• No results found

4 Nitro­benzyl 3 oxo 2 (tri­phenyl­phospho­ranyl­­idene)butanoate

N/A
N/A
Protected

Academic year: 2020

Share "4 Nitro­benzyl 3 oxo 2 (tri­phenyl­phospho­ranyl­­idene)butanoate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o642

Li and Zhong C

29H24NO5P doi:10.1107/S1600536806001280 Acta Cryst.(2006). E62, o642–o643 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Nitrobenzyl

3-oxo-2-(triphenylphosphoranyl-idene)butanoate

Shi-Jun Li and Jian-Hua Zhong*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China

Correspondence e-mail: chemzhong@gmail.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.054

wRfactor = 0.106

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 22 December 2005 Accepted 11 January 2006

#2006 International Union of Crystallography All rights reserved

Colorless crystals of the title compound, C29H24NO5P, were synthesized by the reaction of triphenylphosphine, an iron porphyrin complex and 4-nitrobenzyl 2-diazo-3-oxobutanoate at 353 K. All bond distances and angles are within normal ranges and there are no notable interactions between neighboring molecules.

Comment

Ylides are useful for the extension of carbon chains by incorporating double bonds into molecules (Meshram et al., 1998; Castanedaet al., 2003). Ylides can also be converted into many other functional groups, such as ketones, carboxylic esters and aldehydes. In particular, triphenylphosphonium ylides are popular because of their easy preparation and stability. A new and efficient method for the selective olefi-nation of aldehydes and ketones with a diazo group involves catalysis by metalloporphyrins (Mirafzal et al., 2002; Chen et al., 2003; Leeet al., 2003), but the mechanism was not verified. We have captured an intermediate using an acyl-stabilized diazo compound as the starting material. We report here the crystal structure of the intermediate,viz. the title compound, (I).

Selected bond distances and angles are listed in Table 1. The compound crystallizes in the monoclinic space groupC2/cwith one molecule in the asymmetric unit. The molecular structure is shown in Fig. 1. There are no notable interactions between molecules.

Experimental

(2)

toluene (10 ml) in a round-bottomed flask, and a solution of 4-nitrobenzyl 2-diazo-3-oxobutanoate (263 mg, 1.0 mmol) in toluene (3 ml) was then added dropwise with vigorous stirring; the mixture was further heated to 353 K. After 24 h, the reaction mixture was cooled to room temperature and the solvent was removedin vacuo. The residue was then purified by flash column chromatography (SiO2, 3:1 hexane/EtOAc) to give the desired product (yield 82%). Colorless crystals were obtained by slow evaporation of an ethyl acetate solution over a period of 6 d.1H NMR (500 MHz, CDCl

3):8.04 (d, 2H), 7.62 (m, 6H), 7.50 (m, 3H), 7.40 (m, 6H), 7.0 (d, 2H), 4.80 (s, 2H), 2.48 (s, 3H);13C NMR (125 MHz, CDCl

3):195.9, 167.6, 147.4, 144.7, 133.3, 131.9, 128.8, 128.4, 127.0, 126.2, 123.5, 63.3, 29.8. ESI–MS: 498.0 (M+H), 520.0 (M+Na).

Crystal data

C29H24NO5P

Mr= 497.46

Monoclinic,C2=c a= 39.826 (3) A˚

b= 8.1857 (6) A˚

c= 15.1786 (10) A˚

= 93.928 (10)

V= 4936.6 (6) A˚3

Z= 8

Dx= 1.339 Mg m

3

MoKradiation

Cell parameters from 15308 reflections

= 6.2–55.1 = 0.15 mm1

T= 293 (2) K Block, colorless 0.30.10.1 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.955,Tmax= 0.985

22380 measured reflections

5612 independent reflections 3278 reflections withI> 2(I)

Rint= 0.067 max= 27.5

h=51!49

k=10!9

l=19!19

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.054

wR(F2) = 0.107

S= 1.06 5612 reflections 325 parameters

H-atom parameters constrained

w= 1/[2

(Fo 2

) + (0.0028P)2 + 8.1979P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.24 e A˚3

min=0.33 e A˚3

Table 1

Selected geometric parameters (A˚ ,).

P1—C9 1.740 (2) P1—C12 1.803 (2) P1—C24 1.807 (3) P1—C18 1.814 (2)

O3—C8 1.364 (3) O3—C7 1.434 (3) O4—C8 1.213 (3) O5—C10 1.244 (3) C9—P1—C12 115.0 (1)

C9—P1—C24 108.2 (1) C12—P1—C24 109.9 (1) C9—P1—C18 113.7 (1) C12—P1—C18 103.7 (1) C24—P1—C18 106.0 (1) C8—O3—C7 115.9 (2) O3—C7—C4 108.9 (2) O4—C8—O3 120.1 (2) O4—C8—C9 126.1 (2) O3—C8—C9 113.8 (2)

C10—C9—P1 111.4 (2) C8—C9—P1 120.6 (2) O5—C10—C9 118.6 (2) O5—C10—C11 118.6 (2) C17—C12—P1 119.2 (2) C13—C12—P1 121.2 (2) C23—C18—P1 121.4 (2) C19—C18—P1 119.7 (2) C25—C24—P1 122.9 (2) C29—C24—P1 117.4 (2)

All H atoms were positioned geometrically (C—H = 0.93–0.96 A˚ ) and refined as riding, withUiso(H) = 1.2 or 1.5 timesUeq(C).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure(Rigaku/ MSC, 2004); program(s) used to solve structure:SHELXS97 (Shel-drick, 1997); program(s) used to refine structure: SHELXL97

(Sheldrick, 1997); molecular graphics:SHELXL97; software used to prepare material for publication: CrystalStructure and PLATON

(Spek, 2003).

The authors thank the National Natural Science Foundation of China (No. 20272051) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, People’s Republic of China.

References

Castaneda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. & Garland, M. T. (2003).Phosphorus, Sulfur Silicon Relat. Elem.178, 1973–1985.

Chen, Y., Huang, L., Ranade, M. A. & Zhang, X. P. (2003).J. Org. Chem.68, 3714–3717.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan. Lee, M. Y. Chen, Y. & Zhang, X. P. (2003).Organometallics,22, 4905-4909. Meshram, H. M., Reddy, G. S., Reddy, M. M. & Yadav, J. S. (1998).Tetrahedron

Lett.39, 4107–4110.

Mirafzal, G. A., Cheng, G. & Woo, L. K. (2002).J. Am. Chem. Soc.124, 176– 177.

Rigaku (1998).PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004).CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

[image:2.610.316.566.71.225.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o642–o643

supporting information

Acta Cryst. (2006). E62, o642–o643 [https://doi.org/10.1107/S1600536806001280]

4-Nitrobenzyl 3-oxo-2-(triphenylphosphoranylidene)butanoate

Shi-Jun Li and Jian-Hua Zhong

4-Nitrobenzyl 3-oxo-2-(triphenylphosphoranylidene)butanoate

Crystal data C29H24NO5P

Mr = 497.46

Monoclinic, C2/c Hall symbol: -C 2yc a = 39.826 (3) Å b = 8.1857 (6) Å c = 15.1786 (10) Å β = 93.928 (10)° V = 4936.6 (6) Å3

Z = 8

F(000) = 2080 Dx = 1.339 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 15308 reflections θ = 6.2–55.1°

µ = 0.15 mm−1

T = 293 K Block, colorless 0.3 × 0.1 × 0.1 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.955, Tmax = 0.985

22380 measured reflections 5612 independent reflections 3278 reflections with I > 2σ(I) Rint = 0.067

