• No results found

Ethyl (2S*) 2 [(2R*,2′R*,5S*) 2′,5 di­methyl 5′ oxoper­hydro [2,2′]]­bi­furan­yl 5 yl] 2 hy­droxy­ethano­ate

N/A
N/A
Protected

Academic year: 2020

Share "Ethyl (2S*) 2 [(2R*,2′R*,5S*) 2′,5 di­methyl 5′ oxoper­hydro [2,2′]]­bi­furan­yl 5 yl] 2 hy­droxy­ethano­ate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, o501±o502 DOI: 10.1107/S1600536803005762 Coles and Hursthouse C14H22O6

o501

organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Ethyl (2

S

*)-2-[(2

R

*,2

000

R

*,5

S

*)-2

000

,5-dimethyl-5

000

-oxoperhydro-[2,2

000

]]bifuranyl-5-yl]-2-hydroxyethanoate

Simon J. Coles* and Michael B. Hursthouse

Department of Chemistry, Southampton University, Southampton SO17 1BJ, England

Correspondence e-mail: s.j.coles@soton.ac.uk

Key indicators

Single-crystal X-ray study

T= 120 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.030

wRfactor = 0.075 Data-to-parameter ratio = 9.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The molecular structure of the title compound, C14H22O6, has four chiral centres, for which only the relative con®guration has been unequivocally determined. The molecules form a supramolecular array of in®nite one-dimensional chains.

Comment

The title compound, (I) (Fig. 1), was synthesized as part of a study of the KMnO4-mediated oxidative cyclization of 1,5,9-trienes (Brownet al., 2002). The molecule is composed of two substituted furan moieties connected to each other at the 2-and 5-positions, 2-and exhibits bond lengths 2-and angles consis-tent with expected values (Orpen et al., 1992) derived from structures in the Cambridge Structural Database (Allen, 2002).

The molecular structure of (I) contains two furan rings which, from puckering analysis (Cremer & Pople, 1975), adopt envelope (about C3) and twisted (about C7ÐC8) conform-ations. The molecule contains four chiral centres which, for the given absolute con®guration, are C4 =R, C6 =R, C9 =Sand C11 =S.

The crystal structure is a one-dimensional chain arising from a hydrogen-bonded O4ÐH4 O1i interaction [symmetry code: (i) ÿx, ÿy, z+1

2], with a donor±acceptor separation of 2.8931 (16)AÊ.

Experimental

Ethyl (2Z,6E)-3,7,11-trimethyl-2,6,10-dodecatrienoate was oxidized with KMnO4followed by Pb(OAc)4to afford the title compound, (I),

as a colourless oil which solidi®ed on standing (Brownet al., 2002). Recrystallization from ethyl acetate/hexane gave colourless plates suitable for X-ray structure determination.

Crystal data

C14H22O6

Mr= 286.32 Orthorhombic,Pna21

a= 9.3133 (3) AÊ b= 15.4441 (4) AÊ c= 9.8424 (3) AÊ V= 1415.69 (7) AÊ3

Z= 4

Dx= 1.343 Mg mÿ3

MoKradiation

Cell parameters from 15124 re¯ections

= 2.9±27.5 = 0.10 mmÿ1

T= 120 (2) K Plate, colourless 0.260.220.10 mm

(2)

Data collection

Bruker±Nonius KappaCCD diffractometer

'and!scans

Absorption correction: multi-scan (SORTAV; Blessing, 1997) Tmin= 0.973,Tmax= 0.990

14735 measured re¯ections

1717 independent re¯ections 1555 re¯ections withI> 2(I) Rint= 0.061

max= 27.5

h=ÿ10!12 k=ÿ19!20 l=ÿ12!12

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.030

wR(F2) = 0.075

S= 1.08 1717 re¯ections 186 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0417P)2 + 0.1548P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.005

max= 0.17 e AÊÿ3

min=ÿ0.17 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.009 (2)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O4ÐH4 O1i 0.84 2.10 2.8931 (16) 157

Symmetry code: (i)ÿx;ÿy;1 2‡z.

Compound (I) crystallized in the non-centrosymmetric space groupPna21; however, due to the insigni®cant anomalous scattering,

the Flack (1983) parameter re®ned is indeterminate and so Friedel pairs were merged before the ®nal re®nement. H atoms are included in constrained positions, with torsion angles allowed to freely re®ne in the case of methyl and hydroxy groups.

Data collection: DENZO (Otwinowski & Minor, 1997) and

COLLECT(Hooft, 1998); cell re®nement:DENZOandCOLLECT; data reduction:DENZOandCOLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON(Spek, 2003).

The authors thank the EPSRC for funding of the crystal-lographic facilities.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388. Blessing, R. H. (1997).J. Appl. Cryst.30, 421±426.

Brown, R. C. D., Bataille, C. J., Hughes, R. M., Kenney, A. & Luker, T. J. (2002).J. Org. Chem.67, 8079±8085.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354±1358. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Hooft, R. W. W. (1998).COLLECT. Nonius BV, Delft, The Netherlands. Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor,

R. (1992). International Tables for Crystallography, Vol. C. Dordrecht: Kluwer Academic Publishers.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2003). E59, o501–o502

supporting information

Acta Cryst. (2003). E59, o501–o502 [doi:10.1107/S1600536803005762]

Ethyl (2

S

*)-2-[(2

R

*,2′

R

*,5

S

*)-2′,5-dimethyl-5′-oxoperhydro-[2,2′]]bifuranyl-5-yl]-2-hydroxyethanoate

Simon J. Coles and Michael B. Hursthouse

S1. Comment

The title structure, (I) (Fig. 1), was synthesized as part of a study on the KMnO4-mediated oxidative cyclization of

1,5,9-trienes (Brown et al., 2002). The structure is composed of two substituted furan moieties connected to each other at the 2-

and 5-positions, and exhibits bond lengths and angles consistent with expected values (Orpen et al., 1992) derived from

structures in the Cambridge Stuructural Database (Allen, 2002).

The molecular structure of (I) contains two furan rings which, from puckering analysis (Cremer & Pople, 1975), adopt

an envelope (about C3) and twisted (about C7—C8) conformations. The molecule contains four chiral centres which, for

the given absolute configuration, are C4 = R, C6 = R, C9 = S and C11 = S.

The crystal structure is a one-dimensional chain arising from a hydrogen-bonded O4—H4···O1i interaction [symmetry

code: (i) −x, −y, z + 0.5], with a donor–acceptor separation of 2.8931 (16) Å.

S2. Experimental

Ethyl (2Z,6E)-3,7,11-trimethyl-2,6,10-dodecatrienoate was oxidized with KMnO4 followed by Pb(OAc)4 to afford the

title compound, (I), as a colourless oil which solidified on standing (Brown et al., 2002). Recrystallization from ethyl

acetate/hexane gave colourless plates suitable for X-ray structure determination.

S3. Refinement

Compound (I) crystallized in the chiral space group Pna21; however, due to the small anomalous differences of the

substituent elements, the Flack (1983) parameter refined to a meaningless value and hence only the relative

stereochemistry has been determined. H atoms are included in constrained positions, with torsion angles allowed to freely

(4)
[image:4.610.132.483.69.373.2]

Figure 1

View of (I) (50% probability displacement ellipsoids), with specific H atoms retained to show relative configuration.

(I)

Crystal data

C14H22O6 Mr = 286.32

Orthorhombic, Pna21 a = 9.3133 (3) Å b = 15.4441 (4) Å c = 9.8424 (3) Å V = 1415.69 (7) Å3 Z = 4

F(000) = 616

Dx = 1.343 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 15124 reflections θ = 2.9–27.5°

µ = 0.10 mm−1 T = 120 K Plate, colourless 0.26 × 0.22 × 0.1 mm

Data collection

Bruker-Nonius KappaCCD diffractometer

Radiation source: Bruker-Nonius FR591 rotating anode

Graphite monochromator φ andω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1997) Tmin = 0.973, Tmax = 0.990

14735 measured reflections 1717 independent reflections 1555 reflections with I > 2σ(I) Rint = 0.061

θmax = 27.5°, θmin = 3.3° h = −10→12

(5)

supporting information

sup-3

Acta Cryst. (2003). E59, o501–o502 Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.075 S = 1.08 1717 reflections 186 parameters 1 restraint

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1548P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.005 Δρmax = 0.17 e Å−3 Δρmin = −0.17 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.009 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.37380 (15) −0.06606 (9) 0.24155 (16) 0.0188 (3)

C2 0.50287 (17) −0.09643 (10) 0.31964 (17) 0.0229 (3)

H2A 0.5879 −0.1011 0.2597 0.027*

H2B 0.4847 −0.1534 0.3623 0.027*

C3 0.52451 (16) −0.02669 (9) 0.42679 (16) 0.0208 (3)

H3A 0.6277 −0.018 0.4465 0.025*

H3B 0.4739 −0.0416 0.5121 0.025*

C4 0.45854 (16) 0.05412 (9) 0.35985 (15) 0.0182 (3)

C5 0.56890 (17) 0.10534 (10) 0.27875 (17) 0.0236 (3)

H5A 0.6219 0.066 0.2189 0.035*

H5B 0.636 0.1337 0.3412 0.035*

H5C 0.5198 0.1493 0.224 0.035*

C6 0.37830 (15) 0.11338 (9) 0.45706 (16) 0.0174 (3)

H6 0.4504 0.1436 0.5156 0.021*

C7 0.28343 (15) 0.18203 (10) 0.38981 (16) 0.0208 (3)

H7A 0.337 0.2366 0.3747 0.025*

H7B 0.2446 0.1612 0.3021 0.025*

C8 0.16444 (17) 0.19414 (9) 0.49444 (17) 0.0224 (3)

H8A 0.0753 0.2155 0.4512 0.027*

H8B 0.194 0.2352 0.5664 0.027*

C9 0.14376 (16) 0.10315 (9) 0.55174 (16) 0.0188 (3)

C10 0.09630 (18) 0.10143 (11) 0.69963 (17) 0.0266 (4)

H10A 0.1054 0.0424 0.7352 0.04*

H10B −0.004 0.1201 0.706 0.04*

H10C 0.157 0.1406 0.7529 0.04*

C11 0.03997 (16) 0.05050 (9) 0.46021 (15) 0.0192 (3)

H11 0.0846 0.0448 0.3682 0.023*

C12 0.01326 (16) −0.03991 (10) 0.51586 (16) 0.0209 (3)

C13 0.10388 (18) −0.18003 (9) 0.5515 (2) 0.0309 (4)

(6)

H13B 0.1003 −0.1779 0.652 0.037*

C14 0.22797 (18) −0.23337 (10) 0.50574 (19) 0.0321 (4)

H14A 0.2327 −0.2329 0.4063 0.048*

H14B 0.2159 −0.293 0.5378 0.048*

H14C 0.317 −0.2093 0.5431 0.048*

O1 0.29969 (11) −0.10705 (7) 0.16442 (12) 0.0260 (3)

O2 0.35204 (11) 0.01858 (6) 0.26424 (11) 0.0196 (2)

O3 0.28451 (10) 0.06383 (6) 0.54379 (11) 0.0188 (2)

O4 −0.09369 (11) 0.09359 (7) 0.44542 (13) 0.0249 (3)

H4 −0.146 0.0826 0.5128 0.037*

O5 −0.09641 (13) −0.06047 (7) 0.57232 (14) 0.0331 (3)

O6 0.12410 (11) −0.09335 (6) 0.49619 (12) 0.0234 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0168 (7) 0.0206 (7) 0.0190 (8) 0.0010 (5) 0.0031 (6) 0.0007 (6)

C2 0.0196 (8) 0.0243 (7) 0.0246 (8) 0.0029 (6) 0.0001 (6) −0.0006 (6)

C3 0.0185 (7) 0.0244 (7) 0.0195 (8) 0.0038 (6) −0.0014 (6) −0.0008 (6)

C4 0.0154 (7) 0.0221 (7) 0.0172 (7) −0.0009 (5) −0.0027 (6) −0.0011 (6)

C5 0.0212 (8) 0.0274 (8) 0.0224 (8) −0.0022 (6) 0.0022 (6) −0.0012 (7)

C6 0.0145 (7) 0.0199 (7) 0.0176 (7) −0.0032 (5) 0.0001 (6) −0.0009 (6)

C7 0.0183 (7) 0.0188 (7) 0.0254 (7) −0.0016 (6) 0.0005 (6) 0.0031 (6)

C8 0.0201 (7) 0.0169 (6) 0.0302 (8) 0.0003 (6) 0.0005 (6) −0.0015 (7)

C9 0.0151 (7) 0.0196 (6) 0.0218 (8) 0.0019 (5) 0.0006 (6) −0.0006 (6)

C10 0.0191 (8) 0.0355 (9) 0.0250 (9) −0.0017 (6) 0.0024 (6) −0.0068 (7)

C11 0.0154 (7) 0.0204 (7) 0.0216 (8) 0.0008 (6) −0.0009 (6) −0.0001 (6)

C12 0.0177 (7) 0.0212 (7) 0.0236 (8) −0.0010 (5) −0.0013 (6) −0.0022 (6)

C13 0.0264 (8) 0.0185 (7) 0.0479 (11) −0.0009 (6) 0.0046 (8) 0.0064 (8)

C14 0.0264 (8) 0.0224 (7) 0.0476 (11) 0.0025 (6) −0.0009 (8) −0.0007 (8)

O1 0.0218 (6) 0.0250 (5) 0.0312 (6) −0.0004 (4) −0.0049 (5) −0.0074 (5)

O2 0.0193 (5) 0.0195 (5) 0.0198 (5) −0.0002 (4) −0.0048 (4) −0.0021 (4)

O3 0.0139 (5) 0.0208 (5) 0.0216 (5) −0.0006 (4) 0.0018 (4) 0.0034 (4)

O4 0.0169 (5) 0.0276 (5) 0.0301 (6) 0.0034 (4) −0.0019 (5) 0.0042 (5)

O5 0.0226 (6) 0.0236 (5) 0.0531 (8) −0.0018 (5) 0.0127 (6) 0.0023 (6)

O6 0.0188 (5) 0.0179 (5) 0.0335 (6) 0.0000 (4) 0.0036 (5) 0.0014 (5)

Geometric parameters (Å, º)

C1—O1 1.2056 (19) C8—H8A 0.99

C1—O2 1.3416 (17) C8—H8B 0.99

C1—C2 1.502 (2) C9—O3 1.4468 (17)

C2—C3 1.521 (2) C9—C10 1.521 (2)

C2—H2A 0.99 C9—C11 1.551 (2)

C2—H2B 0.99 C10—H10A 0.98

C3—C4 1.539 (2) C10—H10B 0.98

C3—H3A 0.99 C10—H10C 0.98

(7)

supporting information

sup-5

Acta Cryst. (2003). E59, o501–o502

C4—O2 1.4733 (17) C11—C12 1.520 (2)

C4—C6 1.520 (2) C11—H11 1

C4—C5 1.523 (2) C12—O5 1.2053 (19)

C5—H5A 0.98 C12—O6 1.3358 (18)

C5—H5B 0.98 C13—O6 1.4573 (17)

C5—H5C 0.98 C13—C14 1.489 (2)

C6—O3 1.4412 (17) C13—H13A 0.99

C6—C7 1.531 (2) C13—H13B 0.99

C6—H6 1 C14—H14A 0.98

C7—C8 1.524 (2) C14—H14B 0.98

C7—H7A 0.99 C14—H14C 0.98

C7—H7B 0.99 O4—H4 0.84

C8—C9 1.526 (2)

O1—C1—O2 122.00 (14) C9—C8—H8A 111.1

O1—C1—C2 128.06 (14) C7—C8—H8B 111.1

O2—C1—C2 109.88 (13) C9—C8—H8B 111.1

C1—C2—C3 103.87 (12) H8A—C8—H8B 109.1

C1—C2—H2A 111 O3—C9—C10 107.92 (12)

C3—C2—H2A 111 O3—C9—C8 104.60 (11)

C1—C2—H2B 111 C10—C9—C8 113.97 (13)

C3—C2—H2B 111 O3—C9—C11 108.25 (11)

H2A—C2—H2B 109 C10—C9—C11 111.43 (12)

C2—C3—C4 102.98 (12) C8—C9—C11 110.28 (13)

C2—C3—H3A 111.2 C9—C10—H10A 109.5

C4—C3—H3A 111.2 C9—C10—H10B 109.5

C2—C3—H3B 111.2 H10A—C10—H10B 109.5

C4—C3—H3B 111.2 C9—C10—H10C 109.5

H3A—C3—H3B 109.1 H10A—C10—H10C 109.5

O2—C4—C6 107.18 (11) H10B—C10—H10C 109.5

O2—C4—C5 108.24 (12) O4—C11—C12 108.91 (12)

C6—C4—C5 110.42 (12) O4—C11—C9 111.12 (11)

O2—C4—C3 103.89 (11) C12—C11—C9 111.97 (12)

C6—C4—C3 114.52 (12) O4—C11—H11 108.2

C5—C4—C3 112.09 (12) C12—C11—H11 108.2

C4—C5—H5A 109.5 C9—C11—H11 108.2

C4—C5—H5B 109.5 O5—C12—O6 123.98 (14)

H5A—C5—H5B 109.5 O5—C12—C11 123.14 (13)

C4—C5—H5C 109.5 O6—C12—C11 112.88 (12)

H5A—C5—H5C 109.5 O6—C13—C14 107.15 (13)

H5B—C5—H5C 109.5 O6—C13—H13A 110.3

O3—C6—C4 110.55 (11) C14—C13—H13A 110.3

O3—C6—C7 105.91 (11) O6—C13—H13B 110.3

C4—C6—C7 115.37 (13) C14—C13—H13B 110.3

O3—C6—H6 108.3 H13A—C13—H13B 108.5

C4—C6—H6 108.3 C13—C14—H14A 109.5

C7—C6—H6 108.3 C13—C14—H14B 109.5

(8)

C8—C7—H7A 111.3 C13—C14—H14C 109.5

C6—C7—H7A 111.3 H14A—C14—H14C 109.5

C8—C7—H7B 111.3 H14B—C14—H14C 109.5

C6—C7—H7B 111.3 C1—O2—C4 111.57 (11)

H7A—C7—H7B 109.2 C6—O3—C9 110.99 (10)

C7—C8—C9 103.20 (12) C11—O4—H4 109.5

C7—C8—H8A 111.1 C12—O6—C13 114.43 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O4—H4···O1i 0.84 2.10 2.8931 (16) 157

Figure

Figure 1

References

Related documents

There are different Session Key Exchange methods / algorithms Like Diffie-Hellman, Secure Hill Cipher Modifications and Key Exchange Protocol, Integration of

Based on the above survey results from selected participants from small sites, a total of 73.8% out of a total of 528 participants either disagreed or strongly disagreed with

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

Name And Brief Overview Of Contract Target Customer Groups Geographical Area Contract Start Date Contract End Date Key Performance Targets Actual Performance Local

 Some  properties  are  equipped  with  sophisticated  electronics  and  stereo

The Seckford Education Trust and our schools should be environments in which pupils and students or their parents/carers can feel comfortable and confident

Berdasarkan hasil wawancara dengan informan Koordinator Pengelola PKM- K dan mahasiswa penerima beasiswa Bidikmisi yang lolos seleksi PKM-K mengenai dana yang diberikan pada

Details related to calls and customers are automatically recorded in the portal database and enable real-time analysis of the