• No results found

1,3,4,4 Tetra­chloro 4 (4 chloro­phenyl­sulfan­yl) 2 nitro­buta 1,3 diene

N/A
N/A
Protected

Academic year: 2020

Share "1,3,4,4 Tetra­chloro 4 (4 chloro­phenyl­sulfan­yl) 2 nitro­buta 1,3 diene"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o800

Ibiset al. C

10H4Cl5NO2S doi:10.1107/S1600536806001838 Acta Cryst.(2006). E62, o800–o801

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

1,3,4,4-Tetrachloro-4-(4-chlorophenyl-sulfanyl)-2-nitrobuta-1,3-diene

Cemil Ibis,* M. Cigdem Sayil and N. Gulsah Deniz

Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar–Istanbul, Turkey

Correspondence e-mail: ibiscml@istanbul.edu.tr

Key indicators

Single-crystal X-ray study T= 294 K

Mean(C–C) = 0.006 A˚ Rfactor = 0.079 wRfactor = 0.085

Data-to-parameter ratio = 19.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 3 January 2006 Accepted 17 January 2006

#2006 International Union of Crystallography

All rights reserved

The molecule of the title compound, C10H4Cl5NO2S, is not planar. The chlorophenyl ring and the butadiene group are inclined at an angle of 59.5 (1).

Comment

The chemistry of nitro compounds, especially their halogen derivatives, has been intensively studied in recent decades. These highly reactive subtances have been used to develop preparative methods for the synthesis of complex polyfunc-tional derivatives of different classes. However, there are only a few reports on the crystal structures of halogened nitro-butadiene compounds. The title compound, (I), was synthe-sized from 2-nitropentachlorobutadiene and p -chloro-thiophenol (Ibis & Goksel, 1994). Crystallographic analysis was carried out and the results are presented in this paper.

The molecule is not planar. The chlorophenyl ring and the butadiene group are inclined at an angle of 59.5 (1). The C—

C bond lengths of the butadiene chain agree well with corresponding distances in a similar compound (Surangeet al., 1997).

Experimental

p-Chlorothiophenol (1.06 g, 7.37 mmol) and 2-nitropentachloro-1,3-butadiene (2 g, 7.37 mmol) were stirred for 24 h at room temperature. The product was extracted with chloroform; the organic layer was separated and washed with distilled water (330 ml) and dried with Na2SO4. The solvent was evaporated and the residue was purified by

cystallization from ethanol (yield: 2.2 g, 79%; m.p. 386–388 K).

Crystal data

C10H4Cl5NO2S Mr= 379.46

Triclinic,P1

a= 6.6504 (4) A˚

b= 10.7872 (3) A˚

c= 10.857 (4) A˚

= 70.481 (4) = 87.411 (8) = 83.680 (7) V= 729.6 (3) A˚3

Z= 2

Dx= 1.727 Mg m 3

MoKradiation Cell parameters from 6436

reflections

(2)

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.677,Tmax= 0.760

8204 measured reflections

4303 independent reflections 3450 reflections withF2> 2(F2) Rint= 0.021

max= 30.1

h=9!9

k=14!15

l=15!15

Refinement

Refinement onF R[F2> 2(F2)] = 0.079 wR(F2) = 0.085 S= 1.10 3450 reflections 176 parameters

H-atom parameters constrained

Chebychev polynomial with three parameters (Carruthers & Watkin, 1979): 9.9084, 2.2048 and 6.4348

(/)max= 0.009

max= 1.24 e A˚

3

min=0.77 e A˚

[image:2.610.315.564.75.181.2]

3

Table 1

Selected geometric parameters (A˚ ,).

C1—C2 1.285 (8) C2—C3 1.478 (5)

C3—C4 1.354 (5) C3—C2—C1 122.8 (4) C4—C3—C2 125.1 (4)

H atoms were treated as riding, with C—H = 0.95 (6) A˚ and

Uiso(H) = 1.2Ueq(C). The maximum electron-density peak is located

0.62 A˚ from atom Cl3.

Data collection: CRYSTALCLEAR (Rigaku/MSC, 2002); cell refinement: CRYSTALCLEAR; data reduction: CrystalStructure

(Rigaku/MSC, 2003); program(s) used to solve structure: SIR92

(Altomareet al., 1994); program(s) used to refine structure: CRYS-TALS (Betteridge et al., 2003); molecular graphics: ORTEP-3

(Farrugia, 1997); software used to prepare material for publication:

CrystalStructure.

This work was supported by the Research Fund of the University of Istanbul.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Carruthers, J. R. & Watkin, D. J. (1979).Acta Cryst.A35, 698–699. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan. Ibis, C. & Goksel, F. S. (1994).Phosphorus Sulfur Silicon,97, 165–171. Rigaku/MSC (2002).CRYSTALCLEAR. Version 1.3.5. Rigaku/MSC, 9009

New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku/MSC (2003).CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Surange, S. S., Kumaran, G., Rajappa, S., Rajalakshmi, K. & Pattabhi, V. (1997).Tetrahedron,53, 8531–8540.

Figure 1

[image:2.610.54.294.78.310.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o800–o801

supporting information

Acta Cryst. (2006). E62, o800–o801 [https://doi.org/10.1107/S1600536806001838]

1,3,4,4-Tetrachloro-4-(4-chlorophenylsulfanyl)-2-nitrobuta-1,3-diene

Cemil Ibis, M. Cigdem Sayil and N. Gulsah Deniz

1,3,4,4-Tetrachloro-4-(4-chlorophenylsulfanyl)-2-nitrobuta-1,3-diene

Crystal data C10H4Cl5NO2S Mr = 379.46 Triclinic, P1 Hall symbol: -P 1 a = 6.6504 (4) Å b = 10.7872 (3) Å c = 10.857 (4) Å α = 70.481 (4)° β = 87.411 (8)° γ = 83.680 (7)° V = 729.6 (3) Å3

Z = 2

F(000) = 376.00 Dx = 1.727 Mg m−3 Melting point = 386–388 K Mo radiation, λ = 0.7107 Å Cell parameters from 6436 reflections θ = 3.1–30.1°

µ = 1.13 mm−1 T = 294 K Block, yellow

0.40 × 0.30 × 0.25 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1 ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.677, Tmax = 0.760 8204 measured reflections

4303 independent reflections 3450 reflections with F2 > 2σ(F2) Rint = 0.021

θmax = 30.1° h = −9→9 k = −14→15 l = −15→15

Refinement Refinement on F R[F2 > 2σ(F2)] = 0.079 wR(F2) = 0.085 S = 1.10 3450 reflections 176 parameters

H-atom parameters constrained

Chebychev polynomial with three parameters (Carruthers & Watkin, 1979): 9.9084, 2.2048 and 6.4348

(4)

Special details

Geometry. Least Squares Planes ————– Plane number 1 ———–

Atoms Defining Plane Distance e.s.d. C1 [1;0;0;0] 0.1784 0.0020 C2 [1;0;0;0] -0.3781 0.0042 C3 [1;0;0;0] 0.1812 0.0020 C4 [1;0;0;0] -0.0613 0.0007

Additional Atoms Distance e.s.d.

Mean deviation from plane is 0.1997 angstrom Chi-squared: 9329.680 ————– Plane number 2 ————— Atoms Defining Plane Distance e.s.d. C5 [1;0;0;0] -0.0102 0.0026 C6 [1;0;0;0] 0.0087 0.0030 C7 [1;0;0;0] 0.0003 0.0032 C8 [1;0;0;0] -0.0069 0.0032 C9 [1;0;0;0] 0.0036 0.0035 C10 [1;0;0;0] 0.0071 0.0032

Additional Atoms Distance e.s.d.

Mean deviation from plane is 0.0061 angstrom Chi-squared: 15.255 Dihedral angles between least-squares planes ——— ———————–

plane plane angle e.s.d. 1 2 59.489 0.194

Refinement. Refinement using reflections with F2 > 3.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R -factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 −0.1743 (2) −0.03972 (12) 0.8236 (1) 0.0945 (4) Cl2 −0.2755 (2) 0.20470 (13) 0.60950 (12) 0.0820 (3) Cl3 0.2609 (2) 0.04192 (12) 0.8303 (1) 0.0938 (4) Cl4 0.2323 (3) 0.14109 (11) 0.45793 (12) 0.0961 (4) Cl5 0.5769 (2) 0.27694 (13) −0.10412 (12) 0.0897 (4) S1 0.3263 (2) 0.41666 (8) 0.39865 (8) 0.0575 (2) O2 0.2029 (5) 0.4758 (3) 0.6074 (3) 0.0717 (9) O1 0.0587 (5) 0.3572 (3) 0.7825 (3) 0.0711 (8) N1 0.1338 (5) 0.3733 (3) 0.6743 (3) 0.0554 (8) C1 −0.0981 (8) 0.1058 (5) 0.7168 (4) 0.0772 (13) C2 0.0791 (8) 0.1423 (4) 0.7181 (4) 0.0748 (13) C3 0.1440 (6) 0.2659 (3) 0.6240 (3) 0.0581 (9) C4 0.2248 (6) 0.2784 (3) 0.5043 (4) 0.0569 (9) C5 0.3938 (6) 0.3702 (3) 0.2590 (3) 0.0558 (9) C6 0.2498 (6) 0.3865 (4) 0.1646 (4) 0.0622 (10) C7 0.3068 (7) 0.3572 (4) 0.0523 (4) 0.0642 (11) C8 0.5061 (7) 0.3144 (3) 0.0362 (4) 0.0621 (10) C9 0.6512 (7) 0.3006 (4) 0.1272 (4) 0.0710 (12) C10 0.5929 (6) 0.3296 (4) 0.2395 (4) 0.0668 (11) H1 0.6898 0.3212 0.3042 0.081* H2 0.7879 0.2726 0.1123 0.086* H3 0.2114 0.3676 −0.0139 0.078* H4 0.1137 0.4167 0.1781 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o800–o801

Cl4 0.1626 (13) 0.0636 (6) 0.0783 (7) −0.0440 (7) 0.0476 (8) −0.0410 (5) Cl5 0.1246 (10) 0.0849 (7) 0.0705 (6) −0.0210 (7) 0.0293 (6) −0.0411 (6) S1 0.0748 (6) 0.0516 (4) 0.0494 (4) −0.0169 (4) 0.0077 (4) −0.0188 (3) O2 0.096 (2) 0.059 (1) 0.070 (2) −0.025 (1) 0.012 (1) −0.0313 (13) O1 0.092 (2) 0.073 (2) 0.054 (1) −0.006 (1) 0.0104 (13) −0.0299 (12) N1 0.063 (2) 0.055 (2) 0.053 (2) −0.0051 (12) 0.0006 (12) −0.0233 (12) C1 0.099 (3) 0.076 (3) 0.062 (2) −0.022 (2) 0.014 (2) −0.028 (2) C2 0.100 (3) 0.066 (2) 0.063 (2) −0.017 (2) 0.012 (2) −0.026 (2) C3 0.076 (2) 0.049 (2) 0.053 (2) −0.013 (2) 0.009 (2) −0.0209 (13) C4 0.071 (2) 0.048 (2) 0.057 (2) −0.013 (1) 0.008 (2) −0.0223 (13) C5 0.070 (2) 0.052 (2) 0.048 (2) −0.014 (2) 0.007 (1) −0.0173 (13) C6 0.066 (2) 0.063 (2) 0.058 (2) −0.001 (2) −0.003 (2) −0.021 (2) C7 0.084 (3) 0.061 (2) 0.049 (2) −0.010 (2) −0.002 (2) −0.019 (2) C8 0.086 (3) 0.047 (2) 0.054 (2) −0.015 (2) 0.018 (2) −0.0170 (13) C9 0.073 (3) 0.074 (2) 0.069 (2) −0.010 (2) 0.015 (2) −0.028 (2) C10 0.066 (2) 0.071 (2) 0.067 (2) −0.010 (2) 0.002 (2) −0.026 (2)

Geometric parameters (Å, º)

Cl1—C1 1.724 (5) C3—C4 1.354 (5) Cl2—C1 1.704 (5) C5—C6 1.389 (6) Cl3—C2 1.755 (5) C5—C10 1.378 (6) Cl4—C4 1.711 (4) C6—C7 1.385 (6) Cl5—C8 1.735 (4) C6—H4 0.950 S1—C4 1.733 (3) C7—C8 1.378 (6) S1—C5 1.774 (4) C7—H3 0.950 O2—N1 1.227 (4) C8—C9 1.374 (6) O1—N1 1.221 (4) C9—C10 1.385 (7) N1—C3 1.431 (5) C9—H2 0.950 C1—C2 1.285 (8) C10—H1 0.950 C2—C3 1.478 (5)

(6)
(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o800–o801

C3···O1 2.274 (5) H3···C9 3.259 (6) C3···C1 2.427 (6) H3···C9iv 3.582 (6) C4···Cl2 3.555 (4) H4···Cl4 3.515 (3) C4···Cl2ii 3.484 (4) H4···S1 2.835 (4) C4···O2 2.706 (5) H4···C4 3.431 (5) C4···O1 3.504 (5) H4···C5 2.035 (6) C4···N1 2.419 (5) H4···C7 2.043 (6) C4···C6 3.311 (6) H4···C8 3.247 (6) C4···C2 2.513 (5) H4···C9i 3.577 (7) C4···C5 2.747 (5) H4···C10 3.255 (6) C4···C6 3.478 (5)

C4—S1—C5 103.1 (2) C10—C5—S1 119.5 (3) C3—N1—O2 118.5 (3) C7—C6—H4 120.9 C3—N1—O1 117.9 (3) C7—C6—C5 119.4 (4) O2—N1—O1 123.6 (4) H4—C6—C5 119.7 C2—C1—Cl1 123.3 (4) C8—C7—H3 119.9 C2—C1—Cl2 120.5 (3) C8—C7—C6 119.0 (4) Cl1—C1—Cl2 116.1 (3) H3—C7—C6 121.1 C3—C2—Cl3 116.6 (4) C9—C8—Cl5 118.7 (3) C3—C2—C1 122.8 (4) C9—C8—C7 122.3 (4) Cl3—C2—C1 120.6 (3) Cl5—C8—C7 119.0 (3) C4—C3—N1 120.5 (3) C10—C9—H2 121.5 C4—C3—C2 125.1 (4) C10—C9—C8 118.3 (4) N1—C3—C2 114.1 (3) H2—C9—C8 120.3 S1—C4—C3 126.2 (3) H1—C10—C5 119.2 C6—C5—C10 120.5 (4) H1—C10—C9 120.3 C6—C5—S1 119.8 (3) C5—C10—C9 120.5 (4)

(8)

C2—C3—C4—Cl4 5.0 (5) C8—C9—C10—H1 −179.9 S1—C5—C6—C7 176.3 (3) H2—C9—C10—C5 179.9 S1—C5—C6—H4 −4.2 H2—C9—C10—H1 −0.5

Figure

Figure 1

References

Related documents

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

It is possible that a segment is stored at multiple peers in the set cover, in this case the requesting client can pick a peer based on some other criteria such as delay or number

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain