0.05187 (11) 0.16170 (16) 0.0552 (5)

H11 0.6164 0.0213 0.2026 0.066*

C12 0.3033 (2) 0.02484 (12) 0.34146 (18) 0.0603 (5)

C13 0.2988 (2) −0.03115 (12) 0.43492 (16) 0.0568 (5)

C14 0.3767 (2) −0.10315 (12) 0.45685 (16) 0.0576 (5)

C15 0.3537 (3) −0.15257 (14) 0.54161 (18) 0.0687 (6)

H15 0.4060 −0.2001 0.5559 0.082*

C16 0.2552 (3) −0.13213 (17) 0.60402 (19) 0.0810 (7)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2361–o2362

C17 0.1790 (3) −0.06179 (18) 0.5858 (2) 0.0847 (7)

H17 0.1127 −0.0477 0.6292 0.102*

C18 0.2018 (2) −0.01192 (15) 0.50202 (18) 0.0719 (6)

H18 0.1505 0.0361 0.4903 0.086*

C19 0.5441 (3) −0.19740 (15) 0.4020 (2) 0.0890 (8)

H19A 0.6106 −0.2005 0.4722 0.134*

H19B 0.5974 −0.2038 0.3440 0.134*

H19C 0.4721 −0.2390 0.3969 0.134*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.1015 (5) 0.0989 (5) 0.0978 (5) −0.0157 (4) 0.0269 (4) 0.0265 (4)

Cl2 0.0671 (3) 0.0726 (4) 0.0614 (3) 0.0022 (3) −0.0053 (3) 0.0177 (3)

O1 0.0956 (12) 0.0603 (9) 0.1015 (13) 0.0178 (9) 0.0309 (10) 0.0124 (9)

O2 0.0809 (10) 0.0595 (9) 0.0706 (9) 0.0097 (8) 0.0182 (8) 0.0107 (7)

N1 0.0631 (11) 0.0477 (9) 0.0516 (9) 0.0012 (8) −0.0046 (8) 0.0069 (8)

N2 0.0662 (11) 0.0503 (9) 0.0551 (10) 0.0056 (8) −0.0043 (9) 0.0051 (8)

N3 0.0699 (11) 0.0424 (9) 0.0575 (10) 0.0001 (8) 0.0042 (9) 0.0019 (8)

N4 0.0629 (11) 0.0533 (9) 0.0578 (10) 0.0024 (8) 0.0059 (8) 0.0074 (8)

C1 0.0803 (15) 0.0413 (10) 0.0561 (12) −0.0023 (10) −0.0066 (11) 0.0043 (9)

C2 0.0870 (16) 0.0455 (11) 0.0606 (13) −0.0161 (11) −0.0075 (12) 0.0115 (10)

C3 0.0674 (13) 0.0620 (13) 0.0557 (12) −0.0180 (11) −0.0055 (10) 0.0105 (10)

C4 0.0651 (13) 0.0547 (12) 0.0594 (12) −0.0014 (10) −0.0030 (11) 0.0067 (10)

C5 0.0730 (14) 0.0423 (10) 0.0566 (12) −0.0035 (10) −0.0033 (11) 0.0091 (9)

C6 0.0630 (12) 0.0450 (10) 0.0459 (11) −0.0064 (9) −0.0073 (9) 0.0036 (9)

C7 0.0641 (13) 0.0404 (10) 0.0501 (11) 0.0004 (9) −0.0024 (9) 0.0046 (8)

C8 0.0665 (13) 0.0374 (9) 0.0506 (11) 0.0008 (9) 0.0012 (10) −0.0015 (8)

C9 0.0658 (13) 0.0409 (10) 0.0526 (12) 0.0039 (9) −0.0028 (10) −0.0043 (9)

C10 0.0701 (15) 0.0729 (15) 0.0715 (15) 0.0117 (11) −0.0043 (12) 0.0005 (12)

C11 0.0633 (13) 0.0427 (10) 0.0536 (12) 0.0022 (9) −0.0019 (10) −0.0009 (9)

C12 0.0667 (13) 0.0458 (11) 0.0654 (13) −0.0031 (10) 0.0068 (11) −0.0079 (10)

C13 0.0605 (12) 0.0541 (12) 0.0516 (12) −0.0087 (10) 0.0017 (10) −0.0078 (9)

C14 0.0587 (12) 0.0586 (12) 0.0507 (12) −0.0080 (10) 0.0005 (10) −0.0049 (10)

C15 0.0749 (15) 0.0701 (14) 0.0557 (13) −0.0060 (11) 0.0009 (12) 0.0062 (11)

C16 0.0877 (18) 0.096 (2) 0.0564 (14) −0.0128 (15) 0.0088 (13) 0.0089 (13)

C17 0.0833 (17) 0.113 (2) 0.0593 (14) −0.0039 (16) 0.0189 (13) −0.0057 (15)

C18 0.0730 (15) 0.0779 (15) 0.0620 (14) 0.0038 (12) 0.0073 (12) −0.0085 (12)

C19 0.0999 (19) 0.0799 (17) 0.0879 (18) 0.0344 (14) 0.0210 (15) 0.0231 (14)

Geometric parameters (Å, º)

Cl1—C3 1.731 (2) C7—C8 1.367 (3)

Cl2—C7 1.7117 (19) C8—C9 1.418 (3)

O1—C12 1.222 (2) C8—C11 1.441 (3)

O2—C14 1.365 (2) C9—C10 1.493 (3)

O2—C19 1.424 (3) C10—H10A 0.9600

(6)

N1—N2 1.374 (2) C10—H10C 0.9600

N1—C6 1.416 (3) C11—H11 0.9300

N2—C9 1.316 (3) C12—C13 1.496 (3)

N3—C11 1.278 (2) C13—C18 1.386 (3)

N3—N4 1.375 (2) C13—C14 1.404 (3)

N4—C12 1.352 (3) C14—C15 1.387 (3)

N4—H4A 0.8600 C15—C16 1.360 (3)

C1—C2 1.367 (3) C15—H15 0.9300

C1—C6 1.386 (3) C16—C17 1.368 (4)

C1—H1 0.9300 C16—H16 0.9300

C2—C3 1.379 (3) C17—C18 1.381 (3)

C2—H2 0.9300 C17—H17 0.9300

C3—C4 1.379 (3) C18—H18 0.9300

C4—C5 1.369 (3) C19—H19A 0.9600

C4—H4 0.9300 C19—H19B 0.9600

C5—C6 1.381 (3) C19—H19C 0.9600

C5—H5 0.9300

C14—O2—C19 119.75 (17) C9—C10—H10A 109.5

C7—N1—N2 109.78 (17) C9—C10—H10B 109.5

C7—N1—C6 130.21 (17) H10A—C10—H10B 109.5

N2—N1—C6 119.83 (15) C9—C10—H10C 109.5

C9—N2—N1 105.69 (15) H10A—C10—H10C 109.5

C11—N3—N4 114.58 (17) H10B—C10—H10C 109.5

C12—N4—N3 120.85 (17) N3—C11—C8 121.95 (18)

C12—N4—H4A 119.6 N3—C11—H11 119.0

N3—N4—H4A 119.6 C8—C11—H11 119.0

C2—C1—C6 119.4 (2) O1—C12—N4 122.3 (2)

C2—C1—H1 120.3 O1—C12—C13 121.1 (2)

C6—C1—H1 120.3 N4—C12—C13 116.62 (18)

C1—C2—C3 119.86 (19) C18—C13—C14 117.3 (2)

C1—C2—H2 120.1 C18—C13—C12 116.41 (19)

C3—C2—H2 120.1 C14—C13—C12 126.1 (2)

C2—C3—C4 120.9 (2) O2—C14—C15 122.66 (19)

C2—C3—Cl1 120.10 (17) O2—C14—C13 117.19 (18)

C4—C3—Cl1 119.03 (19) C15—C14—C13 120.1 (2)

C5—C4—C3 119.5 (2) C16—C15—C14 120.6 (2)

C5—C4—H4 120.3 C16—C15—H15 119.7

C3—C4—H4 120.3 C14—C15—H15 119.7

C4—C5—C6 119.79 (18) C15—C16—C17 120.7 (2)

C4—C5—H5 120.1 C15—C16—H16 119.7

C6—C5—H5 120.1 C17—C16—H16 119.7

C5—C6—C1 120.6 (2) C16—C17—C18 119.2 (2)

C5—C6—N1 119.71 (17) C16—C17—H17 120.4

C1—C6—N1 119.60 (19) C18—C17—H17 120.4

N1—C7—C8 109.05 (17) C17—C18—C13 122.1 (2)

N1—C7—Cl2 121.61 (16) C17—C18—H18 119.0

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2361–o2362

C7—C8—C9 103.59 (18) O2—C19—H19A 109.5

C7—C8—C11 125.81 (18) O2—C19—H19B 109.5

C9—C8—C11 130.6 (2) H19A—C19—H19B 109.5

N2—C9—C8 111.88 (18) O2—C19—H19C 109.5

N2—C9—C10 120.17 (18) H19A—C19—H19C 109.5

C8—C9—C10 128.0 (2) H19B—C19—H19C 109.5

C7—N1—N2—C9 0.0 (2) C7—C8—C9—N2 0.5 (2)

C6—N1—N2—C9 175.64 (16) C11—C8—C9—N2 −177.56 (18)

C11—N3—N4—C12 170.96 (17) C7—C8—C9—C10 −179.28 (19)

C6—C1—C2—C3 0.0 (3) C11—C8—C9—C10 2.7 (3)

C1—C2—C3—C4 −0.1 (3) N4—N3—C11—C8 177.07 (16)

C1—C2—C3—Cl1 179.87 (15) C7—C8—C11—N3 165.92 (18)

C2—C3—C4—C5 0.3 (3) C9—C8—C11—N3 −16.4 (3)

Cl1—C3—C4—C5 −179.65 (15) N3—N4—C12—O1 −5.5 (3)

C3—C4—C5—C6 −0.4 (3) N3—N4—C12—C13 173.86 (16)

C4—C5—C6—C1 0.3 (3) O1—C12—C13—C18 −12.5 (3)

C4—C5—C6—N1 178.02 (17) N4—C12—C13—C18 168.20 (17)

C2—C1—C6—C5 −0.1 (3) O1—C12—C13—C14 163.60 (19)

C2—C1—C6—N1 −177.80 (17) N4—C12—C13—C14 −15.7 (3)

C7—N1—C6—C5 48.2 (3) C19—O2—C14—C15 6.3 (3)

N2—N1—C6—C5 −126.41 (19) C19—O2—C14—C13 −173.41 (19)

C7—N1—C6—C1 −134.1 (2) C18—C13—C14—O2 −179.27 (17)

N2—N1—C6—C1 51.3 (2) C12—C13—C14—O2 4.7 (3)

N2—N1—C7—C8 0.3 (2) C18—C13—C14—C15 1.1 (3)

C6—N1—C7—C8 −174.72 (17) C12—C13—C14—C15 −174.98 (18)

N2—N1—C7—Cl2 −173.62 (13) O2—C14—C15—C16 −179.40 (19)

C6—N1—C7—Cl2 11.3 (3) C13—C14—C15—C16 0.3 (3)

N1—C7—C8—C9 −0.5 (2) C14—C15—C16—C17 −1.2 (4)

Cl2—C7—C8—C9 172.88 (15) C15—C16—C17—C18 0.8 (4)

N1—C7—C8—C11 177.69 (17) C16—C17—C18—C13 0.6 (4)

Cl2—C7—C8—C11 −8.9 (3) C14—C13—C18—C17 −1.5 (3)

N1—N2—C9—C8 −0.3 (2) C12—C13—C18—C17 174.9 (2)

N1—N2—C9—C10 179.50 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H4A···O2 0.86 1.98 2.617 (2) 130

C2—H2···N3i 0.93 2.54 3.421 (2) 158

C18—H18···O1 0.93 2.44 2.761 (3) 100

Figure

Figure 1View of (I), shown with 35% probability displacement ellipsoids.
Table 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical