• No results found

2 (1,3 Dioxo 4,5,6,7 tetra­hydro 1H isoindol 2 yl) N [7 fluoro 3 oxo 4 (prop 2 yn­yl) 3,4 di­hydro 2H benzoxazin 6 yl]acetamide monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "2 (1,3 Dioxo 4,5,6,7 tetra­hydro 1H isoindol 2 yl) N [7 fluoro 3 oxo 4 (prop 2 yn­yl) 3,4 di­hydro 2H benzoxazin 6 yl]acetamide monohydrate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o735–o736 doi:10.1107/S1600536806002194 Minet al. C

21H18FN3O5H2O

o735

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-(1,3-Dioxo-4,5,6,7-tetrahydro-1

H

-isoindol-2-yl)-

N

-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2

H

-benzoxazin-6-yl]-acetamide monohydrate

Zhong-Cheng Min,aMing-Zhi Huang,b* Wei-Min Chen,aQuan Zhangaand Guang-Fu Yanga aKey Laboratory of Pesticides and Chemical

Biology, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China, andbHunan

Research Institute of Chemical Industry, Changsha 410007, People’s Republic of China

Correspondence e-mail: jacobmin@163.com

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.004 A˚ Disorder in main residue

Rfactor = 0.062

wRfactor = 0.167

Data-to-parameter ratio = 11.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 14 December 2005 Accepted 18 January 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C21H18FN3O5H2O, the cyclohexene

ring exhibits a distorted chair conformation. The crystal packing is stabilized by intra- and intermolecular hydrogen bonds.

Comment

Herbicides inhibiting protoporphyrinogen oxidase (protox) have been sold commercially for nearly 40 years (Dayan & Duke, 1997). The title compound, (I), may belong to this family of protox-inhibiting herbicides and we present its crystal structure here.

The molecular stucture of (I) is shown in Fig. 1. The C10— N2 bond is shorter than the normal value of C—N [1.47 (2) A˚ ; Sasada, 1984]. The bond length of C2—C3 is slightly greater than the normal value of C–C [1.54 (3) A˚ ; Sasada, 1984]. The torsion angles C1—C2—C3—C4 and C2—C3—C4—C5 indi-cate a distorted chair conformation of the cyclohexene ring. The sum of the C8—N1—C7, C8—N1—C9 and C7—N1—C9 angles is 359.9, the sum of the C10—N2—C11, C10—N2—H2

and C11—N2—H2 angles is 359.1and the sum of the C17—

[image:1.610.224.440.314.401.2] [image:1.610.209.457.551.725.2]

N3—C15, C17—N3—C19 and C15—N3—C19 angles is 360.0.

Figure 1

(2)

Therefore, atoms N1, N2 and N3 are sp2 hybridized. The molecules of (I) form two-dimensional layers through hydrogen bonds in theacplane (Table 2 and Fig. 2).

Experimental

2-[1,3-Dioxo-4,5,6,7-tetrahydro-1H-isoindol-2-yl]acetyl choride (1.2 mmol) in dry toluene (10 ml) was added dropwise to a solution of 6-amino-7-fluoro-4-(prop-2-ynyl)-2H-benzoxazin-3(4H)-one (1 mmol) and triethylamine (1.2 mmol) in dry toluene (10 ml) under N2at

room temperature, and the resulting mixture was stirred for 2 h. After filtration, the solid was washed with water and recrystallized from petroleum ether and methanol (4:1 v/v). Colorless plate-shaped crystals of (I) were obtained by evaporation of the solvent over a period of two weeks.

Crystal data

C21H18FN3O5H2O

Mr= 429.40 Monoclinic,P21=n a= 19.2192 (19) A˚ b= 4.7354 (5) A˚ c= 23.421 (2) A˚ = 92.091 (2) V= 2130.2 (4) A˚3 Z= 4

Dx= 1.339 Mg m

3

MoKradiation Cell parameters from 2160

reflections = 2.7–21.4

= 0.11 mm1 T= 292 (2) K Plate, colorless 0.400.100.02 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin= 0.959,Tmax= 0.998

14145 measured reflections

3719 independent reflections 2411 reflections withI> 2(I) Rint= 0.050

max= 25.0

h=21!22 k=5!5 l=27!27

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.062 wR(F2) = 0.167

S= 1.04 3719 reflections 328 parameters

H atoms treated by a mixture of independent and constrained

w= 1/[2(F

o2) + (0.0734P)2

+ 0.5971P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.26 e A˚

3

min=0.21 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C2—C3 1.560 (7) C10—N2 1.318 (4)

C8—N1—C7 109.7 (2)

C8—N1—C9 126.7 (3)

C7—N1—C9 123.5 (3)

C10—N2—C11 126.1 (2)

C17—N3—C15 120.9 (3)

C17—N3—C19 118.9 (2)

C15—N3—C19 120.2 (2)

[image:2.610.47.294.70.247.2]

C1—C2—C3—C4 31.5 (10) C2—C3—C4—C5 52.1 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C21—H21 O2i

0.93 2.33 3.244 (5) 168

C19—H19B O4 0.97 2.30 2.735 (4) 106

C13—H13 O1ii

0.93 2.44 3.354 (4) 170

C9—H9A O3iii

0.97 2.48 3.189 (8) 130

C4—H4B O4iv

0.97 2.54 3.454 (8) 157

N2—H2 O3iii

0.851 (10) 2.04 (2) 2.847 (9) 158 (3)

Symmetry codes: (i)xþ1;y;z; (ii) xþ1 2;y

1 2;zþ

1

2; (iii) x;y1;z; (iv) xþ1

2;yþ 3 2;zþ

1 2.

The amide and water H atoms were located in a difference map and were refined with the restraints N—H = 0.86 (1) A˚ and O—H = 0.82 A˚ , and withUiso(H) = 1.2Ueq(carrier) for H1 and 1.5Ueq(carrier)

for water H atoms. Other H atoms were positioned geometrically, with C—H = 0.93 or 0.97 A˚ , and refined in a riding model, with

Uiso(H)= 1.2Ueq(C) or 1.5Ueq(methyl C). Two of the C atoms in the

cyclohexene ring were disordered over two positions, and the occu-pancy factors for disordered positions C3/C30 and C4/C40 were

refined to 0.709 (12) and 0.291 (12). Atom O3/O30 was disordered

over two positions, with occupancies of 0.77 (9) and 0.23 (9). Water atoms O6 and O60, with partial occupancies of 0.50 [initially refined to

0.504 (1)], were assigned tentatively, based only on the crystal-lographic evidence; the water probably derives from the methanol solvent used for recrystallization.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 20372021) and Hunan Province Natural Science Foundation of China (No. 03 JJY3018).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000).SMART(Version 5.059),SAINT(Version 6.01) andSADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Dayan, F. E. & Duke, S. O. (1997).Brighton Crop Prot. Conf. Weeds,1, 83–92. Sasada, Y. (1984).Molecular and Crystal Structure in Chemistry Handbook,

3rd ed. The Chemical Society of Japan, Tokyo: Maruzen Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Figure 2

[image:2.610.315.564.236.310.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o735–o736

supporting information

Acta Cryst. (2006). E62, o735–o736 [https://doi.org/10.1107/S1600536806002194]

2-(1,3-Dioxo-4,5,6,7-tetrahydro-1

H

-isoindol-2-yl)-

N

-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2

H

-benzoxazin-6-yl]acetamide monohydrate

Zhong-Cheng Min, Ming-Zhi Huang, Wei-Min Chen, Quan Zhang and Guang-Fu Yang

2-(1,3-Dioxo-2,3,4,5,6,7-hexahydro-1H-isoindol-2-yl)-N-[7-fluoro-3-oxo- 4-(prop-2-ynyl)-3,4-dihydro-2H

-benzoxazin-6-yl]acetamide monohydrate

Crystal data

C21H18FN3O5·H2O

Mr = 429.40

Monoclinic, P21/n

Hall symbol: -P2yn

a = 19.2192 (19) Å

b = 4.7354 (5) Å

c = 23.421 (2) Å

β = 92.091 (2)°

V = 2130.2 (4) Å3

Z = 4

F(000) = 896

Dx = 1.339 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2160 reflections

θ = 2.7–21.4°

µ = 0.11 mm−1

T = 292 K Plate, colorless 0.40 × 0.10 × 0.02 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.959, Tmax = 0.998

14145 measured reflections 3719 independent reflections 2411 reflections with I > 2σ(I)

Rint = 0.050

θmax = 25.0°, θmin = 2.8°

h = −21→22

k = −5→5

l = −27→27

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.062

wR(F2) = 0.167

S = 1.04 3719 reflections 328 parameters 15 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0734P)2 + 0.5971P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.26 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C1 0.60720 (14) 0.3328 (6) 0.25928 (13) 0.0468 (7) C2 0.67121 (16) 0.5108 (7) 0.26634 (16) 0.0746 (10)

H2A 0.6689 0.6674 0.2396 0.090* 0.709 (12) H2B 0.7121 0.3992 0.2587 0.090* 0.709 (12) H2C 0.6601 0.7070 0.2583 0.090* 0.291 (12) H2D 0.7062 0.4495 0.2402 0.090* 0.291 (12) C3 0.6759 (5) 0.6245 (16) 0.3289 (3) 0.105 (3) 0.709 (12) H3A 0.7246 0.6607 0.3386 0.126* 0.709 (12) H3B 0.6521 0.8050 0.3293 0.126* 0.709 (12) C4 0.6479 (3) 0.449 (2) 0.3748 (3) 0.108 (3) 0.709 (12) H4A 0.6771 0.2834 0.3804 0.130* 0.709 (12) H4B 0.6494 0.5557 0.4102 0.130* 0.709 (12) C3′ 0.6984 (6) 0.488 (4) 0.3266 (4) 0.075 (5)* 0.291 (12) H3C 0.7375 0.6136 0.3338 0.090* 0.291 (12) H3D 0.7125 0.2959 0.3357 0.090* 0.291 (12) C4′ 0.6357 (6) 0.576 (3) 0.3607 (8) 0.072 (5)* 0.291 (12) H4C 0.6173 0.7515 0.3448 0.087* 0.291 (12) H4D 0.6515 0.6144 0.3998 0.087* 0.291 (12) C5 0.57636 (19) 0.3595 (8) 0.36171 (14) 0.0771 (11)

H5A 0.5450 0.5147 0.3691 0.093* 0.709 (12) H5B 0.5647 0.2044 0.3867 0.093* 0.709 (12) H5C 0.5893 0.2029 0.3866 0.093* 0.291 (12) H5D 0.5342 0.4456 0.3752 0.093* 0.291 (12) C6 0.56631 (15) 0.2680 (6) 0.30106 (12) 0.0500 (7)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o735–o736

C15 0.20908 (14) 0.1585 (5) 0.07990 (11) 0.0403 (7) C16 0.27669 (14) 0.0991 (6) 0.09790 (11) 0.0432 (7) H16 0.3133 0.1902 0.0806 0.052* C17 0.12532 (17) 0.4154 (7) 0.02037 (14) 0.0600 (9) C18 0.07094 (19) 0.2847 (10) 0.05558 (18) 0.0912 (13) H18A 0.0533 0.4312 0.0801 0.109* H18B 0.0328 0.2285 0.0298 0.109* C19 0.24822 (16) 0.4908 (6) 0.00510 (13) 0.0567 (8) H19A 0.2806 0.5739 0.0330 0.068* H19B 0.2283 0.6429 −0.0179 0.068* C20 0.28642 (18) 0.3003 (8) −0.03184 (14) 0.0655 (9) C21 0.3179 (2) 0.1523 (11) −0.06122 (17) 0.0949 (14) H21 0.3430 0.0343 −0.0846 0.114* F1 0.24981 (10) −0.4117 (4) 0.20857 (8) 0.0765 (6) N1 0.52498 (12) 0.0312 (5) 0.22077 (10) 0.0502 (6) N2 0.36005 (13) −0.1729 (5) 0.15766 (11) 0.0516 (7) H2 0.3664 (15) −0.347 (3) 0.1656 (12) 0.062* N3 0.19275 (12) 0.3509 (5) 0.03497 (9) 0.0459 (6) O1 0.46553 (13) −0.0447 (6) 0.30249 (11) 0.0838 (8) O2 0.60517 (13) 0.2019 (6) 0.15932 (10) 0.0845 (8)

O3 0.4102 (10) 0.2615 (12) 0.1619 (18) 0.072 (5) 0.77 (9) O3′ 0.399 (2) 0.255 (5) 0.185 (3) 0.052 (7) 0.23 (9) O4 0.10951 (12) 0.5820 (6) −0.01787 (10) 0.0842 (8)

O5 0.08732 (11) 0.0605 (6) 0.08892 (11) 0.0811 (8)

O6 0.494 (3) 0.865 (8) 0.006 (3) 0.43 (3) 0.50 H6A 0.506 (3) 0.951 (13) 0.035 (2) 0.038 (15)* 0.50 H6B 0.505 (9) 0.693 (9) 0.012 (6) 0.16 (7)* 0.50 O6′ 0.494 (7) 0.595 (14) −0.013 (4) 0.52 (4) 0.50 H6C 0.494 (7) 0.768 (16) −0.009 (4) 0.13 (5)* 0.50 H6D 0.474 (3) 0.555 (12) −0.044 (3) 0.053 (17)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C15 0.0465 (17) 0.0355 (15) 0.0387 (14) 0.0039 (13) −0.0032 (12) −0.0049 (12) C16 0.0454 (16) 0.0353 (15) 0.0487 (16) 0.0017 (13) −0.0030 (13) −0.0010 (13) C17 0.058 (2) 0.066 (2) 0.0555 (18) 0.0195 (17) −0.0087 (16) −0.0018 (17) C18 0.054 (2) 0.110 (3) 0.109 (3) 0.011 (2) −0.007 (2) 0.040 (3) C19 0.065 (2) 0.0487 (18) 0.0556 (18) 0.0039 (16) −0.0048 (15) 0.0114 (15) C20 0.056 (2) 0.092 (3) 0.0485 (18) −0.005 (2) 0.0015 (16) 0.0023 (19) C21 0.070 (3) 0.142 (4) 0.074 (3) 0.000 (3) 0.016 (2) −0.030 (3) F1 0.0923 (14) 0.0653 (12) 0.0711 (12) 0.0014 (11) −0.0058 (10) 0.0286 (10) N1 0.0454 (14) 0.0487 (15) 0.0555 (15) −0.0022 (12) −0.0105 (11) −0.0043 (12) N2 0.0545 (15) 0.0249 (12) 0.0735 (17) 0.0035 (12) −0.0220 (13) −0.0014 (12) N3 0.0460 (14) 0.0488 (14) 0.0427 (13) 0.0082 (12) −0.0027 (11) 0.0033 (11) O1 0.0685 (16) 0.0853 (18) 0.0989 (18) −0.0103 (14) 0.0203 (14) 0.0121 (15) O2 0.0893 (18) 0.105 (2) 0.0607 (15) −0.0030 (15) 0.0210 (13) −0.0088 (14) O3 0.061 (4) 0.030 (2) 0.123 (13) 0.0031 (19) −0.026 (6) −0.006 (3) O3′ 0.056 (11) 0.022 (6) 0.076 (17) 0.002 (6) −0.014 (10) 0.006 (10) O4 0.0785 (16) 0.0990 (19) 0.0738 (15) 0.0275 (15) −0.0135 (13) 0.0295 (14) O5 0.0439 (13) 0.104 (2) 0.0955 (17) 0.0057 (13) −0.0011 (12) 0.0277 (16) O6 0.34 (3) 0.45 (11) 0.49 (5) −0.05 (8) −0.28 (3) −0.02 (9) O6′ 0.60 (5) 0.40 (9) 0.54 (8) −0.10 (7) −0.39 (6) −0.03 (6)

Geometric parameters (Å, º)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o735–o736

C6—C7 1.490 (4) N2—H2 0.851 (10) C7—O1 1.208 (3) O6—O6i 1.33 (8)

C7—N1 1.385 (4) O6—H6A 0.822 (11) C8—O2 1.207 (3) O6—H6B 0.846 (11) C8—N1 1.377 (4) O6—H6C 0.58 (8) C9—N1 1.436 (4) O6′—O6′ii 1.11 (9)

C9—C10 1.512 (4) O6′—H6B 0.77 (13) C9—H9A 0.9700 O6′—H6C 0.824 (11) C9—H9B 0.9700 O6′—H6D 0.830 (11) C10—O3 1.248 (5)

(8)

C4′—C3′—H3D 111.2 O5—C18—H18B 107.4 H3C—C3′—H3D 109.1 C17—C18—H18B 107.4 C3′—C4′—C5 115.1 (11) H18A—C18—H18B 107.0 C3′—C4′—H4C 108.5 N3—C19—C20 113.3 (3) C5—C4′—H4C 108.5 N3—C19—H19A 108.9 C3′—C4′—H4D 108.5 C20—C19—H19A 108.9 C5—C4′—H4D 108.5 N3—C19—H19B 108.9 H4C—C4′—H4D 107.5 C20—C19—H19B 108.9 C4—C5—C6 111.9 (4) H19A—C19—H19B 107.7 C6—C5—C4′ 104.5 (7) C21—C20—C19 178.7 (4) C4—C5—H5A 109.2 C20—C21—H21 180.0 C6—C5—H5A 109.2 C8—N1—C7 109.7 (2) C4′—C5—H5A 87.8 C8—N1—C9 126.7 (3) C4—C5—H5B 109.2 C7—N1—C9 123.5 (3) C6—C5—H5B 109.2 C10—N2—C11 126.1 (2) C4′—C5—H5B 134.7 C10—N2—H2 117 (2) H5A—C5—H5B 107.9 C11—N2—H2 116 (2) C4—C5—H5C 82.9 C17—N3—C15 120.9 (3) C6—C5—H5C 111.8 C17—N3—C19 118.9 (2) C4′—C5—H5C 110.2 C15—N3—C19 120.2 (2) H5A—C5—H5C 128.3 C18—O5—C14 118.6 (3) C4—C5—H5D 126.9 O6i—O6—H6A 70 (5)

C6—C5—H5D 110.6 O6i—O6—H6B 157 (10)

C4′—C5—H5D 110.7 H6A—O6—H6B 107.0 (19) H5B—C5—H5D 84.7 O6i—O6—H6C 128 (10)

H5C—C5—H5D 109.0 H6A—O6—H6C 154 (10) C1—C6—C7 107.9 (3) H6B—O6—H6C 48 (10) C1—C6—C5 125.6 (3) O6′ii—O6′—H6B 92 (10)

C7—C6—C5 126.4 (3) O6′ii—O6′—H6C 138 (10)

O1—C7—N1 124.2 (3) H6B—O6′—H6C 47 (10) O1—C7—C6 129.2 (3) O6′ii—O6′—H6D 112 (10)

N1—C7—C6 106.6 (3) H6B—O6′—H6D 154 (10) O2—C8—N1 125.0 (3) H6C—O6′—H6D 108.8 (19)

(9)

supporting information

sup-7 Acta Cryst. (2006). E62, o735–o736

C8—C1—C6—C7 1.2 (3) C1—C8—N1—C9 178.2 (2) C2—C1—C6—C7 −175.8 (3) O1—C7—N1—C8 −178.9 (3) C8—C1—C6—C5 177.2 (3) C6—C7—N1—C8 −1.5 (3) C2—C1—C6—C5 0.1 (5) O1—C7—N1—C9 5.0 (4) C4—C5—C6—C1 −19.3 (6) C6—C7—N1—C9 −177.6 (2) C4′—C5—C6—C1 8.9 (8) C10—C9—N1—C8 −104.5 (3) C4—C5—C6—C7 155.9 (5) C10—C9—N1—C7 70.9 (4) C4′—C5—C6—C7 −175.9 (7) O3—C10—N2—C11 −7 (3) C1—C6—C7—O1 177.4 (3) O3′—C10—N2—C11 24 (3) C5—C6—C7—O1 1.5 (5) C9—C10—N2—C11 −177.2 (3) C1—C6—C7—N1 0.1 (3) C12—C11—N2—C10 −134.2 (3) C5—C6—C7—N1 −175.8 (3) C16—C11—N2—C10 49.3 (4) C6—C1—C8—O2 179.1 (3) O4—C17—N3—C15 179.4 (3) C2—C1—C8—O2 −3.9 (5) C18—C17—N3—C15 2.8 (4) C6—C1—C8—N1 −2.2 (3) O4—C17—N3—C19 1.7 (5) C2—C1—C8—N1 174.8 (3) C18—C17—N3—C19 −174.9 (3) N1—C9—C10—O3 38 (2) C16—C15—N3—C17 −176.5 (3) N1—C9—C10—O3′ 8 (4) C14—C15—N3—C17 4.2 (4) N1—C9—C10—N2 −150.7 (3) C16—C15—N3—C19 1.1 (4) C16—C11—C12—F1 179.2 (2) C14—C15—N3—C19 −178.2 (2) N2—C11—C12—F1 2.7 (4) C20—C19—N3—C17 −111.2 (3) C16—C11—C12—C13 1.2 (4) C20—C19—N3—C15 71.1 (3) N2—C11—C12—C13 −175.3 (3) C17—C18—O5—C14 24.1 (5) F1—C12—C13—C14 −178.7 (3) C13—C14—O5—C18 166.1 (3) C11—C12—C13—C14 −0.7 (5) C15—C14—O5—C18 −17.0 (5) C12—C13—C14—O5 177.0 (3)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C21—H21···O2iii 0.93 2.33 3.244 (5) 168

C19—H19B···O4 0.97 2.30 2.735 (4) 106 C13—H13···O1iv 0.93 2.44 3.354 (4) 170

C9—H9A···O3v 0.97 2.48 3.189 (8) 130

C4—H4B···O4vi 0.97 2.54 3.454 (8) 157

N2—H2···O3v 0.85 (1) 2.04 (2) 2.847 (9) 158 (3)

Figure

Figure 1The molecular structure of (I), showing displacement ellipsoids drawn atthe 50% probability level
Figure 2The packing of (I), with hydrogen bonds shown as dashed lines. Only one

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical