• No results found

catena Poly[[tri­phenyl­tin(IV)] μ 6 oxo­1,6 di­hydro­pyridine 3 carboxyl­ato]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[tri­phenyl­tin(IV)] μ 6 oxo­1,6 di­hydro­pyridine 3 carboxyl­ato]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m666

Gaoet al. [Sn(C

6H5)3(C6H4NO3)] doi:10.1107/S1600536806006726 Acta Cryst.(2006). E62, m666–m667

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[triphenyltin(IV)]-

l

-6-oxo-1,6-dihydropyridine-3-carboxylato]

Zhong-Jun Gao, Han-Dong Yin,* Gang Li and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People’s Republic of China

Correspondence e-mail: handongyin@163.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.006 A˚ Rfactor = 0.027 wRfactor = 0.071

Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 20 February 2006 Accepted 23 February 2006

#2006 International Union of Crystallography All rights reserved

The title compound, [Sn(C6H5)3(C6H4NO3)], possesses an

infinite chain structure. The SnO2C3 centre has distorted

trigonal–bipyramidal geometry with the O atoms in the apical positions. A strong intermolecular N—H O hydrogen bond results in the formation of double chains.

Comment

The title compound, (I) (Fig. 1), possesses an infinite one-dimensional chain structure arising from Sn—O bridges to the 6-hydroxy-3-pyridinecarboxylate ligand, one of which is substantially longer than the other (Table 1).

The Sn atom has distorted trigonal–bipyramidal geometry, with atoms O1 and O3i[symmetry code: (i)x,y1,z] in axial positions [O1—Sn1—O3i= 175.31 (9)] and the C atoms of the three phenyl groups in equatorial positions. The sum of the equatorial C—Sn—C angles is 359.2, indicating approximate

coplanarity for these atoms. The SnO2C3 geometry in (I) is

similar to those seen previously in related compounds (Xieet al., 1991).

A strong intermolecular N—H O hydrogen bond (Table 2) between the NH group of the pyridine ring and the non-coordinated O2 atom of a nearby carboxylate group results in the formation of a double chain parallel tob(Fig. 2).

Experimental

(2)

Crystal data

[Sn(C6H5)3(C6H4NO3)]

Mr= 488.09

Monoclinic,P21=c

a= 9.5629 (17) A˚

b= 10.6579 (19) A˚

c= 21.353 (4) A˚

= 101.155 (3)

V= 2135.2 (7) A˚3

Z= 4

Dx= 1.518 Mg m

3

MoKradiation Cell parameters from 5143

reflections

= 2.2–27.8 = 1.22 mm1

T= 298 (2) K Block, colourless 0.490.460.41 mm

Data collection

Bruker SMART CCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.586,Tmax= 0.635

10839 measured reflections

3755 independent reflections 3053 reflections withI> 2(I)

Rint= 0.041

max= 25.0

h=9!11

k=12!12

l=24!25

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.027

wR(F2) = 0.071

S= 1.00 3755 reflections 262 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.034P)2

+ 0.6145P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.52 e A˚

3

min=0.47 e A˚

[image:2.610.48.296.70.242.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Sn1—C19 2.133 (3) Sn1—C13 2.134 (3) Sn1—C7 2.137 (3) Sn1—O1 2.150 (2)

Sn1—O3i

2.356 (2) C1—O1 1.292 (4) C1—O2 1.233 (4) C19—Sn1—C13 130.80 (12)

C19—Sn1—C7 115.76 (12) C13—Sn1—C7 112.63 (12) C19—Sn1—O1 92.09 (10) C13—Sn1—O1 96.30 (11)

C7—Sn1—O1 90.01 (10) C19—Sn1—O3i

83.52 (11) C13—Sn1—O3i 87.84 (11) C7—Sn1—O3i

90.42 (10) O1—Sn1—O3i

175.31 (9)

Symmetry code: (i)x;y1;z.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1 O2ii

0.86 1.95 2.785 (4) 165

Symmetry code: (ii)xþ1;yþ1 2;zþ

1 2.

H atoms were positioned geometrically [N—H = 0.86 A˚ and C— H = 0.93 A˚ ] and refined as riding withUiso(H) = 1.2Ueq(C,N).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People’s Republic of China.

References

Bruker (1998).SMART,SAINT,SADABSandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Xie, Q. L., Xu, X. H., Wang, H. G., Yao, X. K., Wang, R. J., Zhang, Z. G. & Hu, J. M. (1991).Acta Chim. Sin.49, 1085–1093.

Figure 1

[image:2.610.311.566.186.281.2]

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: (i)x,y1, z; (ii)x,y+ 1,z.]

Figure 2

[image:2.610.43.298.303.390.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m666–m667

supporting information

Acta Cryst. (2006). E62, m666–m667 [https://doi.org/10.1107/S1600536806006726]

catena

-Poly[[triphenyltin(IV)]-

µ

-6-oxo1,6-dihydropyridine-3-carboxylato]

Zhong-Jun Gao, Han-Dong Yin, Gang Li and Da-Qi Wang

catena-Poly[[triphenyltin(IV)]-µ-6-hydroxypyridine-3-carboxylato]

Crystal data

[Sn(C6H5)3(C6H4NO3)] Mr = 488.09

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.5629 (17) Å

b = 10.6579 (19) Å

c = 21.353 (4) Å

β = 101.155 (3)°

V = 2135.2 (7) Å3

Z = 4

F(000) = 976

Dx = 1.518 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 5143 reflections

θ = 2.2–27.8°

µ = 1.22 mm−1

T = 298 K

Block, colourless 0.49 × 0.46 × 0.41 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin = 0.586, Tmax = 0.635

10839 measured reflections 3755 independent reflections 3053 reflections with I > 2σ(I)

Rint = 0.041

θmax = 25.0°, θmin = 1.9°

h = −9→11

k = −12→12

l = −24→25

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.027 wR(F2) = 0.071

S = 1.00

3755 reflections 262 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.034P)2 + 0.6145P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.52 e Å−3

Δρmin = −0.47 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is

used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Sn1 0.38463 (2) 0.22844 (2) 0.371584 (10) 0.03163 (9)

N1 0.4684 (3) 0.8383 (2) 0.31816 (13) 0.0412 (7)

H1 0.5020 0.8854 0.2919 0.049*

O1 0.3573 (2) 0.4286 (2) 0.37293 (10) 0.0406 (6)

O2 0.4407 (3) 0.4558 (2) 0.28338 (11) 0.0516 (7)

O3 0.4339 (3) 1.0117 (2) 0.37454 (12) 0.0543 (6)

C1 0.4027 (3) 0.4975 (3) 0.33130 (15) 0.0370 (7)

C2 0.4619 (4) 0.7144 (3) 0.30654 (15) 0.0385 (8)

H2 0.4940 0.6832 0.2712 0.046*

C3 0.4092 (3) 0.6339 (3) 0.34543 (14) 0.0311 (7)

C4 0.3660 (3) 0.6863 (3) 0.39925 (15) 0.0379 (8)

H4 0.3307 0.6338 0.4273 0.045*

C5 0.3746 (4) 0.8110 (3) 0.41112 (16) 0.0425 (8)

H5 0.3467 0.8419 0.4475 0.051*

C6 0.4251 (4) 0.8959 (3) 0.36931 (15) 0.0395 (8)

C7 0.2975 (3) 0.2123 (3) 0.45612 (15) 0.0366 (8)

C8 0.2362 (4) 0.1009 (4) 0.4700 (2) 0.0675 (13)

H8 0.2306 0.0339 0.4418 0.081*

C9 0.1831 (6) 0.0879 (5) 0.5256 (3) 0.0968 (19)

H9 0.1435 0.0119 0.5348 0.116*

C10 0.1886 (6) 0.1860 (6) 0.5668 (2) 0.0900 (17)

H10 0.1539 0.1766 0.6043 0.108*

C11 0.2440 (5) 0.2965 (5) 0.5536 (2) 0.0733 (14)

H11 0.2454 0.3640 0.5813 0.088*

C12 0.2991 (4) 0.3099 (4) 0.49839 (17) 0.0536 (10)

H12 0.3379 0.3865 0.4898 0.064*

C13 0.2302 (3) 0.1953 (3) 0.28674 (15) 0.0376 (8)

C14 0.2259 (4) 0.0894 (3) 0.24924 (17) 0.0528 (9)

H14 0.2989 0.0307 0.2586 0.063*

C15 0.1152 (5) 0.0684 (4) 0.19798 (19) 0.0695 (12)

H15 0.1147 −0.0035 0.1733 0.083*

C16 0.0067 (5) 0.1534 (6) 0.1837 (2) 0.0863 (16)

H16 −0.0682 0.1391 0.1496 0.104*

C17 0.0087 (5) 0.2593 (5) 0.2196 (2) 0.0890 (17)

H17 −0.0647 0.3175 0.2098 0.107*

C18 0.1192 (4) 0.2807 (4) 0.27052 (19) 0.0612 (11)

H18 0.1194 0.3537 0.2944 0.073*

C19 0.6108 (3) 0.2454 (3) 0.38611 (15) 0.0382 (8)

C20 0.6747 (4) 0.3350 (4) 0.42928 (17) 0.0531 (9)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m666–m667

C21 0.8207 (5) 0.3483 (5) 0.4441 (2) 0.0785 (14)

H21 0.8627 0.4062 0.4746 0.094*

C22 0.9026 (5) 0.2745 (5) 0.4130 (3) 0.0827 (16)

H22 1.0011 0.2848 0.4217 0.099*

C23 0.8441 (5) 0.1876 (5) 0.3704 (2) 0.0763 (14)

H23 0.9021 0.1392 0.3496 0.092*

C24 0.6973 (4) 0.1696 (4) 0.35701 (18) 0.0539 (10)

H24 0.6574 0.1071 0.3287 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Sn1 0.03997 (14) 0.02032 (14) 0.03523 (13) −0.00202 (9) 0.00883 (10) −0.00077 (9)

N1 0.0582 (18) 0.0239 (16) 0.0461 (17) −0.0021 (13) 0.0214 (14) 0.0053 (13)

O1 0.0616 (15) 0.0190 (12) 0.0444 (13) −0.0018 (10) 0.0183 (12) 0.0007 (10)

O2 0.0845 (18) 0.0317 (14) 0.0465 (14) 0.0005 (12) 0.0325 (13) −0.0098 (11)

O3 0.0843 (18) 0.0149 (13) 0.0638 (16) 0.0025 (12) 0.0149 (13) −0.0018 (11)

C1 0.0432 (19) 0.0241 (18) 0.044 (2) −0.0001 (14) 0.0088 (15) −0.0005 (15)

C2 0.055 (2) 0.026 (2) 0.0373 (18) 0.0025 (15) 0.0169 (16) −0.0022 (14)

C3 0.0409 (17) 0.0211 (17) 0.0313 (16) 0.0016 (13) 0.0074 (14) −0.0001 (13)

C4 0.053 (2) 0.0275 (18) 0.0359 (17) −0.0011 (15) 0.0164 (15) 0.0021 (14)

C5 0.063 (2) 0.0272 (19) 0.0408 (19) 0.0038 (17) 0.0177 (17) −0.0025 (15)

C6 0.051 (2) 0.025 (2) 0.0397 (19) 0.0037 (15) 0.0016 (16) 0.0001 (14)

C7 0.0373 (18) 0.036 (2) 0.0374 (17) 0.0049 (14) 0.0093 (14) 0.0082 (14)

C8 0.088 (3) 0.037 (2) 0.091 (3) 0.012 (2) 0.050 (3) 0.019 (2)

C9 0.126 (4) 0.064 (3) 0.123 (5) 0.024 (3) 0.081 (4) 0.050 (3)

C10 0.101 (4) 0.118 (5) 0.064 (3) 0.035 (4) 0.049 (3) 0.039 (3)

C11 0.069 (3) 0.109 (4) 0.046 (2) 0.004 (3) 0.019 (2) −0.015 (3)

C12 0.055 (2) 0.061 (3) 0.046 (2) −0.007 (2) 0.0134 (18) −0.0083 (19)

C13 0.0410 (18) 0.036 (2) 0.0371 (18) −0.0057 (15) 0.0094 (14) −0.0007 (15)

C14 0.066 (2) 0.043 (2) 0.046 (2) −0.0071 (19) 0.0045 (19) −0.0033 (17)

C15 0.080 (3) 0.072 (3) 0.053 (3) −0.025 (3) 0.004 (2) −0.018 (2)

C16 0.059 (3) 0.138 (5) 0.056 (3) −0.015 (3) −0.005 (2) −0.013 (3)

C17 0.057 (3) 0.127 (5) 0.075 (3) 0.028 (3) −0.008 (2) −0.007 (3)

C18 0.056 (2) 0.069 (3) 0.055 (2) 0.015 (2) 0.0026 (19) −0.011 (2)

C19 0.0349 (18) 0.039 (2) 0.0415 (19) −0.0014 (15) 0.0082 (15) 0.0077 (15)

C20 0.048 (2) 0.057 (3) 0.052 (2) −0.0094 (19) 0.0042 (18) −0.0028 (19)

C21 0.066 (3) 0.086 (4) 0.073 (3) −0.021 (3) −0.012 (2) 0.010 (3)

C22 0.048 (3) 0.087 (4) 0.113 (4) −0.006 (3) 0.018 (3) 0.040 (3)

C23 0.057 (3) 0.082 (4) 0.096 (4) 0.019 (3) 0.029 (3) 0.032 (3)

C24 0.055 (2) 0.044 (2) 0.064 (2) 0.0082 (19) 0.0164 (19) 0.0053 (19)

Geometric parameters (Å, º)

Sn1—C19 2.133 (3) C10—H10 0.9300

Sn1—C13 2.134 (3) C11—C12 1.388 (5)

Sn1—C7 2.137 (3) C11—H11 0.9300

(6)

Sn1—O3i 2.356 (2) C13—C14 1.380 (5)

N1—C2 1.343 (4) C13—C18 1.391 (5)

N1—C6 1.385 (4) C14—C15 1.385 (5)

N1—H1 0.8600 C14—H14 0.9300

C1—O1 1.292 (4) C15—C16 1.367 (6)

C1—O2 1.233 (4) C15—H15 0.9300

O3—C6 1.240 (4) C16—C17 1.363 (7)

O3—Sn1ii 2.356 (2) C16—H16 0.9300

C1—C3 1.483 (4) C17—C18 1.380 (6)

C2—C3 1.357 (4) C17—H17 0.9300

C2—H2 0.9300 C18—H18 0.9300

C3—C4 1.410 (4) C19—C20 1.384 (5)

C4—C5 1.353 (5) C19—C24 1.386 (4)

C4—H4 0.9300 C20—C21 1.378 (5)

C5—C6 1.420 (5) C20—H20 0.9300

C5—H5 0.9300 C21—C22 1.369 (7)

C7—C12 1.375 (5) C21—H21 0.9300

C7—C8 1.382 (5) C22—C23 1.343 (7)

C8—C9 1.385 (6) C22—H22 0.9300

C8—H8 0.9300 C23—C24 1.391 (5)

C9—C10 1.361 (7) C23—H23 0.9300

C9—H9 0.9300 C24—H24 0.9300

C10—C11 1.344 (7)

C19—Sn1—C13 130.80 (12) C9—C10—H10 119.8

C19—Sn1—C7 115.76 (12) C10—C11—C12 119.9 (5)

C13—Sn1—C7 112.63 (12) C10—C11—H11 120.1

C19—Sn1—O1 92.09 (10) C12—C11—H11 120.1

C13—Sn1—O1 96.30 (11) C7—C12—C11 121.5 (4)

C7—Sn1—O1 90.01 (10) C7—C12—H12 119.3

C19—Sn1—O3i 83.52 (11) C11—C12—H12 119.3

C13—Sn1—O3i 87.84 (11) C14—C13—C18 117.1 (3)

C7—Sn1—O3i 90.42 (10) C14—C13—Sn1 124.5 (3)

O1—Sn1—O3i 175.31 (9) C18—C13—Sn1 118.2 (3)

C2—N1—C6 124.9 (3) C13—C14—C15 121.5 (4)

C2—N1—H1 117.6 C13—C14—H14 119.2

C6—N1—H1 117.6 C15—C14—H14 119.2

C1—O1—Sn1 119.82 (19) C16—C15—C14 120.0 (4)

C6—O3—Sn1ii 164.4 (3) C16—C15—H15 120.0

O2—C1—O1 123.9 (3) C14—C15—H15 120.0

O2—C1—C3 121.0 (3) C17—C16—C15 119.7 (4)

O1—C1—C3 115.1 (3) C17—C16—H16 120.1

N1—C2—C3 121.2 (3) C15—C16—H16 120.1

N1—C2—H2 119.4 C16—C17—C18 120.4 (5)

C3—C2—H2 119.4 C16—C17—H17 119.8

C2—C3—C4 116.7 (3) C18—C17—H17 119.8

C2—C3—C1 120.1 (3) C17—C18—C13 121.3 (4)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m666–m667

C5—C4—C3 121.7 (3) C13—C18—H18 119.4

C5—C4—H4 119.1 C20—C19—C24 118.4 (3)

C3—C4—H4 119.1 C20—C19—Sn1 117.4 (2)

C4—C5—C6 121.6 (3) C24—C19—Sn1 124.2 (3)

C4—C5—H5 119.2 C21—C20—C19 121.4 (4)

C6—C5—H5 119.2 C21—C20—H20 119.3

O3—C6—N1 119.1 (3) C19—C20—H20 119.3

O3—C6—C5 127.1 (3) C22—C21—C20 118.6 (5)

N1—C6—C5 113.8 (3) C22—C21—H21 120.7

C12—C7—C8 117.4 (3) C20—C21—H21 120.7

C12—C7—Sn1 122.5 (3) C23—C22—C21 121.5 (5)

C8—C7—Sn1 120.1 (3) C23—C22—H22 119.2

C7—C8—C9 120.8 (4) C21—C22—H22 119.2

C7—C8—H8 119.6 C22—C23—C24 120.4 (5)

C9—C8—H8 119.6 C22—C23—H23 119.8

C10—C9—C8 120.1 (5) C24—C23—H23 119.8

C10—C9—H9 119.9 C19—C24—C23 119.6 (4)

C8—C9—H9 119.9 C19—C24—H24 120.2

C11—C10—C9 120.3 (4) C23—C24—H24 120.2

C11—C10—H10 119.8

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O2iii 0.86 1.95 2.785 (4) 165

Figure

Figure 1C19—Sn1—C13130.80 (12)C19—Sn1—C7115.76 (12)C7—Sn1—O1C19—Sn1—O3iThe molecular structure of (I), with 30% probability displacement

References

Related documents

The current literature on the teaching and remediation of spelling deficits with mentally retarded children consists of a limited number of studies which

If we require an analogue to the above theorem in some generalisation of polynomial approximation then clearly we will need to preserve these essential

Measurements of diagnostic examination performance and correlation analysis using microvas- cular leakage, cerebral blood volume, and blood flow derived from 3T

In the present study, using a rabbit model, we exam- ined reactions of HEL in the diaphysis of proximal femur, which is the site most susceptible to the development of

The AE segment on the zt line measures the nasoethmoidal cavity total width and is decomposed into the following subsegments: AB for the width of the healthy ethmoidal labyrinth, BC

Keywords: viscoelastic damper; rheological model; fractional derivative; nonlinear eigenvalue problem; dynamic

(2017) Acceptance to Use Daily Oral Pre-Exposure Prophylaxis (PrEP) as an HIV Prevention Method and Ability to Pay for PrEP among Men Who Have Sex with Men in Ho Chi Minh

To determine whether the gentamicin-induced type VII col- lagen could create new AFs at the DEJ, we carried out IEM using a monoclonal antibody to type VII collagen. As shown in