θmax = 27.5°, θmin = 3.1°

h = −51→49 k = −10→9 l = −19→19

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.054

wR(F2) = 0.107

S = 1.06 5612 reflections 325 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0028P)2 + 8.1979P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.33 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.903188 (15) 0.80248 (8) 0.75506 (4) 0.03641 (15)

O1 0.68538 (6) 0.0416 (3) 0.9153 (2) 0.1117 (10)

O2 0.72881 (7) −0.1037 (3) 0.8955 (2) 0.1170 (11)

O3 0.82377 (4) 0.5822 (2) 0.84116 (14) 0.0577 (5)

O4 0.82982 (4) 0.8480 (2) 0.81299 (14) 0.0625 (6)

O5 0.92858 (4) 0.5564 (2) 0.86107 (12) 0.0538 (5)

N1 0.71476 (7) 0.0276 (4) 0.8996 (2) 0.0761 (8)

C1 0.73449 (7) 0.1767 (4) 0.88493 (19) 0.0551 (7)

C2 0.71879 (7) 0.3242 (4) 0.8920 (2) 0.0686 (9)

H2A 0.6962 0.3302 0.9039 0.082*

C3 0.73744 (7) 0.4640 (4) 0.8810 (2) 0.0641 (9)

H3A 0.7272 0.5654 0.8852 0.077*

C4 0.77104 (6) 0.4566 (3) 0.86383 (18) 0.0483 (7)

C5 0.78543 (7) 0.3049 (4) 0.8567 (2) 0.0660 (9)

H5A 0.8080 0.2980 0.8448 0.079*

C6 0.76756 (7) 0.1627 (4) 0.8665 (2) 0.0674 (9)

H6A 0.7776 0.0610 0.8608 0.081*

C7 0.78924 (6) 0.6152 (3) 0.8559 (2) 0.0547 (7)

H7A 0.7790 0.6780 0.8070 0.066*

H7B 0.7879 0.6785 0.9095 0.066*

C8 0.84275 (6) 0.7143 (3) 0.82153 (16) 0.0426 (6)

C9 0.87800 (6) 0.6776 (3) 0.81574 (16) 0.0394 (6)

C10 0.89736 (6) 0.5502 (3) 0.86031 (17) 0.0435 (6)

C11 0.88143 (7) 0.4104 (3) 0.9073 (2) 0.0624 (8)

H11A 0.8987 0.3396 0.9327 0.094*

H11B 0.8670 0.3499 0.8658 0.094*

H11C 0.8684 0.4527 0.9532 0.094*

C12 0.93008 (6) 0.9408 (3) 0.81988 (17) 0.0419 (6)

C13 0.94545 (7) 1.0725 (4) 0.7812 (2) 0.0662 (8)

H13A 0.9431 1.0863 0.7202 0.079*

C14 0.96411 (9) 1.1826 (4) 0.8329 (3) 0.0873 (11)

H14A 0.9747 1.2700 0.8071 0.105*

C15 0.96692 (9) 1.1622 (5) 0.9231 (3) 0.0929 (13)

H15A 0.9789 1.2382 0.9582 0.111*

C16 0.95246 (8) 1.0328 (5) 0.9616 (2) 0.0811 (11)

H16A 0.9553 1.0186 1.0224 0.097*

C17 0.93353 (7) 0.9221 (4) 0.91064 (19) 0.0577 (7)

H17A 0.9231 0.8352 0.9373 0.069*

C18 0.87957 (6) 0.9357 (3) 0.67805 (16) 0.0388 (6)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o642–o643

H19A 0.8671 1.1025 0.7687 0.059*

C20 0.84884 (7) 1.1852 (3) 0.6505 (2) 0.0598 (8)

H20A 0.8397 1.2810 0.6714 0.072*

C21 0.84584 (7) 1.1507 (4) 0.5623 (2) 0.0653 (9)

H21A 0.8345 1.2229 0.5234 0.078*

C22 0.85943 (7) 1.0102 (4) 0.5307 (2) 0.0622 (8)

H22A 0.8573 0.9872 0.4706 0.075*

C23 0.87640 (6) 0.9019 (3) 0.58902 (17) 0.0483 (6)

H23A 0.8856 0.8065 0.5677 0.058*

C24 0.92831 (6) 0.6734 (3) 0.68888 (16) 0.0441 (6)

C25 0.96181 (7) 0.7030 (4) 0.67762 (19) 0.0612 (8)

H25A 0.9725 0.7941 0.7034 0.073*

C26 0.97961 (8) 0.5944 (5) 0.6270 (2) 0.0837 (12)

H26A 1.0024 0.6112 0.6201 0.100*

C27 0.96329 (11) 0.4625 (5) 0.5873 (2) 0.0909 (13)

H27A 0.9750 0.3928 0.5520 0.109*

C28 0.93018 (10) 0.4326 (4) 0.5991 (2) 0.0808 (11)

H28A 0.9196 0.3418 0.5730 0.097*

C29 0.91269 (8) 0.5365 (3) 0.64935 (19) 0.0604 (8)

H29A 0.8901 0.5158 0.6574 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.0351 (3) 0.0350 (3) 0.0393 (3) −0.0001 (3) 0.0040 (2) 0.0015 (3)

O1 0.0750 (16) 0.0792 (18) 0.184 (3) −0.0394 (15) 0.0352 (18) −0.0183 (18)

O2 0.098 (2) 0.0490 (15) 0.206 (3) −0.0193 (14) 0.027 (2) −0.0099 (18)

O3 0.0382 (9) 0.0439 (10) 0.0927 (15) −0.0076 (9) 0.0158 (9) 0.0083 (10)

O4 0.0517 (11) 0.0439 (11) 0.0937 (17) 0.0030 (9) 0.0188 (10) 0.0137 (11)

O5 0.0471 (10) 0.0550 (11) 0.0586 (12) 0.0029 (9) −0.0004 (9) 0.0120 (10)

N1 0.0694 (18) 0.0596 (18) 0.100 (2) −0.0290 (16) 0.0130 (16) −0.0101 (16)

C1 0.0501 (15) 0.0534 (17) 0.0622 (19) −0.0191 (14) 0.0075 (13) −0.0038 (15)

C2 0.0418 (15) 0.061 (2) 0.104 (3) −0.0132 (15) 0.0116 (16) −0.0069 (19)

C3 0.0426 (15) 0.0498 (17) 0.101 (3) −0.0054 (14) 0.0160 (15) −0.0033 (17)

C4 0.0395 (13) 0.0491 (16) 0.0567 (18) −0.0069 (13) 0.0057 (12) 0.0022 (13)

C5 0.0422 (15) 0.0539 (18) 0.104 (3) −0.0077 (15) 0.0184 (15) −0.0012 (18)

C6 0.0558 (17) 0.0471 (17) 0.100 (3) −0.0065 (15) 0.0112 (17) −0.0049 (17)

C7 0.0408 (14) 0.0493 (16) 0.075 (2) −0.0056 (13) 0.0115 (13) 0.0051 (15)

C8 0.0444 (14) 0.0424 (15) 0.0417 (15) −0.0100 (13) 0.0074 (11) 0.0012 (12)

C9 0.0396 (12) 0.0355 (13) 0.0432 (14) −0.0045 (11) 0.0038 (10) 0.0023 (11)

C10 0.0464 (14) 0.0423 (14) 0.0421 (15) −0.0032 (12) 0.0041 (11) 0.0027 (12)

C11 0.0625 (18) 0.0531 (17) 0.072 (2) −0.0023 (15) 0.0054 (15) 0.0219 (16)

C12 0.0345 (12) 0.0462 (15) 0.0453 (16) −0.0019 (12) 0.0044 (11) −0.0035 (12)

C13 0.071 (2) 0.0608 (19) 0.067 (2) −0.0251 (17) 0.0050 (16) 0.0017 (16)

C14 0.087 (2) 0.076 (2) 0.101 (3) −0.044 (2) 0.019 (2) −0.012 (2)

C15 0.078 (2) 0.104 (3) 0.097 (3) −0.043 (2) 0.012 (2) −0.043 (3)

C16 0.081 (2) 0.099 (3) 0.062 (2) −0.026 (2) −0.0082 (18) −0.018 (2)

(6)

C18 0.0369 (12) 0.0361 (13) 0.0437 (15) −0.0006 (11) 0.0046 (10) 0.0054 (11)

C19 0.0558 (16) 0.0414 (14) 0.0519 (17) 0.0064 (13) 0.0081 (13) 0.0017 (13)

C20 0.0565 (17) 0.0451 (16) 0.079 (2) 0.0154 (14) 0.0137 (15) 0.0122 (16)

C21 0.0587 (18) 0.066 (2) 0.071 (2) 0.0151 (16) 0.0024 (16) 0.0262 (17)

C22 0.0585 (17) 0.083 (2) 0.0447 (17) 0.0118 (17) 0.0053 (13) 0.0120 (16)

C23 0.0446 (14) 0.0553 (16) 0.0456 (16) 0.0098 (13) 0.0079 (12) 0.0026 (13)

C24 0.0458 (14) 0.0476 (15) 0.0391 (15) 0.0136 (13) 0.0051 (11) 0.0080 (12)

C25 0.0484 (15) 0.080 (2) 0.0552 (18) 0.0161 (16) 0.0047 (13) 0.0099 (17)

C26 0.0571 (19) 0.131 (3) 0.065 (2) 0.041 (2) 0.0194 (17) 0.019 (2)

C27 0.108 (3) 0.108 (3) 0.059 (2) 0.064 (3) 0.023 (2) 0.003 (2)

C28 0.113 (3) 0.066 (2) 0.065 (2) 0.031 (2) 0.015 (2) −0.0119 (18)

C29 0.077 (2) 0.0516 (17) 0.0528 (19) 0.0147 (16) 0.0051 (15) −0.0067 (14)

Geometric parameters (Å, º)

P1—C9 1.740 (2) C13—C14 1.379 (4)

P1—C12 1.803 (2) C13—H13A 0.9300

P1—C24 1.807 (3) C14—C15 1.376 (5)

P1—C18 1.814 (2) C14—H14A 0.9300

O1—N1 1.215 (3) C15—C16 1.357 (5)

O2—N1 1.216 (3) C15—H15A 0.9300

O3—C8 1.364 (3) C16—C17 1.381 (4)

O3—C7 1.434 (3) C16—H16A 0.9300

O4—C8 1.213 (3) C17—H17A 0.9300

O5—C10 1.244 (3) C18—C23 1.377 (3)

N1—C1 1.476 (4) C18—C19 1.394 (3)

C1—C2 1.367 (4) C19—C20 1.375 (4)

C1—C6 1.370 (4) C19—H19A 0.9300

C2—C3 1.381 (4) C20—C21 1.366 (4)

C2—H2A 0.9300 C20—H20A 0.9300

C3—C4 1.382 (3) C21—C22 1.371 (4)

C3—H3A 0.9300 C21—H21A 0.9300

C4—C5 1.375 (4) C22—C23 1.394 (4)

C4—C7 1.496 (3) C22—H22A 0.9300

C5—C6 1.378 (4) C23—H23A 0.9300

C5—H5A 0.9300 C24—C25 1.378 (3)

C6—H6A 0.9300 C24—C29 1.398 (4)

C7—H7A 0.9700 C25—C26 1.400 (4)

C7—H7B 0.9700 C25—H25A 0.9300

C8—C9 1.444 (3) C26—C27 1.376 (5)

C9—C10 1.438 (3) C26—H26A 0.9300

C10—C11 1.511 (3) C27—C28 1.365 (5)

C11—H11A 0.9600 C27—H27A 0.9300

C11—H11B 0.9600 C28—C29 1.364 (4)

C11—H11C 0.9600 C28—H28A 0.9300

C12—C17 1.383 (4) C29—H29A 0.9300

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o642–o643

C9—P1—C12 115.0 (1) C14—C13—C12 120.2 (3)

C9—P1—C24 108.2 (1) C14—C13—H13A 119.9

C12—P1—C24 109.9 (1) C12—C13—H13A 119.9

C9—P1—C18 113.7 (1) C15—C14—C13 119.4 (3)

C12—P1—C18 103.7 (1) C15—C14—H14A 120.3

C24—P1—C18 106.0 (1) C13—C14—H14A 120.3

C8—O3—C7 115.9 (2) C16—C15—C14 121.0 (3)

O1—N1—O2 123.1 (3) C16—C15—H15A 119.5

O1—N1—C1 118.8 (3) C14—C15—H15A 119.5

O2—N1—C1 118.1 (3) C15—C16—C17 120.1 (3)

C2—C1—C6 122.7 (3) C15—C16—H16A 119.9

C2—C1—N1 117.8 (3) C17—C16—H16A 119.9

C6—C1—N1 119.4 (3) C16—C17—C12 119.9 (3)

C1—C2—C3 118.0 (3) C16—C17—H17A 120.1

C1—C2—H2A 121.0 C12—C17—H17A 120.1

C3—C2—H2A 121.0 C23—C18—C19 118.9 (2)

C2—C3—C4 121.5 (3) C23—C18—P1 121.4 (2)

C2—C3—H3A 119.2 C19—C18—P1 119.7 (2)

C4—C3—H3A 119.2 C20—C19—C18 120.4 (3)

C5—C4—C3 117.9 (2) C20—C19—H19A 119.8

C5—C4—C7 124.8 (2) C18—C19—H19A 119.8

C3—C4—C7 117.3 (2) C21—C20—C19 120.3 (3)

C4—C5—C6 122.2 (2) C21—C20—H20A 119.9

C4—C5—H5A 118.9 C19—C20—H20A 119.9

C6—C5—H5A 118.9 C20—C21—C22 120.4 (3)

C1—C6—C5 117.5 (3) C20—C21—H21A 119.8

C1—C6—H6A 121.2 C22—C21—H21A 119.8

C5—C6—H6A 121.2 C21—C22—C23 119.8 (3)

O3—C7—C4 108.9 (2) C21—C22—H22A 120.1

O3—C7—H7A 109.9 C23—C22—H22A 120.1

C4—C7—H7A 109.9 C18—C23—C22 120.2 (3)

O3—C7—H7B 109.9 C18—C23—H23A 119.9

C4—C7—H7B 109.9 C22—C23—H23A 119.9

H7A—C7—H7B 108.3 C25—C24—C29 119.6 (3)

O4—C8—O3 120.1 (2) C25—C24—P1 122.9 (2)

O4—C8—C9 126.1 (2) C29—C24—P1 117.4 (2)

O3—C8—C9 113.8 (2) C24—C25—C26 119.2 (3)

C10—C9—C8 127.9 (2) C24—C25—H25A 120.4

C10—C9—P1 111.4 (2) C26—C25—H25A 120.4

C8—C9—P1 120.6 (2) C27—C26—C25 119.8 (3)

O5—C10—C9 118.6 (2) C27—C26—H26A 120.1

O5—C10—C11 118.6 (2) C25—C26—H26A 120.1

C9—C10—C11 122.8 (2) C28—C27—C26 121.0 (3)

C10—C11—H11A 109.5 C28—C27—H27A 119.5

C10—C11—H11B 109.5 C26—C27—H27A 119.5

H11A—C11—H11B 109.5 C29—C28—C27 119.8 (4)

C10—C11—H11C 109.5 C29—C28—H28A 120.1

(8)

H11B—C11—H11C 109.5 C28—C29—C24 120.7 (3)

C17—C12—C13 119.4 (3) C28—C29—H29A 119.7

C17—C12—P1 119.2 (2) C24—C29—H29A 119.7

C13—C12—P1 121.2 (2)

O1—N1—C1—C2 1.7 (5) C18—P1—C12—C13 −39.9 (2)

O2—N1—C1—C2 −178.2 (3) C17—C12—C13—C14 0.4 (4)

O1—N1—C1—C6 −179.5 (3) P1—C12—C13—C14 175.7 (3)

O2—N1—C1—C6 0.6 (5) C12—C13—C14—C15 −1.0 (5)

C6—C1—C2—C3 −0.7 (5) C13—C14—C15—C16 2.0 (6)

N1—C1—C2—C3 178.1 (3) C14—C15—C16—C17 −2.4 (6)

C1—C2—C3—C4 −0.4 (5) C15—C16—C17—C12 1.8 (5)

C2—C3—C4—C5 0.9 (5) C13—C12—C17—C16 −0.8 (4)

C2—C3—C4—C7 −178.1 (3) P1—C12—C17—C16 −176.2 (2)

C3—C4—C5—C6 −0.3 (5) C9—P1—C18—C23 −102.9 (2)

C7—C4—C5—C6 178.6 (3) C12—P1—C18—C23 131.5 (2)

C2—C1—C6—C5 1.3 (5) C24—P1—C18—C23 15.8 (2)

N1—C1—C6—C5 −177.5 (3) C9—P1—C18—C19 79.6 (2)

C4—C5—C6—C1 −0.7 (5) C12—P1—C18—C19 −46.0 (2)

C8—O3—C7—C4 172.1 (2) C24—P1—C18—C19 −161.6 (2)

C5—C4—C7—O3 −0.9 (4) C23—C18—C19—C20 −0.8 (4)

C3—C4—C7—O3 178.1 (3) P1—C18—C19—C20 176.8 (2)

C7—O3—C8—O4 −3.7 (4) C18—C19—C20—C21 0.7 (4)

C7—O3—C8—C9 174.3 (2) C19—C20—C21—C22 −0.3 (4)

O4—C8—C9—C10 150.1 (3) C20—C21—C22—C23 0.0 (4)

O3—C8—C9—C10 −27.8 (4) C19—C18—C23—C22 0.4 (4)

O4—C8—C9—P1 −25.2 (4) P1—C18—C23—C22 −177.0 (2)

O3—C8—C9—P1 156.88 (18) C21—C22—C23—C18 0.0 (4)

C12—P1—C9—C10 −73.8 (2) C9—P1—C24—C25 −138.5 (2)

C24—P1—C9—C10 49.4 (2) C12—P1—C24—C25 −12.3 (3)

C18—P1—C9—C10 166.85 (17) C18—P1—C24—C25 99.1 (2)

C12—P1—C9—C8 102.2 (2) C9—P1—C24—C29 40.2 (2)

C24—P1—C9—C8 −134.6 (2) C12—P1—C24—C29 166.5 (2)

C18—P1—C9—C8 −17.1 (2) C18—P1—C24—C29 −82.1 (2)

C8—C9—C10—O5 −166.1 (2) C29—C24—C25—C26 −0.3 (4)

P1—C9—C10—O5 9.6 (3) P1—C24—C25—C26 178.4 (2)

C8—C9—C10—C11 13.1 (4) C24—C25—C26—C27 1.7 (5)

P1—C9—C10—C11 −171.2 (2) C25—C26—C27—C28 −2.3 (5)

C9—P1—C12—C17 10.7 (3) C26—C27—C28—C29 1.4 (5)

C24—P1—C12—C17 −111.6 (2) C27—C28—C29—C24 0.1 (5)

C18—P1—C12—C17 135.4 (2) C25—C24—C29—C28 −0.6 (4)

C9—P1—C12—C13 −164.6 (2) P1—C24—C29—C28 −179.4 (2)

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical