• No results found

3,4,5 Tri­meth­oxy­phen­yl 4 bromo 7 meth­­oxy 1,3 benzodioxole 5 carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "3,4,5 Tri­meth­oxy­phen­yl 4 bromo 7 meth­­oxy 1,3 benzodioxole 5 carboxyl­ate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2508

Zhenget al. C

18H17BrO8 doi:10.1107/S1600536805021689 Acta Cryst.(2005). E61, o2508–o2509

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

3,4,5-Trimethoxyphenyl

4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate

Lei Zheng, Boying Guo, Xiufang Zheng, Juan Chen and

Junbiao Chang*

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.041

wRfactor = 0.100

Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C18H17BrO8, was synthesized in an

anhydrous medium at 293 K. The dihedral angle between the two benzene rings is 38.8 (2).

Comment

The title compound, (I), is a key intermediate of biphenyl derivatives, which may act to moderate liver ailments, and thus be effective in the treatment of actute and chronic hepatitis (Song & Xiao, 1982).

Its molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles are unremarkable. The dihedral angle between the five-membered ring and the fused benzene ring is

[image:1.610.265.399.286.494.2] [image:1.610.207.460.564.712.2]

Received 24 June 2005 Accepted 6 July 2005 Online 13 July 2005

Figure 1

(2)

3.3 (1), and the angle between the two benzene rings is

38.8 (2). Intermolecular C—H O hydrogen bonds help to

stabilize the crystal structure (Fig. 2 and Table 1).

Experimental

The title compound, (I), was prepared according to a literature procedure (Bringmannet al., 2003). The reaction was initiated by the addition of one molar equivalent of 3,4,5-trimethoxyphenol, 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylic acid,

dicyclohexyl-carbodiimide and 0.2 molar equivalents of

4-(dimethyl-amino)pyridine to dichloromethane. The mixture was stirred at room temperature for 12 h. A white powder (m.p. 461 K) resulted (yield 90%) and single crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution. IR (KBr,cm1): 1739, 1608, 1502, 1431, 1338, 1172, 1135, 1033, 942;1H NMR (CDCl

3):

7.449 (s, 1H), 6.473 (s, 2H), 6.176 (s, 2H), 3.967 (s, 3H), 3.863 (s, 6H), 3.851 (s, 3H).

Crystal data

C18H17BrO8 Mr= 441.23

Monoclinic,P21=n a= 8.6563 (16) A˚

b= 7.6330 (12) A˚

c= 26.927 (4) A˚ = 95.403 (9)

V= 1771.2 (5) A˚3 Z= 4

Dx= 1.655 Mg m 3

MoKradiation Cell parameters from 2497

reflections = 2.6–26.1

= 2.37 mm1 T= 294 (2) K Block, colorless 0.540.400.32 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2002)

Tmin= 0.288,Tmax= 0.469

9627 measured reflections

3679 independent reflections 2307 reflections withI> 2(I)

Rint= 0.051

max= 26.8

h=10!10

k=9!7

l=34!33

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.041 wR(F2) = 0.100 S= 1.00 3679 reflections 249 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0519P)2

+ 0.0516P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.50 e A˚

3

min=0.64 e A˚

3

Extinction correction:SHELXL97

Extinction coefficient: 0.0369 (15)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C1—H1A O7i

0.97 2.42 3.278 (4) 147 C8—H8A O4ii

0.96 2.45 3.244 (4) 140

Symmetry codes: (i)xþ1 2;yþ

1 2;z

1 2; (ii)xþ

1 2;y

1 2;zþ

1 2.

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.97 A˚ . Uiso(H) values were set equal to xUeq(carrier atom), wherex= 1.5 for methyl H atoms and 1.2 for all

others.

Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

This research was supported by the National Natural Science Foundation of China (grant No. 200342005).

References

Bringmann, G., Breuning, M., Henschel, P. & Hinrichs, J. (2003).Org. Synth. 79, 72–73.

Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc, Madison, Wiscosin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (2002).SADABS. Version 2.03. University of Go¨ttingen, Germany.

[image:2.610.317.563.73.324.2]

Song, W. Z. & Xiao, P. G. (1982).Chin. Traditional Herbal Drugs,13, 40-43.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o2508–o2509

supporting information

Acta Cryst. (2005). E61, o2508–o2509 [https://doi.org/10.1107/S1600536805021689]

3,4,5-Trimethoxyphenyl 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate

Lei Zheng, Boying Guo, Xiufang Zheng, Juan Chen and Junbiao Chang

3,4,5-Trimethoxyphenyl 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate

Crystal data

C18H17BrO8

Mr = 441.23

Monoclinic, P21/n

a = 8.6563 (16) Å

b = 7.6330 (12) Å

c = 26.927 (4) Å

β = 95.403 (9)°

V = 1771.2 (5) Å3

Z = 4

F(000) = 896

Dx = 1.655 Mg m−3 Melting point: 461 K

Mo radiation, λ = 0.71073 Å Cell parameters from 2497 reflections

θ = 2.6–26.1°

µ = 2.37 mm−1

T = 294 K Block, colorless 0.54 × 0.40 × 0.32 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2002)

Tmin = 0.288, Tmax = 0.469

9627 measured reflections 3679 independent reflections 2307 reflections with I > 2σ(I)

Rint = 0.051

θmax = 26.8°, θmin = 2.4°

h = −10→10

k = −9→7

l = −34→33

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.041

wR(F2) = 0.100

S = 1.01 3679 reflections 249 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0519P)2 + 0.0516P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.50 e Å−3 Δρmin = −0.64 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.75663 (4) 0.46348 (6) 0.219153 (13) 0.0533 (2) O1 0.6634 (3) 0.4546 (3) 0.10474 (8) 0.0445 (7) O2 0.4353 (3) 0.3869 (3) 0.05663 (7) 0.0438 (7) O3 0.1593 (3) 0.2773 (3) 0.09433 (8) 0.0445 (7) O4 0.4979 (3) 0.4617 (4) 0.28936 (9) 0.0605 (8) O5 0.3255 (3) 0.2428 (3) 0.27989 (7) 0.0428 (6) O6 −0.0465 (3) 0.4055 (4) 0.39314 (8) 0.0498 (7) O7 0.1511 (2) 0.3226 (3) 0.47050 (7) 0.0380 (6) O8 0.4358 (3) 0.2133 (3) 0.45979 (7) 0.0459 (7) C1 0.5848 (4) 0.4675 (5) 0.05571 (11) 0.0419 (9)

H1A 0.6439 0.4082 0.0319 0.050*

H1B 0.5731 0.5894 0.0460 0.050*

C2 0.4162 (4) 0.3686 (4) 0.10611 (10) 0.0304 (8) C3 0.5502 (4) 0.4102 (4) 0.13474 (11) 0.0299 (8) C4 0.5623 (4) 0.4049 (4) 0.18579 (11) 0.0303 (8) C5 0.4302 (4) 0.3489 (4) 0.20796 (10) 0.0291 (8) C6 0.2960 (4) 0.3020 (4) 0.17862 (11) 0.0318 (8)

H6 0.2109 0.2624 0.1941 0.038*

C7 0.2850 (4) 0.3125 (4) 0.12666 (11) 0.0317 (8) C8 0.0254 (4) 0.2101 (5) 0.11385 (13) 0.0497 (10)

H8A 0.0514 0.1042 0.1320 0.075*

H8B −0.0525 0.1855 0.0870 0.075*

H8C −0.0137 0.2949 0.1358 0.075*

C9 0.4267 (4) 0.3600 (5) 0.26302 (11) 0.0328 (8) C10 0.2864 (4) 0.2668 (5) 0.32926 (11) 0.0344 (8) C11 0.1395 (4) 0.3255 (5) 0.33438 (11) 0.0375 (9)

H11 0.0712 0.3503 0.3065 0.045*

C12 0.0945 (4) 0.3474 (5) 0.38242 (11) 0.0344 (8) C13 0.1980 (4) 0.3074 (4) 0.42341 (10) 0.0293 (8) C14 0.3455 (4) 0.2452 (4) 0.41677 (11) 0.0320 (8) C15 0.3913 (4) 0.2234 (5) 0.36882 (11) 0.0349 (8)

H15 0.4894 0.1810 0.3638 0.042*

C16 −0.1608 (4) 0.4398 (6) 0.35271 (14) 0.0554 (11)

H16A −0.1254 0.5323 0.3325 0.083*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o2508–o2509

H16C −0.1780 0.3359 0.3329 0.083*

C17 0.2037 (5) 0.4782 (5) 0.49610 (13) 0.0523 (11)

H17A 0.3147 0.4850 0.4972 0.078*

H17B 0.1732 0.4758 0.5295 0.078*

H17C 0.1585 0.5785 0.4788 0.078*

C18 0.5862 (4) 0.1434 (6) 0.45643 (14) 0.0517 (10)

H18A 0.5777 0.0313 0.4402 0.077*

H18B 0.6380 0.1298 0.4893 0.077*

H18C 0.6447 0.2216 0.4375 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0444 (3) 0.0908 (4) 0.0236 (2) −0.0137 (2) −0.00223 (15) 0.0039 (2) O1 0.0387 (13) 0.0813 (19) 0.0144 (11) −0.0112 (13) 0.0076 (10) 0.0056 (12) O2 0.0452 (15) 0.0734 (18) 0.0134 (11) −0.0171 (13) 0.0066 (10) 0.0010 (11) O3 0.0375 (14) 0.0742 (19) 0.0214 (12) −0.0153 (13) 0.0009 (10) 0.0043 (12) O4 0.0764 (19) 0.085 (2) 0.0233 (13) −0.0367 (17) 0.0201 (13) −0.0195 (14) O5 0.0641 (16) 0.0539 (17) 0.0130 (11) −0.0141 (13) 0.0162 (11) −0.0069 (11) O6 0.0378 (14) 0.086 (2) 0.0251 (12) 0.0137 (13) 0.0005 (11) 0.0003 (13) O7 0.0454 (14) 0.0559 (17) 0.0145 (10) −0.0014 (12) 0.0132 (10) −0.0008 (11) O8 0.0430 (14) 0.0760 (19) 0.0189 (12) 0.0199 (13) 0.0033 (10) 0.0020 (12) C1 0.0402 (19) 0.071 (3) 0.0149 (15) −0.009 (2) 0.0060 (14) 0.0006 (17) C2 0.0399 (19) 0.039 (2) 0.0128 (14) −0.0009 (16) 0.0069 (14) 0.0008 (14) C3 0.0299 (17) 0.043 (2) 0.0181 (15) 0.0000 (15) 0.0079 (13) −0.0002 (14) C4 0.0365 (18) 0.039 (2) 0.0157 (15) 0.0010 (15) 0.0018 (13) 0.0007 (14) C5 0.0375 (19) 0.036 (2) 0.0143 (14) 0.0025 (16) 0.0072 (13) 0.0008 (14) C6 0.0369 (19) 0.041 (2) 0.0195 (16) −0.0013 (16) 0.0101 (14) 0.0021 (14) C7 0.0324 (18) 0.042 (2) 0.0208 (16) −0.0022 (16) 0.0035 (14) −0.0008 (15) C8 0.038 (2) 0.068 (3) 0.042 (2) −0.013 (2) 0.0027 (17) 0.010 (2) C9 0.041 (2) 0.043 (2) 0.0160 (16) 0.0019 (18) 0.0111 (15) −0.0002 (16) C10 0.050 (2) 0.042 (2) 0.0127 (15) −0.0117 (18) 0.0129 (15) −0.0014 (14) C11 0.045 (2) 0.053 (2) 0.0138 (15) −0.0071 (19) 0.0021 (14) 0.0028 (16) C12 0.041 (2) 0.046 (2) 0.0169 (15) 0.0007 (18) 0.0053 (14) 0.0033 (15) C13 0.0362 (18) 0.040 (2) 0.0127 (14) −0.0034 (16) 0.0063 (13) 0.0005 (14) C14 0.0409 (19) 0.038 (2) 0.0173 (16) 0.0016 (17) 0.0048 (14) 0.0032 (14) C15 0.042 (2) 0.044 (2) 0.0205 (16) 0.0013 (17) 0.0127 (15) −0.0015 (15) C16 0.044 (2) 0.079 (3) 0.041 (2) 0.014 (2) −0.0069 (18) 0.002 (2) C17 0.064 (3) 0.066 (3) 0.0286 (19) 0.008 (2) 0.0090 (18) −0.0119 (19) C18 0.042 (2) 0.070 (3) 0.042 (2) 0.013 (2) 0.0019 (17) −0.003 (2)

Geometric parameters (Å, º)

Br1—C4 1.885 (3) C5—C9 1.488 (4)

O1—C3 1.370 (3) C6—C7 1.396 (4)

O1—C1 1.431 (4) C6—H6 0.9300

O2—C2 1.365 (3) C8—H8A 0.9600

(6)

O3—C7 1.355 (4) C8—H8C 0.9600

O3—C8 1.413 (4) C10—C11 1.367 (4)

O4—C9 1.184 (4) C10—C15 1.374 (4)

O5—C9 1.360 (4) C11—C12 1.396 (4)

O5—C10 1.414 (3) C11—H11 0.9300

O6—C12 1.355 (4) C12—C13 1.388 (4)

O6—C16 1.425 (4) C13—C14 1.390 (4)

O7—C13 1.372 (3) C14—C15 1.396 (4)

O7—C17 1.426 (4) C15—H15 0.9300

O8—C14 1.357 (4) C16—H16A 0.9600

O8—C18 1.417 (4) C16—H16B 0.9600

C1—H1A 0.9700 C16—H16C 0.9600

C1—H1B 0.9700 C17—H17A 0.9600

C2—C3 1.368 (4) C17—H17B 0.9600

C2—C7 1.378 (4) C17—H17C 0.9600

C3—C4 1.369 (4) C18—H18A 0.9600

C4—C5 1.405 (4) C18—H18B 0.9600

C5—C6 1.389 (4) C18—H18C 0.9600

C3—O1—C1 104.9 (2) O4—C9—C5 125.1 (3)

C2—O2—C1 104.6 (2) O5—C9—C5 111.7 (3)

C7—O3—C8 118.0 (2) C11—C10—C15 123.6 (3)

C9—O5—C10 116.6 (2) C11—C10—O5 116.4 (3)

C12—O6—C16 118.2 (3) C15—C10—O5 119.9 (3)

C13—O7—C17 114.1 (3) C10—C11—C12 118.4 (3)

C14—O8—C18 118.1 (2) C10—C11—H11 120.8

O1—C1—O2 107.8 (2) C12—C11—H11 120.8

O1—C1—H1A 110.1 O6—C12—C13 115.4 (3)

O2—C1—H1A 110.1 O6—C12—C11 124.9 (3)

O1—C1—H1B 110.1 C13—C12—C11 119.7 (3)

O2—C1—H1B 110.1 O7—C13—C12 119.4 (3)

H1A—C1—H1B 108.5 O7—C13—C14 120.2 (3)

O2—C2—C3 110.6 (3) C12—C13—C14 120.3 (3)

O2—C2—C7 127.1 (3) O8—C14—C13 114.4 (3)

C3—C2—C7 122.2 (3) O8—C14—C15 125.3 (3)

C2—C3—C4 122.6 (3) C13—C14—C15 120.3 (3)

C2—C3—O1 109.9 (3) C10—C15—C14 117.7 (3)

C4—C3—O1 127.5 (3) C10—C15—H15 121.2

C3—C4—C5 116.6 (3) C14—C15—H15 121.2

C3—C4—Br1 116.8 (2) O6—C16—H16A 109.5

C5—C4—Br1 126.5 (2) O6—C16—H16B 109.5

C6—C5—C4 120.5 (3) H16A—C16—H16B 109.5

C6—C5—C9 119.1 (3) O6—C16—H16C 109.5

C4—C5—C9 120.0 (3) H16A—C16—H16C 109.5

C5—C6—C7 122.0 (3) H16B—C16—H16C 109.5

C5—C6—H6 119.0 O7—C17—H17A 109.5

C7—C6—H6 119.0 O7—C17—H17B 109.5

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o2508–o2509

O3—C7—C6 127.4 (3) O7—C17—H17C 109.5

C2—C7—C6 116.1 (3) H17A—C17—H17C 109.5

O3—C8—H8A 109.5 H17B—C17—H17C 109.5

O3—C8—H8B 109.5 O8—C18—H18A 109.5

H8A—C8—H8B 109.5 O8—C18—H18B 109.5

O3—C8—H8C 109.5 H18A—C18—H18B 109.5

H8A—C8—H8C 109.5 O8—C18—H18C 109.5

H8B—C8—H8C 109.5 H18A—C18—H18C 109.5

O4—C9—O5 123.1 (3) H18B—C18—H18C 109.5

C3—O1—C1—O2 −14.5 (4) C10—O5—C9—C5 −166.4 (3) C2—O2—C1—O1 13.8 (4) C6—C5—C9—O4 −145.6 (4) C1—O2—C2—C3 −8.0 (4) C4—C5—C9—O4 27.1 (5) C1—O2—C2—C7 173.6 (4) C6—C5—C9—O5 31.8 (4) O2—C2—C3—C4 179.2 (3) C4—C5—C9—O5 −155.6 (3) C7—C2—C3—C4 −2.3 (6) C9—O5—C10—C11 108.4 (3) O2—C2—C3—O1 −1.0 (4) C9—O5—C10—C15 −74.7 (4) C7—C2—C3—O1 177.4 (3) C15—C10—C11—C12 1.8 (5) C1—O1—C3—C2 9.7 (4) O5—C10—C11—C12 178.6 (3) C1—O1—C3—C4 −170.7 (4) C16—O6—C12—C13 −176.7 (3) C2—C3—C4—C5 1.8 (5) C16—O6—C12—C11 3.0 (5) O1—C3—C4—C5 −177.8 (3) C10—C11—C12—O6 179.6 (3) C2—C3—C4—Br1 179.2 (3) C10—C11—C12—C13 −0.8 (5) O1—C3—C4—Br1 −0.5 (5) C17—O7—C13—C12 −101.1 (4) C3—C4—C5—C6 0.1 (5) C17—O7—C13—C14 81.7 (4) Br1—C4—C5—C6 −177.0 (3) O6—C12—C13—O7 2.2 (5) C3—C4—C5—C9 −172.5 (3) C11—C12—C13—O7 −177.5 (3) Br1—C4—C5—C9 10.4 (5) O6—C12—C13—C14 179.4 (3) C4—C5—C6—C7 −1.7 (5) C11—C12—C13—C14 −0.2 (5) C9—C5—C6—C7 171.0 (3) C18—O8—C14—C13 177.7 (3) C8—O3—C7—C2 176.5 (3) C18—O8—C14—C15 −3.5 (5) C8—O3—C7—C6 −5.0 (5) O7—C13—C14—O8 −3.6 (5) O2—C2—C7—O3 −2.5 (5) C12—C13—C14—O8 179.2 (3) C3—C2—C7—O3 179.3 (3) O7—C13—C14—C15 177.6 (3) O2—C2—C7—C6 178.8 (3) C12—C13—C14—C15 0.3 (5) C3—C2—C7—C6 0.6 (5) C11—C10—C15—C14 −1.7 (5) C5—C6—C7—O3 −177.2 (3) O5—C10—C15—C14 −178.3 (3) C5—C6—C7—C2 1.3 (5) O8—C14—C15—C10 −178.2 (3) C10—O5—C9—O4 11.1 (5) C13—C14—C15—C10 0.5 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C1—H1A···O7i 0.97 2.42 3.278 (4) 147

C8—H8A···O4ii 0.96 2.45 3.244 (4) 140

Figure

Figure 1View of the title molecule, showing the atom-labeling scheme. Displace-ment ellipsoids are drawn at the 35% probability level
Figure 2

References

Related documents

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are