organic papers
o2508
Zhenget al. C18H17BrO8 doi:10.1107/S1600536805021689 Acta Cryst.(2005). E61, o2508–o2509
Acta Crystallographica Section E Structure Reports
Online
ISSN 1600-5368
3,4,5-Trimethoxyphenyl
4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate
Lei Zheng, Boying Guo, Xiufang Zheng, Juan Chen and
Junbiao Chang*
College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People’s Republic of China
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study
T= 294 K
Mean(C–C) = 0.004 A˚
Rfactor = 0.041
wRfactor = 0.100
Data-to-parameter ratio = 14.8
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography Printed in Great Britain – all rights reserved
The title compound, C18H17BrO8, was synthesized in an
anhydrous medium at 293 K. The dihedral angle between the two benzene rings is 38.8 (2).
Comment
The title compound, (I), is a key intermediate of biphenyl derivatives, which may act to moderate liver ailments, and thus be effective in the treatment of actute and chronic hepatitis (Song & Xiao, 1982).
Its molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles are unremarkable. The dihedral angle between the five-membered ring and the fused benzene ring is
[image:1.610.265.399.286.494.2] [image:1.610.207.460.564.712.2]Received 24 June 2005 Accepted 6 July 2005 Online 13 July 2005
Figure 1
3.3 (1), and the angle between the two benzene rings is
38.8 (2). Intermolecular C—H O hydrogen bonds help to
stabilize the crystal structure (Fig. 2 and Table 1).
Experimental
The title compound, (I), was prepared according to a literature procedure (Bringmannet al., 2003). The reaction was initiated by the addition of one molar equivalent of 3,4,5-trimethoxyphenol, 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylic acid,
dicyclohexyl-carbodiimide and 0.2 molar equivalents of
4-(dimethyl-amino)pyridine to dichloromethane. The mixture was stirred at room temperature for 12 h. A white powder (m.p. 461 K) resulted (yield 90%) and single crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution. IR (KBr,cm1): 1739, 1608, 1502, 1431, 1338, 1172, 1135, 1033, 942;1H NMR (CDCl
3):
7.449 (s, 1H), 6.473 (s, 2H), 6.176 (s, 2H), 3.967 (s, 3H), 3.863 (s, 6H), 3.851 (s, 3H).
Crystal data
C18H17BrO8 Mr= 441.23
Monoclinic,P21=n a= 8.6563 (16) A˚
b= 7.6330 (12) A˚
c= 26.927 (4) A˚ = 95.403 (9)
V= 1771.2 (5) A˚3 Z= 4
Dx= 1.655 Mg m 3
MoKradiation Cell parameters from 2497
reflections = 2.6–26.1
= 2.37 mm1 T= 294 (2) K Block, colorless 0.540.400.32 mm
Data collection
Bruker SMART 1000 CCD area-detector diffractometer ’and!scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
Tmin= 0.288,Tmax= 0.469
9627 measured reflections
3679 independent reflections 2307 reflections withI> 2(I)
Rint= 0.051
max= 26.8
h=10!10
k=9!7
l=34!33
Refinement
Refinement onF2 R[F2> 2(F2)] = 0.041 wR(F2) = 0.100 S= 1.00 3679 reflections 249 parameters
H-atom parameters constrained
w= 1/[2(F
o2) + (0.0519P)2
+ 0.0516P]
whereP= (Fo2+ 2Fc2)/3
(/)max= 0.001 max= 0.50 e A˚
3
min=0.64 e A˚
3
Extinction correction:SHELXL97
Extinction coefficient: 0.0369 (15)
Table 1
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
C1—H1A O7i
0.97 2.42 3.278 (4) 147 C8—H8A O4ii
0.96 2.45 3.244 (4) 140
Symmetry codes: (i)xþ1 2;yþ
1 2;z
1 2; (ii)xþ
1 2;y
1 2;zþ
1 2.
All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.97 A˚ . Uiso(H) values were set equal to xUeq(carrier atom), wherex= 1.5 for methyl H atoms and 1.2 for all
others.
Data collection:SMART(Bruker, 1997); cell refinement:SAINT
(Bruker, 1997); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics:
SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.
This research was supported by the National Natural Science Foundation of China (grant No. 200342005).
References
Bringmann, G., Breuning, M., Henschel, P. & Hinrichs, J. (2003).Org. Synth. 79, 72–73.
Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc, Madison, Wiscosin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.
Sheldrick, G. M. (2002).SADABS. Version 2.03. University of Go¨ttingen, Germany.
[image:2.610.317.563.73.324.2]Song, W. Z. & Xiao, P. G. (1982).Chin. Traditional Herbal Drugs,13, 40-43.
Figure 2
supporting information
sup-1 Acta Cryst. (2005). E61, o2508–o2509
supporting information
Acta Cryst. (2005). E61, o2508–o2509 [https://doi.org/10.1107/S1600536805021689]
3,4,5-Trimethoxyphenyl 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate
Lei Zheng, Boying Guo, Xiufang Zheng, Juan Chen and Junbiao Chang
3,4,5-Trimethoxyphenyl 4-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate
Crystal data
C18H17BrO8
Mr = 441.23
Monoclinic, P21/n
a = 8.6563 (16) Å
b = 7.6330 (12) Å
c = 26.927 (4) Å
β = 95.403 (9)°
V = 1771.2 (5) Å3
Z = 4
F(000) = 896
Dx = 1.655 Mg m−3 Melting point: 461 K
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2497 reflections
θ = 2.6–26.1°
µ = 2.37 mm−1
T = 294 K Block, colorless 0.54 × 0.40 × 0.32 mm
Data collection
Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
Tmin = 0.288, Tmax = 0.469
9627 measured reflections 3679 independent reflections 2307 reflections with I > 2σ(I)
Rint = 0.051
θmax = 26.8°, θmin = 2.4°
h = −10→10
k = −9→7
l = −34→33
Refinement
Refinement on F2 Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.041
wR(F2) = 0.100
S = 1.01 3679 reflections 249 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ2(F
o2) + (0.0519P)2 + 0.0516P] where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001 Δρmax = 0.50 e Å−3 Δρmin = −0.64 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Br1 0.75663 (4) 0.46348 (6) 0.219153 (13) 0.0533 (2) O1 0.6634 (3) 0.4546 (3) 0.10474 (8) 0.0445 (7) O2 0.4353 (3) 0.3869 (3) 0.05663 (7) 0.0438 (7) O3 0.1593 (3) 0.2773 (3) 0.09433 (8) 0.0445 (7) O4 0.4979 (3) 0.4617 (4) 0.28936 (9) 0.0605 (8) O5 0.3255 (3) 0.2428 (3) 0.27989 (7) 0.0428 (6) O6 −0.0465 (3) 0.4055 (4) 0.39314 (8) 0.0498 (7) O7 0.1511 (2) 0.3226 (3) 0.47050 (7) 0.0380 (6) O8 0.4358 (3) 0.2133 (3) 0.45979 (7) 0.0459 (7) C1 0.5848 (4) 0.4675 (5) 0.05571 (11) 0.0419 (9)
H1A 0.6439 0.4082 0.0319 0.050*
H1B 0.5731 0.5894 0.0460 0.050*
C2 0.4162 (4) 0.3686 (4) 0.10611 (10) 0.0304 (8) C3 0.5502 (4) 0.4102 (4) 0.13474 (11) 0.0299 (8) C4 0.5623 (4) 0.4049 (4) 0.18579 (11) 0.0303 (8) C5 0.4302 (4) 0.3489 (4) 0.20796 (10) 0.0291 (8) C6 0.2960 (4) 0.3020 (4) 0.17862 (11) 0.0318 (8)
H6 0.2109 0.2624 0.1941 0.038*
C7 0.2850 (4) 0.3125 (4) 0.12666 (11) 0.0317 (8) C8 0.0254 (4) 0.2101 (5) 0.11385 (13) 0.0497 (10)
H8A 0.0514 0.1042 0.1320 0.075*
H8B −0.0525 0.1855 0.0870 0.075*
H8C −0.0137 0.2949 0.1358 0.075*
C9 0.4267 (4) 0.3600 (5) 0.26302 (11) 0.0328 (8) C10 0.2864 (4) 0.2668 (5) 0.32926 (11) 0.0344 (8) C11 0.1395 (4) 0.3255 (5) 0.33438 (11) 0.0375 (9)
H11 0.0712 0.3503 0.3065 0.045*
C12 0.0945 (4) 0.3474 (5) 0.38242 (11) 0.0344 (8) C13 0.1980 (4) 0.3074 (4) 0.42341 (10) 0.0293 (8) C14 0.3455 (4) 0.2452 (4) 0.41677 (11) 0.0320 (8) C15 0.3913 (4) 0.2234 (5) 0.36882 (11) 0.0349 (8)
H15 0.4894 0.1810 0.3638 0.042*
C16 −0.1608 (4) 0.4398 (6) 0.35271 (14) 0.0554 (11)
H16A −0.1254 0.5323 0.3325 0.083*
supporting information
sup-3 Acta Cryst. (2005). E61, o2508–o2509
H16C −0.1780 0.3359 0.3329 0.083*
C17 0.2037 (5) 0.4782 (5) 0.49610 (13) 0.0523 (11)
H17A 0.3147 0.4850 0.4972 0.078*
H17B 0.1732 0.4758 0.5295 0.078*
H17C 0.1585 0.5785 0.4788 0.078*
C18 0.5862 (4) 0.1434 (6) 0.45643 (14) 0.0517 (10)
H18A 0.5777 0.0313 0.4402 0.077*
H18B 0.6380 0.1298 0.4893 0.077*
H18C 0.6447 0.2216 0.4375 0.077*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Br1 0.0444 (3) 0.0908 (4) 0.0236 (2) −0.0137 (2) −0.00223 (15) 0.0039 (2) O1 0.0387 (13) 0.0813 (19) 0.0144 (11) −0.0112 (13) 0.0076 (10) 0.0056 (12) O2 0.0452 (15) 0.0734 (18) 0.0134 (11) −0.0171 (13) 0.0066 (10) 0.0010 (11) O3 0.0375 (14) 0.0742 (19) 0.0214 (12) −0.0153 (13) 0.0009 (10) 0.0043 (12) O4 0.0764 (19) 0.085 (2) 0.0233 (13) −0.0367 (17) 0.0201 (13) −0.0195 (14) O5 0.0641 (16) 0.0539 (17) 0.0130 (11) −0.0141 (13) 0.0162 (11) −0.0069 (11) O6 0.0378 (14) 0.086 (2) 0.0251 (12) 0.0137 (13) 0.0005 (11) 0.0003 (13) O7 0.0454 (14) 0.0559 (17) 0.0145 (10) −0.0014 (12) 0.0132 (10) −0.0008 (11) O8 0.0430 (14) 0.0760 (19) 0.0189 (12) 0.0199 (13) 0.0033 (10) 0.0020 (12) C1 0.0402 (19) 0.071 (3) 0.0149 (15) −0.009 (2) 0.0060 (14) 0.0006 (17) C2 0.0399 (19) 0.039 (2) 0.0128 (14) −0.0009 (16) 0.0069 (14) 0.0008 (14) C3 0.0299 (17) 0.043 (2) 0.0181 (15) 0.0000 (15) 0.0079 (13) −0.0002 (14) C4 0.0365 (18) 0.039 (2) 0.0157 (15) 0.0010 (15) 0.0018 (13) 0.0007 (14) C5 0.0375 (19) 0.036 (2) 0.0143 (14) 0.0025 (16) 0.0072 (13) 0.0008 (14) C6 0.0369 (19) 0.041 (2) 0.0195 (16) −0.0013 (16) 0.0101 (14) 0.0021 (14) C7 0.0324 (18) 0.042 (2) 0.0208 (16) −0.0022 (16) 0.0035 (14) −0.0008 (15) C8 0.038 (2) 0.068 (3) 0.042 (2) −0.013 (2) 0.0027 (17) 0.010 (2) C9 0.041 (2) 0.043 (2) 0.0160 (16) 0.0019 (18) 0.0111 (15) −0.0002 (16) C10 0.050 (2) 0.042 (2) 0.0127 (15) −0.0117 (18) 0.0129 (15) −0.0014 (14) C11 0.045 (2) 0.053 (2) 0.0138 (15) −0.0071 (19) 0.0021 (14) 0.0028 (16) C12 0.041 (2) 0.046 (2) 0.0169 (15) 0.0007 (18) 0.0053 (14) 0.0033 (15) C13 0.0362 (18) 0.040 (2) 0.0127 (14) −0.0034 (16) 0.0063 (13) 0.0005 (14) C14 0.0409 (19) 0.038 (2) 0.0173 (16) 0.0016 (17) 0.0048 (14) 0.0032 (14) C15 0.042 (2) 0.044 (2) 0.0205 (16) 0.0013 (17) 0.0127 (15) −0.0015 (15) C16 0.044 (2) 0.079 (3) 0.041 (2) 0.014 (2) −0.0069 (18) 0.002 (2) C17 0.064 (3) 0.066 (3) 0.0286 (19) 0.008 (2) 0.0090 (18) −0.0119 (19) C18 0.042 (2) 0.070 (3) 0.042 (2) 0.013 (2) 0.0019 (17) −0.003 (2)
Geometric parameters (Å, º)
Br1—C4 1.885 (3) C5—C9 1.488 (4)
O1—C3 1.370 (3) C6—C7 1.396 (4)
O1—C1 1.431 (4) C6—H6 0.9300
O2—C2 1.365 (3) C8—H8A 0.9600
O3—C7 1.355 (4) C8—H8C 0.9600
O3—C8 1.413 (4) C10—C11 1.367 (4)
O4—C9 1.184 (4) C10—C15 1.374 (4)
O5—C9 1.360 (4) C11—C12 1.396 (4)
O5—C10 1.414 (3) C11—H11 0.9300
O6—C12 1.355 (4) C12—C13 1.388 (4)
O6—C16 1.425 (4) C13—C14 1.390 (4)
O7—C13 1.372 (3) C14—C15 1.396 (4)
O7—C17 1.426 (4) C15—H15 0.9300
O8—C14 1.357 (4) C16—H16A 0.9600
O8—C18 1.417 (4) C16—H16B 0.9600
C1—H1A 0.9700 C16—H16C 0.9600
C1—H1B 0.9700 C17—H17A 0.9600
C2—C3 1.368 (4) C17—H17B 0.9600
C2—C7 1.378 (4) C17—H17C 0.9600
C3—C4 1.369 (4) C18—H18A 0.9600
C4—C5 1.405 (4) C18—H18B 0.9600
C5—C6 1.389 (4) C18—H18C 0.9600
C3—O1—C1 104.9 (2) O4—C9—C5 125.1 (3)
C2—O2—C1 104.6 (2) O5—C9—C5 111.7 (3)
C7—O3—C8 118.0 (2) C11—C10—C15 123.6 (3)
C9—O5—C10 116.6 (2) C11—C10—O5 116.4 (3)
C12—O6—C16 118.2 (3) C15—C10—O5 119.9 (3)
C13—O7—C17 114.1 (3) C10—C11—C12 118.4 (3)
C14—O8—C18 118.1 (2) C10—C11—H11 120.8
O1—C1—O2 107.8 (2) C12—C11—H11 120.8
O1—C1—H1A 110.1 O6—C12—C13 115.4 (3)
O2—C1—H1A 110.1 O6—C12—C11 124.9 (3)
O1—C1—H1B 110.1 C13—C12—C11 119.7 (3)
O2—C1—H1B 110.1 O7—C13—C12 119.4 (3)
H1A—C1—H1B 108.5 O7—C13—C14 120.2 (3)
O2—C2—C3 110.6 (3) C12—C13—C14 120.3 (3)
O2—C2—C7 127.1 (3) O8—C14—C13 114.4 (3)
C3—C2—C7 122.2 (3) O8—C14—C15 125.3 (3)
C2—C3—C4 122.6 (3) C13—C14—C15 120.3 (3)
C2—C3—O1 109.9 (3) C10—C15—C14 117.7 (3)
C4—C3—O1 127.5 (3) C10—C15—H15 121.2
C3—C4—C5 116.6 (3) C14—C15—H15 121.2
C3—C4—Br1 116.8 (2) O6—C16—H16A 109.5
C5—C4—Br1 126.5 (2) O6—C16—H16B 109.5
C6—C5—C4 120.5 (3) H16A—C16—H16B 109.5
C6—C5—C9 119.1 (3) O6—C16—H16C 109.5
C4—C5—C9 120.0 (3) H16A—C16—H16C 109.5
C5—C6—C7 122.0 (3) H16B—C16—H16C 109.5
C5—C6—H6 119.0 O7—C17—H17A 109.5
C7—C6—H6 119.0 O7—C17—H17B 109.5
supporting information
sup-5 Acta Cryst. (2005). E61, o2508–o2509
O3—C7—C6 127.4 (3) O7—C17—H17C 109.5
C2—C7—C6 116.1 (3) H17A—C17—H17C 109.5
O3—C8—H8A 109.5 H17B—C17—H17C 109.5
O3—C8—H8B 109.5 O8—C18—H18A 109.5
H8A—C8—H8B 109.5 O8—C18—H18B 109.5
O3—C8—H8C 109.5 H18A—C18—H18B 109.5
H8A—C8—H8C 109.5 O8—C18—H18C 109.5
H8B—C8—H8C 109.5 H18A—C18—H18C 109.5
O4—C9—O5 123.1 (3) H18B—C18—H18C 109.5
C3—O1—C1—O2 −14.5 (4) C10—O5—C9—C5 −166.4 (3) C2—O2—C1—O1 13.8 (4) C6—C5—C9—O4 −145.6 (4) C1—O2—C2—C3 −8.0 (4) C4—C5—C9—O4 27.1 (5) C1—O2—C2—C7 173.6 (4) C6—C5—C9—O5 31.8 (4) O2—C2—C3—C4 179.2 (3) C4—C5—C9—O5 −155.6 (3) C7—C2—C3—C4 −2.3 (6) C9—O5—C10—C11 108.4 (3) O2—C2—C3—O1 −1.0 (4) C9—O5—C10—C15 −74.7 (4) C7—C2—C3—O1 177.4 (3) C15—C10—C11—C12 1.8 (5) C1—O1—C3—C2 9.7 (4) O5—C10—C11—C12 178.6 (3) C1—O1—C3—C4 −170.7 (4) C16—O6—C12—C13 −176.7 (3) C2—C3—C4—C5 1.8 (5) C16—O6—C12—C11 3.0 (5) O1—C3—C4—C5 −177.8 (3) C10—C11—C12—O6 179.6 (3) C2—C3—C4—Br1 179.2 (3) C10—C11—C12—C13 −0.8 (5) O1—C3—C4—Br1 −0.5 (5) C17—O7—C13—C12 −101.1 (4) C3—C4—C5—C6 0.1 (5) C17—O7—C13—C14 81.7 (4) Br1—C4—C5—C6 −177.0 (3) O6—C12—C13—O7 2.2 (5) C3—C4—C5—C9 −172.5 (3) C11—C12—C13—O7 −177.5 (3) Br1—C4—C5—C9 10.4 (5) O6—C12—C13—C14 179.4 (3) C4—C5—C6—C7 −1.7 (5) C11—C12—C13—C14 −0.2 (5) C9—C5—C6—C7 171.0 (3) C18—O8—C14—C13 177.7 (3) C8—O3—C7—C2 176.5 (3) C18—O8—C14—C15 −3.5 (5) C8—O3—C7—C6 −5.0 (5) O7—C13—C14—O8 −3.6 (5) O2—C2—C7—O3 −2.5 (5) C12—C13—C14—O8 179.2 (3) C3—C2—C7—O3 179.3 (3) O7—C13—C14—C15 177.6 (3) O2—C2—C7—C6 178.8 (3) C12—C13—C14—C15 0.3 (5) C3—C2—C7—C6 0.6 (5) C11—C10—C15—C14 −1.7 (5) C5—C6—C7—O3 −177.2 (3) O5—C10—C15—C14 −178.3 (3) C5—C6—C7—C2 1.3 (5) O8—C14—C15—C10 −178.2 (3) C10—O5—C9—O4 11.1 (5) C13—C14—C15—C10 0.5 (5)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
C1—H1A···O7i 0.97 2.42 3.278 (4) 147
C8—H8A···O4ii 0.96 2.45 3.244 (4) 140