• No results found

A rearranged labdane diterpene glycoside

N/A
N/A
Protected

Academic year: 2020

Share "A rearranged labdane diterpene glycoside"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o762

Zhuet al. C28H46O6 doi:10.1107/S1600536806002418 Acta Cryst.(2006). E62, o762–o764 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A rearranged labdane diterpene glycoside

Ying Zhu, Cai-Xia Yang and Zhong-Jian Jia*

State Key Laboratory of Applied Organic Chemistry, Chemistry and Chemical Engineering College, Lanzhou University, Lanzhou 730000, People’s Republic of China

Correspondence e-mail: jiazj@lzu.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.038

wRfactor = 0.082

Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, 13(R)-9 -methyl-1(10),14-dienefried-labda-13-O--l-20-acetylrhamonopyanoside or

3-methyl-5- (1,2,5,5-tetramethyl-1,2,3,4,4a,5,6,7-octahydronaphthyl)pent-1-en-3-yl 2-O-acetylrhamnopyanoside, C28H46O6, is a bicyclic

diterpenoid glycoside. The rearranged methyl group (from C10 to C9) is in aorientation and a double bond is formed between C1 and C10 in the rearrangement. Thel-rhamnose

group on the cyclohexane ring is equatorial and the configuration of the C atom to which the methylene group is attached isR. The cyclohexene, cyclohexane andl-rhamnose

rings in the molecule adopt half-chair, chair and chair conformations, respectively. In the crystal structure, molecules are linked by O—H O hydrogen bonds. The l-20

-acetyl-rhamnose hydroxy groups serve as hydrogen-bond donors, forming molecular chains along thebaxis.

Comment

Labdane diterpenoids are among the most common types of diterpenes isolated from terrestrial higher plants and sponges (Hanson, 1997, 1998, 1999, 2000, 2001; Tanaka, et al., 2001). Many of these terpenoids possess significant pharmacological properties, such as cytotoxic, antibacterial, antifungal, anti-inflammatory, analgesic, antitumor and antimutagenic (Ahsan

et al., 2003; Itokawa & Morita, 1988; Dimas et al., 1998; Kittakoop et al., 2001; Kubo et al.2003; Minami et al., 2002; Miyazawaet al., 1995). Therefore, the semisynthesis of minor components from other abundant natural products is of long-standing interest. To date, a number of semisyntheses of these biologically active labdane-type diterpenoids have been reported (Pathaket al.2005). The current interest of our group in the phytochemical study of northwest Chinese plants aims to find new natural compounds with interesting biological activities. In this connection we have studied labdane diter-penoids (Wanget al., 2002; Yang,et al., 2005).

In this paper, we report the crystal structure and relative stereochemistry of a diterpenoid glycoside, (I), with a

(2)

ranged labdane skeleton, fromAster homochlamydeus Hand-mazz. Crystal structures of typical labdane-type diterpenoids have previously been reported (Nagashima et al., 1995; Bernardinelliet al., 1988; Tavanaiepouret al., 1987; Bja˚meret al., 1968).

Compound (I) has the molecular formula C28H46O6,

established by FAB-MS, which gave [M+Na] atm/z501 and [M+Li] at 485. Its IR spectrum showed the presence of hydroxyl functionalities (3483 and 3373 cm1). Since compound (I) has five degrees of unsaturation, it must contain one glycoside, two olefin bonds and two carbocyclic rings.

As shown in Fig. 1, compound (I) is a bicyclic diterpene glycoside of a C20 skelton with a terminal double bond,

C14 C15. It is slightly different from typical labdane diter-penes. The methyl group (C20) normally located at C10 is moved to C9 and the C1—C10 bond length indicates double-bond character. The methyl group at C9 is in the-orientation. Thus compound (I) is a diterpenoid with a rearranged labdane-type skelton (Uroneset al., 1994; Feresinet al., 2003). The bond distance between C9 and C20 is 1.532 (3) A˚ . The olefin bond distance in a carbocyclic ring, between C1 and C10, is 1.328 (4) A˚ , and corresponding bond angles show the characteristics of an olefin [C2—C1—C10 = 125.4 (3) and C1—C10—C5 121.2 (3)]. The bond distance between C14 and C15 is 1.264 (4) A˚ , with C13—C14—C15 = 128.8 (5). The structure demonstrates that an equatoriall-20-acetylrhamnose

group and a methyl group are attached at C13. The bond lengths to these substituents [C13—C16 = 1.509 (4) A˚ and C13—O1 = 1.455 (3) A˚ ] are in good agreement with the standard values observed for C—C (methyl) and C—O (sugar hydroxyl) distances, respectively (Allen et al., 1987). The R

configuration at C13 is confirmed unambiguously (Bernardi-nelli et al., 1988). Furthermore, the relative configurations at C4, C5, C8 and C9 were also determined, as shown in Fig. 1.

The endocyclic torsion angles (Table 1) show that the cyclohexene ring is in the half-chair conformation (Dauxet al., 1974, 1976), which has an approximate twofold axis passing

through the mid-point of the C3—C4 bond and the mid-point of the C1—C10 bond, with an asymmetry parameterC2of

0.88. The cyclohexane ring and l-20-acetylrhamnose groups

are in approximate chair conformations (Daux et al., 1974, 1976); their conformations are similar to others in the litera-ture (Tavanaiepour et al., 1987). The molecules of (I) are associated in the crystal state by O—H O hydrogen bonds between the hydroxyl functions in the l-20-acetylrhamnose

group (Table 2). As shown in Fig. 2, the molecules form columns along thebaxis.

Experimental

The extraction and isolation of compound (I) have already been described (Yang et al., 2005). Compound (I) was dissolved in chloroform and acetone (1:1v/v), and slow evaporation gave crystals suitable for X-ray diffraction. The optical rotation is []D

25 = +33.0 (c 0.4, CHCl3) and its melting point is 420 K.

Crystal data

C28H46O6

Mr= 478.65

Monoclinic,P21

a= 11.542 (2) A˚

b= 8.793 (2) A˚

c= 14.095 (2) A˚

= 102.14 (1)

V= 1398.6 (4) A˚3

Z= 2

Dx= 1.137 Mg m 3

MoKradiation Cell parameters from 42

reflections

= 2.7–14.3 = 0.08 mm1

T= 293 (2) K Prism, colourless 0.580.400.16 mm

Data collection

Siemens P4 diffractometer

!scans

Absorption correction: none 3583 measured reflections 3289 independent reflections 1841 reflections withI> 2(I)

Rint= 0.020

max= 27.1

h= 0!14

k= 0!11

l=18!17 3 standard reflections

every 97 reflections intensity decay: 3.0%

organic papers

[image:2.610.54.291.67.261.2]

Acta Cryst.(2006). E62, o762–o764 Zhuet al. C28H46O6

o763

Figure 2

The molecular packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Figure 1

[image:2.610.311.565.68.281.2]
(3)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.038

wR(F2) = 0.082

S= 0.81 3289 reflections 320 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.04P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.12 e A˚

3

min=0.13 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.0125 (13)

Table 1

Selected torsion angles ().

C10—C1—C2—C3 15.5 (4) C1—C2—C3—C4 44.8 (4) C2—C3—C4—C5 60.4 (3) C3—C4—C5—C10 45.6 (3) C10—C5—C6—C7 55.5 (3) C5—C6—C7—C8 52.5 (3) C6—C7—C8—C9 50.3 (3) C7—C8—C9—C10 51.3 (3) C2—C1—C10—C5 2.1 (4)

C4—C5—C10—C1 17.8 (3) C6—C5—C10—C9 62.0 (3) C8—C9—C10—C5 59.5 (3) C25—O2—C21—C22 59.6 (3) O2—C21—C22—C23 52.9 (3) C21—C22—C23—C24 50.6 (3) C22—C23—C24—C25 52.8 (3) C21—O2—C25—C24 60.2 (3) C23—C24—C25—O2 55.0 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H3O O4i

0.82 1.91 2.714 (3) 165 O4—H4O O6i 0.82 2.17 2.968 (3) 163 Symmetry code: (i)x;y1

2;zþ1.

All H atoms were refined as riding on their parent atoms with C— H distances of 0.93–0.98 A˚ and O—H = 0.82 A˚, and withUiso(H) = 1.2Ueq(C,O). In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration is arbitrary. Data collection: XSCANS (Siemens, 1994); cell refinement:

XSCANS; data reduction:SHELXTL(Sheldrick, 1994; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:SHELXTL; software used to prepare material for publi-cation:SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 29972017) for financial support.

References

Ahsan, M., Islam, S. K. N., Gray, A. I. & Stimson, W. H. (2003).J. Nat. Prod.

66, 958–961.

Allen F. H., Kennard. O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernardinelli, G., Vial, C., Starkemann, S. & Naf, F. (1988).Acta Cryst.C44, 715–717.

Bja˚mer, K., Ferguson, G. & Melville, R. D. (1968).Acta Cryst.B24, 855– 865.

Daux, W. L., Weeks, C. M. & Rohrer, D. C. (1974).Topics of Stereochemistry, Vol. 8, edited by E. L. Eliel & N. L. Allinger, pp. 165–187. New York: John Wiley.

Daux, W. L., Weeks, C. M. & Rohrer, D. C. (1976).Topics of Sterochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 279–289. New York: John Wiley.

Dimas, K., Demetzos, C., Marsellos, M., Sotiriadou, R., Malamas, M. & Kokkinopoulos, D. (1998).Planta Med.64, 208–211.

Feresin, G. E., Tapia, A., Gimenez, A., Ravelo, A. Z., Sortino, M. & Schmeda-Hirschmann, G. (2003).J. Ethnopharmacol.89, 71–80.

Hanson, J. R. (1997).Nat. Prod. Rep.14, 245–258. Hanson, J. R. (1998).Nat. Prod. Rep.15, 93–106. Hanson, J. R. (1999).Nat. Prod. Rep.16, 209–219. Hanson, J. R. (2000).Nat. Prod. Rep.17, 165–174. Hanson, J. R. (2001).Nat. Prod. Rep.18, 88–94.

Itokawa, H. & Morita, H. (1988).Planta Med.54, 117–120.

Kittakoop, P., Wanasith, S., Watts, P., Kramyu, J., Tanticharoen, M. & Thebtaranonth, Y. (2001).J. Nat. Prod.64, 385–388.

Kubo, I., Fujita, K. I., Kubo, A., Nihei, K. I. & Lunde, C. S. (2003).J. Agric. Food. Chem.51, 3951–3957.

Minami, T., Wada, S. I., Tokuda, H., Tanabe, G., Muraoka, O. & Tanaka, R. (2002).J. Nat. Prod.65, 1921–1923.

Miyazawa, M., Shimamura, H., Nakamura, S. & Kameoka, H. (1995).J. Agric. Food. Chem.43, 3012–3015.

Nagashima, F., Tanaka, H., Takaoka, S. & Asakawa, Y. (1995).Phytochemistry,

45, 353–363.

Pathak, A., Aslaoui, J. & Morin, C. (2005).J. Org. Chem.70, 4184–4187. Sheldrick, G. M. (1994).SHELXTL. Siemens Analytical X-ray Instruments

Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Siemens (1994).XSCANS.Version 2.10b. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Tanaka, J., Marriott, G. & Higa, T. (2001).J. Nat. Prod.64, 1468–1470. Tavanaiepour, I., Watson, W. H., Gao, F. & Mabrg, T. J. (1987).Acta Cryst.C43,

754–756.

Urones, J. G., Marcos, I. S., Basabe, P., Sexmero, M. J., Carrillo, H. & Melchor, M. J. (1994).Phytochemistry,37, 1359–1361.

Wang, W.-S., Li, E.-W. & Jia, Z.-J. (2002).Pharmazie,57, 343–345. Yang, C.-X., Zhang, Q. & Jia, Z.-J. (2005).Pharmazie,60, 461–463.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o762–o764

supporting information

Acta Cryst. (2006). E62, o762–o764 [https://doi.org/10.1107/S1600536806002418]

A rearranged labdane diterpene glycoside

Ying Zhu, Cai-Xia Yang and Zhong-Jian Jia

3-methyl-5-(1,2,5,5-tetramethyl-1,2,3,4,4a,5,6,7-octahydronaphthyl)pent- 1-en-3-yl 2-O

-acetylrhamnopyanoside

Crystal data

C28H46O6

Mr = 478.65

Monoclinic, P21

Hall symbol: P 2yb

a = 11.542 (2) Å

b = 8.793 (2) Å

c = 14.095 (2) Å

β = 102.14 (1)°

V = 1398.6 (4) Å3

Z = 2

F(000) = 524

Dx = 1.137 Mg m−3

Melting point: 420 K

Mo radiation, λ = 0.71073 Å Cell parameters from 42 reflections

θ = 2.7–14.3°

µ = 0.08 mm−1

T = 293 K Prism, colourless 0.58 × 0.40 × 0.16 mm

Data collection

Siemens P4 diffractometer

Radiation source: normal-focus sealed tube Graphite monochromator

ω scans

3583 measured reflections 3289 independent reflections 1841 reflections with I > 2σ(I)

Rint = 0.020

θmax = 27.1°, θmin = 1.5°

h = 0→14

k = 0→11

l = −18→17

3 standard reflections every 97 reflections intensity decay: 3.0%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.038

wR(F2) = 0.082

S = 0.81 3289 reflections 320 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.04P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.12 e Å−3

Δρmin = −0.13 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o762–o764

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o762–o764

C14 0.5238 (3) 0.8442 (5) 0.6929 (2) 0.0879 (13) H14 0.4703 0.9244 0.6880 0.105* C15 0.6204 (4) 0.8740 (7) 0.6682 (2) 0.153 (2) H15A 0.6778 0.7989 0.6713 0.183* H15B 0.6341 0.9711 0.6467 0.183* C16 0.5615 (3) 0.5616 (5) 0.7199 (2) 0.0840 (12) H16A 0.5260 0.4703 0.7380 0.101* H16B 0.6379 0.5757 0.7617 0.101* H16C 0.5704 0.5534 0.6538 0.101* C17 0.2378 (3) 0.4858 (4) 1.07661 (19) 0.0737 (10) H17A 0.1938 0.5771 1.0813 0.088* H17B 0.3074 0.4839 1.1278 0.088* H17C 0.1894 0.3989 1.0823 0.088* C18 −0.0106 (3) 0.8719 (5) 0.7529 (2) 0.0892 (12) H18A −0.0409 0.9678 0.7260 0.107* H18B −0.0668 0.8260 0.7856 0.107* H18C 0.0021 0.8061 0.7017 0.107* C19 0.1867 (3) 0.9969 (4) 0.7767 (2) 0.0823 (11) H19A 0.1974 0.9490 0.7179 0.099* H19B 0.2624 1.0097 0.8198 0.099* H19C 0.1502 1.0945 0.7617 0.099* C20 0.4563 (2) 0.6392 (4) 1.04927 (16) 0.0578 (8) H20A 0.5073 0.7193 1.0362 0.069* H20B 0.5002 0.5459 1.0604 0.069* H20C 0.4261 0.6645 1.1058 0.069* C21 0.3407 (3) 0.6435 (3) 0.57607 (18) 0.0548 (8) H21 0.3920 0.7092 0.5466 0.066* C22 0.2122 (2) 0.6891 (4) 0.53807 (16) 0.0549 (8) H22 0.1984 0.7924 0.5593 0.066* C23 0.1316 (2) 0.5784 (3) 0.57355 (18) 0.0505 (7) H23 0.1431 0.5914 0.6440 0.061* C24 0.1598 (3) 0.4157 (3) 0.55485 (18) 0.0550 (8) H24 0.1401 0.3948 0.4850 0.066* C25 0.2902 (3) 0.3835 (3) 0.5949 (2) 0.0556 (8) H25 0.3068 0.3956 0.6656 0.067* C26 0.3282 (3) 0.2264 (4) 0.5707 (3) 0.0904 (12) H26A 0.3122 0.2137 0.5015 0.109* H26B 0.2851 0.1515 0.5988 0.109* H26C 0.4116 0.2142 0.5964 0.109* C27 0.1794 (2) 0.8131 (4) 0.3839 (2) 0.0558 (7) C28 0.1572 (3) 0.7892 (4) 0.27674 (19) 0.0821 (11)

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o762–o764

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0516 (10) 0.0610 (12) 0.0327 (9) −0.0048 (10) 0.0052 (8) −0.0039 (9) O2 0.0761 (14) 0.0573 (13) 0.0489 (11) −0.0002 (12) 0.0209 (10) −0.0087 (10) O3 0.0878 (15) 0.0541 (14) 0.0628 (12) −0.0155 (13) 0.0174 (12) −0.0022 (11) O4 0.0597 (12) 0.0703 (15) 0.0749 (14) −0.0019 (12) −0.0037 (11) 0.0141 (12) O5 0.1016 (16) 0.0496 (12) 0.0336 (10) −0.0047 (13) 0.0044 (10) 0.0008 (10) O6 0.112 (2) 0.0550 (15) 0.0699 (14) −0.0109 (14) 0.0174 (13) 0.0052 (13) C1 0.0449 (18) 0.067 (2) 0.0507 (18) 0.0019 (17) 0.0093 (14) −0.0107 (17) C2 0.071 (2) 0.067 (2) 0.077 (2) 0.0081 (19) 0.0195 (17) −0.0248 (18) C3 0.063 (2) 0.071 (2) 0.0689 (19) 0.0255 (18) 0.0143 (16) −0.0085 (17) C4 0.0580 (19) 0.063 (2) 0.0517 (17) 0.0201 (17) 0.0089 (14) 0.0002 (15) C5 0.0426 (15) 0.0528 (17) 0.0413 (15) 0.0064 (14) 0.0090 (12) −0.0006 (12) C6 0.0419 (15) 0.068 (2) 0.0571 (17) −0.0033 (17) −0.0007 (13) 0.0011 (16) C7 0.0569 (18) 0.057 (2) 0.0642 (18) −0.0100 (16) 0.0175 (15) 0.0037 (16) C8 0.0474 (18) 0.057 (2) 0.0527 (16) 0.0059 (15) 0.0122 (14) 0.0149 (14) C9 0.0351 (13) 0.0522 (17) 0.0359 (13) 0.0009 (14) 0.0071 (11) 0.0053 (12) C10 0.0373 (14) 0.0529 (18) 0.0384 (14) −0.0008 (13) 0.0124 (12) 0.0016 (13) C11 0.0405 (14) 0.0490 (17) 0.0447 (14) 0.0090 (14) 0.0077 (11) 0.0029 (13) C12 0.0438 (14) 0.066 (2) 0.0364 (14) −0.0014 (15) 0.0102 (12) −0.0020 (14) C13 0.0440 (15) 0.075 (2) 0.0406 (14) −0.0078 (17) 0.0139 (12) −0.0028 (15) C14 0.091 (3) 0.126 (4) 0.0501 (19) −0.055 (3) 0.0228 (18) −0.007 (2) C15 0.178 (4) 0.221 (6) 0.070 (2) −0.111 (5) 0.050 (3) −0.018 (3) C16 0.059 (2) 0.135 (4) 0.062 (2) 0.023 (2) 0.0213 (16) −0.011 (2) C17 0.0625 (19) 0.102 (3) 0.0606 (18) 0.001 (2) 0.0217 (15) 0.0252 (19) C18 0.081 (2) 0.100 (3) 0.074 (2) 0.051 (2) −0.0107 (18) −0.002 (2) C19 0.109 (3) 0.066 (2) 0.077 (2) 0.028 (2) 0.032 (2) 0.0172 (19) C20 0.0500 (16) 0.077 (2) 0.0438 (15) 0.0086 (16) 0.0047 (12) 0.0054 (15) C21 0.0685 (19) 0.058 (2) 0.0384 (15) −0.0054 (17) 0.0117 (14) −0.0060 (14) C22 0.077 (2) 0.0517 (18) 0.0313 (14) −0.0003 (18) 0.0016 (13) −0.0042 (14) C23 0.0582 (17) 0.0508 (19) 0.0378 (14) 0.0008 (16) −0.0009 (13) 0.0004 (14) C24 0.076 (2) 0.0504 (19) 0.0365 (15) −0.0062 (17) 0.0066 (14) −0.0028 (13) C25 0.074 (2) 0.0473 (19) 0.0487 (16) 0.0012 (17) 0.0202 (15) −0.0021 (14) C26 0.115 (3) 0.063 (3) 0.101 (3) 0.010 (2) 0.041 (2) −0.004 (2) C27 0.0613 (18) 0.053 (2) 0.0509 (17) −0.0127 (17) 0.0075 (14) 0.0059 (17) C28 0.117 (3) 0.078 (2) 0.0457 (18) −0.021 (2) 0.0045 (18) 0.0153 (17)

Geometric parameters (Å, º)

O1—C21 1.407 (3) C12—H12B 0.970

O1—C13 1.455 (3) C13—C16 1.509 (4)

O2—C21 1.403 (3) C13—C14 1.512 (5)

O2—C25 1.444 (3) C14—C15 1.264 (4)

O3—C24 1.437 (3) C14—H14 0.930

O3—H3O 0.820 C15—H15A 0.930

O4—C23 1.429 (3) C15—H15B 0.930

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o762–o764

O5—C27 1.335 (4) C16—H16B 0.960

O5—C22 1.454 (3) C16—H16C 0.960

O6—C27 1.198 (4) C17—H17A 0.960

C1—C10 1.328 (4) C17—H17B 0.960

C1—C2 1.493 (4) C17—H17C 0.960

C1—H1 0.943 (10) C18—H18A 0.960

C2—C3 1.526 (4) C18—H18B 0.960

C2—H2A 0.970 C18—H18C 0.960

C2—H2B 0.970 C19—H19A 0.960

C3—C4 1.532 (4) C19—H19B 0.960

C3—H3A 0.970 C19—H19C 0.960

C3—H3B 0.970 C20—H20A 0.960

C4—C19 1.533 (4) C20—H20B 0.960

C4—C18 1.538 (4) C20—H20C 0.960

C4—C5 1.542 (4) C21—C22 1.521 (4)

C5—C10 1.517 (3) C21—H21 0.980

C5—C6 1.526 (4) C22—C23 1.503 (4)

C5—H5 0.980 C22—H22 0.980

C6—C7 1.526 (4) C23—C24 1.503 (4)

C6—H6A 0.970 C23—H23 0.980

C6—H6B 0.970 C24—C25 1.519 (4)

C7—C8 1.537 (4) C24—H24 0.980

C7—H7A 0.970 C25—C26 1.510 (4)

C7—H7B 0.970 C25—H25 0.980

C8—C17 1.534 (3) C26—H26A 0.960

C8—C9 1.561 (4) C26—H26B 0.960

C8—H8 0.980 C26—H26C 0.960

C9—C10 1.521 (4) C27—C28 1.492 (4)

C9—C20 1.532 (3) C28—H28A 0.960

C9—C11 1.550 (3) C28—H28B 0.960

C11—C12 1.525 (4) C28—H28C 0.960

C11—H11A 0.970 C28—H28D 0.960

C11—H11B 0.970 C28—H28E 0.960

C12—C13 1.538 (3) C28—H28F 0.960

C12—H12A 0.970

C21—O1—C13 119.29 (19) H15A—C15—H15B 120.0 C21—O2—C25 114.0 (2) C13—C16—H16A 109.5 C24—O3—H3O 109.5 C13—C16—H16B 109.5 C23—O4—H4O 109.5 H16A—C16—H16B 109.5 C27—O5—C22 117.9 (2) C13—C16—H16C 109.5 C10—C1—C2 125.4 (3) H16A—C16—H16C 109.5 C10—C1—H1 117.6 (17) H16B—C16—H16C 109.5 C2—C1—H1 117.0 (17) C8—C17—H17A 109.5 C1—C2—C3 111.5 (3) C8—C17—H17B 109.5 C1—C2—H2A 109.3 H17A—C17—H17B 109.5

C3—C2—H2A 109.3 C8—C17—H17C 109.5

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o762–o764

C3—C2—H2B 109.3 H17B—C17—H17C 109.5 H2A—C2—H2B 108.0 C4—C18—H18A 109.5 C2—C3—C4 112.0 (2) C4—C18—H18B 109.5 C2—C3—H3A 109.2 H18A—C18—H18B 109.5

C4—C3—H3A 109.2 C4—C18—H18C 109.5

C2—C3—H3B 109.2 H18A—C18—H18C 109.5 C4—C3—H3B 109.2 H18B—C18—H18C 109.5 H3A—C3—H3B 107.9 C4—C19—H19A 109.5 C3—C4—C19 109.7 (3) C4—C19—H19B 109.5 C3—C4—C18 109.8 (2) H19A—C19—H19B 109.5 C19—C4—C18 108.2 (3) C4—C19—H19C 109.5 C3—C4—C5 109.0 (2) H19A—C19—H19C 109.5 C19—C4—C5 108.8 (2) H19B—C19—H19C 109.5 C18—C4—C5 111.2 (3) C9—C20—H20A 109.5 C10—C5—C6 107.7 (2) C9—C20—H20B 109.5 C10—C5—C4 113.3 (2) H20A—C20—H20B 109.5 C6—C5—C4 116.2 (2) C9—C20—H20C 109.5 C10—C5—H5 106.3 H20A—C20—H20C 109.5 C6—C5—H5 106.3 H20B—C20—H20C 109.5

C4—C5—H5 106.3 O2—C21—O1 112.7 (2)

C5—C6—C7 111.7 (2) O2—C21—C22 111.7 (2) C5—C6—H6A 109.3 O1—C21—C22 105.1 (2)

C7—C6—H6A 109.3 O2—C21—H21 109.1

C5—C6—H6B 109.3 O1—C21—H21 109.1

C7—C6—H6B 109.3 C22—C21—H21 109.1

H6A—C6—H6B 107.9 O5—C22—C23 108.7 (2) C6—C7—C8 113.9 (2) O5—C22—C21 107.5 (2) C6—C7—H7A 108.8 C23—C22—C21 109.8 (2)

C8—C7—H7A 108.8 O5—C22—H22 110.3

C6—C7—H7B 108.8 C23—C22—H22 110.3

C8—C7—H7B 108.8 C21—C22—H22 110.3

H7A—C7—H7B 107.7 O4—C23—C24 112.2 (2) C17—C8—C7 109.7 (2) O4—C23—C22 109.2 (2) C17—C8—C9 113.0 (2) C24—C23—C22 112.7 (2) C7—C8—C9 112.1 (2) O4—C23—H23 107.5

C17—C8—H8 107.3 C24—C23—H23 107.5

C7—C8—H8 107.3 C22—C23—H23 107.5

(10)

supporting information

sup-7

Acta Cryst. (2006). E62, o762–o764

C12—C11—H11A 108.4 C24—C25—H25 108.9 C9—C11—H11A 108.4 C25—C26—H26A 109.5 C12—C11—H11B 108.4 C25—C26—H26B 109.5 C9—C11—H11B 108.4 H26A—C26—H26B 109.5 H11A—C11—H11B 107.5 C25—C26—H26C 109.5 C11—C12—C13 114.0 (2) H26A—C26—H26C 109.5 C11—C12—H12A 108.8 H26B—C26—H26C 109.5 C13—C12—H12A 108.8 O6—C27—O5 123.1 (3) C11—C12—H12B 108.8 O6—C27—C28 124.7 (3) C13—C12—H12B 108.8 O5—C27—C28 112.2 (3) H12A—C12—H12B 107.7 C27—C28—H28A 109.5 O1—C13—C16 111.7 (3) C27—C28—H28B 109.5 O1—C13—C14 106.4 (2) H28A—C28—H28B 109.5 C16—C13—C14 114.3 (3) C27—C28—H28C 109.5 O1—C13—C12 102.89 (18) H28A—C28—H28C 109.5 C16—C13—C12 111.7 (2) H28B—C28—H28C 109.5 C14—C13—C12 109.3 (3) C27—C28—H28D 109.5 C15—C14—C13 128.8 (5) C27—C28—H28E 109.5 C15—C14—H14 115.6 H28D—C28—H28E 109.5 C13—C14—H14 115.6 C27—C28—H28F 109.5 C14—C15—H15A 120.0 H28D—C28—H28F 109.5 C14—C15—H15B 120.0 H28E—C28—H28F 109.5

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, o762–o764

C4—C5—C10—C1 17.8 (3) C22—C23—C24—O3 172.2 (2) C6—C5—C10—C9 62.0 (3) O4—C23—C24—C25 176.6 (2) C4—C5—C10—C9 −168.0 (2) C22—C23—C24—C25 52.8 (3) C20—C9—C10—C1 −7.7 (4) C21—O2—C25—C26 −176.4 (2) C11—C9—C10—C1 −127.9 (3) C21—O2—C25—C24 60.2 (3) C8—C9—C10—C1 114.5 (3) O3—C24—C25—O2 −172.3 (2) C20—C9—C10—C5 178.3 (2) C23—C24—C25—O2 −55.0 (3) C11—C9—C10—C5 58.1 (3) O3—C24—C25—C26 68.1 (3) C8—C9—C10—C5 −59.5 (3) C23—C24—C25—C26 −174.5 (2) C10—C9—C11—C12 51.7 (3) C22—O5—C27—O6 −0.6 (4) C20—C9—C11—C12 −72.4 (3) C22—O5—C27—C28 179.6 (2) C8—C9—C11—C12 169.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3O···O4i 0.82 1.91 2.714 (3) 165

O4—H4O···O6i 0.82 2.17 2.968 (3) 163

Figure

Figure 2

References

Related documents

Thus, in- stead of incorporating news topics as model in- put, we propose to learn topic-aware news encoder which can extract topic information from news ti- tles by jointly training

Figure 1: An example of gender bias in machine trans- lation from English (top) to Spanish (bottom). In the English source sentence, the nurse’s gender is un- known, while

Second, we date these business cycles, for the first time in the literature, and identify clusters of regions with similar business cycle behavior, using Finite Mixture Markov

In this paper, we design the methods for es- timating marginal distribution for data in NLG and NLU tasks: language modeling is utilized for sequential data (natural

Muscle activation of 6 shoulder muscles, namely: clavicular fibers of Pectoralis Major (PM); Biceps (BB); Supraspinatus (SS), Infraspinatus (IS), Upper Trapezius (UT) and

Because de facto states can’t win independence struggle against thier parent state without an external support, their patron states’ involvement would become inevitable. Such

In addition, in a meta-analysis of hepatic metastases from cancers of the gastrointestinal tract, Kinkel K et al., reported a mean sensitivity of 72% for CT, based on 25

and negative shock in energy consumption affect economic growth positively and negatively but.. negative shock in energy consumption has