• No results found

Adaptation to climate change and thermal comfort

N/A
N/A
Protected

Academic year: 2021

Share "Adaptation to climate change and thermal comfort"

Copied!
259
0
0

Loading.... (view fulltext now)

Full text

(1)

 

 

 

 

 

Adaptation  to  Climate  Change  and  

Thermal  Comfort  

 

Investigating  Adaptation  and  Mitigation  Strategies  for  

Kerman,  Iran,  Based  on  Traditional  Iranian  Urbanism  and  

the  German  Experiences  in  the  Ruhr  

 

 

 

 

 

 

 

A  dissertation  submitted  to  the:  

 

Faculty  of  Spatial  Planning  

Dortmund  University  of  Technology  (TU  Dortmund)  

 

 

 

By  

 

Danial  Monsefi  Parapari  

 

 

 

In  fulfillment  of  the  requirements  for  the  degree  of  

Doctor  of  Engineering  (Dr.  Ing.)  

(2)

 

Doctoral  Committee  

 

 

 

 

Supervisor:  Prof.  Dipl.  –Ing.  Christa  Reicher  

 

TU  Dortmund  

 

 

Supervisor:  Prof.  Dr.  –Ing.  Dietwald  Gruehn  

 

TU  Dortmund  

 

 

Examiner:  Dr.  –Ing.  Mehdi  Vazifedoost  

 

TU  Dortmund  

 

 

 

Date  of  Defense:  February  18

th

,  2015  

(3)

 

Acknowledgement  

   

I   would   like   to   express   my   special   appreciation   and   thanks   to   my   supervisors,   Prof.   Christa   Reicher   and   Prof.   Dietwald   Gruehn,   who   have   been   tremendous   mentors   for   me.   I   would   like   to   thank   you   for   encouraging   my   research  and  for  allowing  me  to  grow  as  a  researcher.  I  would  also  like  to  thank   Dr.  –Ing.  Mehdi  Vazifedoost  for  serving  as  my  examiner.  

I  would  also  like  to  express  my  gratitude  to  DAAD  for  the  financial  aid  that   made  this  research  possible.  I  am  grateful  to  Prof.  Fazia  Ali-­‐Toudert,  with  whom  I   had  several  consultations.  I  would  like  to  thank  Ms.  Tara  Jalali  who  assisted  with   the  data  collection  in  Iran.    

My  time  in  Dortmund  was  made  enjoyable  in  large  part  due  to  the  many   friends   and   colleagues   that   became   a   part   of   my   life,   especially   Mohammad   Bashirizadeh  and  Sina  Kazemi,  who  shared  many  joyful  experiences  with  me.  

Especial   thanks   and   appreciation   go   to   my   aunt,   Gilan,   and   her   family,   who   supported   me   in   all   aspects   during   my   stay   in   Europe.   Words   cannot   express  how  grateful  I  am  to  my  family,  my  amazing  brothers  Adel  and  Fazel,  and   my  adorable  sister,  Ghazal.    

Lastly   and   most   of   all,   I   would   like   to   thank   my   loving,   supporting,   encouraging  and  patient  mother,  Azam,  whose  faithful  support  during  all  stages   of  this  research  is  much  appreciated.  Thank  you.  

To  my  late  father,  who  unfortunately  didn't  stay  in  this  world  long  enough   to  see  his  son  become  a  doctor.  

Danial  Monsefi  Parapari   TU  Dortmund  

February  2015  

(4)

Figure  1:  Research  Roadmap  _____________________________________________________________________________  5   Figure  2:  Increasing  historic  concentrations  (parts  per  million)  of  CO2  in  the  global  atmosphere.  The   line  thickness  indicates  uncertainty  in  the  concentrations.  (Source:  IPCC  from  (Roaf,  Crichton  and   Nicol  2009))  _______________________________________________________________________________________________  7   Figure  3:  Various  impacts  of  different  land  uses  on  diurnal  and  nocturnal  temperature  (NC  State   University  2013)  __________________________________________________________________________________________  26   Figure  4:  The  components  in  the  human  heat  balance  (VDI  2008)  ____________________________________  31   Figure  5:  PPD  in  relation  to  PMV  (Source:  (Olesen  1982))  _____________________________________________  37   Figure  6:  Effect  of  adaptive  opportunity:  The  greater  the  opportunity  to  control  the  environment,   the  less  likelihood  of  thermal  stress  (Source:  Baker  and  Standeven,  1995,  cited  in  Roaf  et  al.  2009)  39   Figure  7:  Analysis  and  Conclusion  workflow  ____________________________________________________________  49   Figure  8:  Main  interface  of  RayMan  (Source:  (Matzarakis  and  Rutz  2005))  __________________________  53   Figure  9:  Example  of  sun  path  (left)  and  shadow  (right)  for  June  21  for  a  complex  environment   (Source:  (Matzarakis  and  Rutz  2005))  __________________________________________________________________  54   Figure  10:  Gabri  Gate  (Source:  (NLIA  2013))  ___________________________________________________________  61   Figure  11:  Aerial  view  of  Kerman  (Source:  Google  Maps  2014)   _______________________________________  62   Figure  12:  Ruins  in  the  heart  of  city  (Source:  Author)  __________________________________________________  62   Figure  13:  The  main  traditional  commercial  roads  (Source:  (Habibi  1997))  _________________________  63   Figure  14:  Urban  Master  Plan  of  Kerman  (Source:  Sharestan  Consultant  Engineers)  ________________  67   Figure  15:  Mean  Temperature  ___________________________________________________________________________  70   Figure  16:  Total  Annual  Precipitation  in  mm  ___________________________________________________________  70   Figure  17:  Mean  Minimum  Temperature  _______________________________________________________________  70   Figure  18:  Mean  Maximum  Temperature  _______________________________________________________________  71   Figure  19:  Annual  Number  of  Hot  Days  _________________________________________________________________  71   Figure  20:  Annual  Number  of  Freeze  Days  ______________________________________________________________  71   Figure  21:  The  location  of  the  Ruhr  region  in  German  (Source:  (Ruhr  City  2010))  ___________________  79   Figure  22:  The  Ruhr  administration  (Source:  (Ullrich  2004))  _________________________________________  80   Figure  23:    Mixture  of  urban  spaces  and  green  landscapes  in  Ruhr  (Source:  (Reicher,  et  al.  2011))   84   Figure  24:  Road  and  Rail  Network  in  the  Ruhr  (Source:  Reicher  et.  al.  2011)  ________________________  86   Figure  25:  Barriers  in  the  built  environment  (Source:  (Reicher,  et  al.  2011))   ________________________  87   Figure  26:  Saabaat  (Source:  (Hamshahri  2013))  _______________________________________________________  93   Figure  27:  Posht  Band  (Source:  (Tebyan  2011))  ________________________________________________________  94   Figure  28:  Naghsh-­‐e  Jahan  Square  ______________________________________________________________________  94   Figure  29:  Ganjali  Khan  Square  in  Kerman  (Source:  (Sadeghi  2010))  ________________________________  95   Figure  30:  Bazaar  of  Isfahan  and  its  surrounding  spaces  (Source:  Masoudi  Nejad  2005)  ___________  96   Figure  31:  The  Global  Integration  (Rn)  map  of  Kerman  (Source:  Karimi  1997)  ______________________  97   Figure  32:  Openings  in  the  vertical  partition  (Credits:  Bahram  Ardabili)  _____________________________  98   Figure  33:  Under  the  dome  of  Charsouq  in  Kerman  (Source:  (Parsi  Patogh  Foundation  2011))  ____  98   Figure  34:  Bazaar  -­‐e  Qalle  (Source:  (Tebyan  2011))  ___________________________________________________  99   Figure  35:  Section  of  an  important  part  of  Bazaar  with  higher  roof  (Source:  (Tebyan  2011))  ______  99   Figure  36:  The  Grand  Tim  in  Qom  Bazaar  (Source:  (Faculty  Members  1999))  _____________________  101   Figure  37:  Aminol  Dole  Timche  in  Kashan  Bazaar  (Source:  (Iranian  Virtual  City  2009))  __________  101   Figure  38:  Plan  and  section  view  of  Fahraj  Friday  Mosque  (Source:  Personal  Archive)  ____________  102   Figure  39:  Four  Iwan  courtyard  structure  (Source:  Ahmad  Hosseinzadeh)  _________________________  104   Figure  40:  Courtyard  of  Isfahan  Friday  Mosque  (Source:  (Roghayeh  2012))  _______________________  104   Figure  41:  Shabestan  at  the  Friday  Mosque  of  Isfahan  (Source:  (Roghayeh  2012))  ________________  105  

(5)

Figure  42:  Winter  Shabestan  at  the  Friday  Mosque  of  Isfahan  (Source:  (Arianica  Foundation  2010))   __________________________________________________________________________________________________________  105   Figure  43:  Perspective  of  Aqa  Bozorg  Madrasa  in  Kashan  (Source:  Personal  Archives)   ___________  106   Figure  44:  Aqa  Bozorg  Mosque  and  Madrasa  Complex  in  Kashan  (Source:  (Roghayeh  2012))  ____  107   Figure  45:  The  Grand  Hussainia  of  Zavareh  (Source:  panoramio.com)  _____________________________  109   Figure  46:  Qajar  Hammam  in  Qazvin  (source:  Mirzaie,  E.)  __________________________________________  110   Figure  47:  Section  of  a  public  bath  (Source:  (Ghoolabad  2010))  ____________________________________  111   Figure  48:  First  Hall  of  Ganjali  Khan  Bath  in  Kerman  (Source:  (Alfaee  2009))  _____________________  112   Figure  49:  Stairway  and  windcatchers  of  an  Ab-­‐anbar  in  Yazd  (Source:  (Alfaee  2009))  ___________  113   Figure  50:  Section  and  plan  view  of  Khan  Ab-­‐anbar  (Source:  (Ghoolabad  2010))  __________________  114   Figure  51:  Section  and  plan  view  of  an  Ab-­‐anbar  in  Yazd  with  6  windcatchers  (Source:  (Ghoolabad   2010))  ___________________________________________________________________________________________________  115   Figure  52:  Sedari in Laariha house (Source: panoramio.com)  ________________________________________  118   Figure  53:  Windcatchers  in  the  skyline  of  Yazd  (Source:  Albert  Videt)  ______________________________  119   Figure  54:  Talar  and  Windcatcher  of  Laariha  House  (Source:  Shabnam    Sarboni)   ________________  120   Figure  55:  Section  of  a  windcatcher  in  Yazd  (Source:  M.  Abolfazli)  _________________________________  121   Figure  57:  Protection  of  cold  air  production  area  from  further  development  (RVR  2006)  _________  135   Figure  58:  Prevention  of  convergence  of  two  settlement  areas  (RVR  2006)  ________________________  135   Figure  59:  Permeable  blocks  (left)  against  slab  buildings  (right).  (Wirtschaftministerium  Baden-­‐ Württemberg  2008)  ____________________________________________________________________________________  139   Figure  60:  Pilot  region  boundaries  (source:  www.icruhr.de)  ________________________________________  145   Figure  61:  Streets  with  high  priority  for  tree  planting  (Source:  (ARGE  IC  Ruhr  2013))  ____________  172   Figure  62:  Plan  of  a  typical  neighborhood  section  ____________________________________________________  176   Figure  63:  Eastward  street  profile  _____________________________________________________________________  177   Figure  64:  Plan  view  of  modeled  area  _________________________________________________________________  177   Figure  65:    Modeled  orientations  ______________________________________________________________________  178   Figure  66:  ENVI-­‐met  model  of  street-­‐side  building  configuration  ___________________________________  180   Figure  67:  Profile  of  a  typical  street  with  water  canals  ______________________________________________  181   Figure  68:  PET  values  for  various  H/W  ratios  throughout  the  day  in  the  middle  of  an  East  –West   Street  ____________________________________________________________________________________________________  183   Figure  69:  PET  values  for  various  H/W  ratios  throughout  the  day  in  Southern  Sidewalk  of  an  East  – West  Street  ______________________________________________________________________________________________  183   Figure  70:  PET  values  for  various  H/W  ratios  throughout  the  day  in  Northern  Sidewalk  of  an  East  – West  Street  ______________________________________________________________________________________________  184   Figure  71:  PET  values  for  various  H/W  ratios  throughout  the  day  in  the  middle  of  a  North-­‐South   Street  ____________________________________________________________________________________________________  184   Figure  72:  PET  values  for  various  H/W  ratios  throughout  the  day  in  Western  Sidewalk  of  a  North-­‐ South  Street  _____________________________________________________________________________________________  185   Figure  73:  PET  values  for  various  H/W  ratios  throughout  the  day  in  Eastern  Sidewalk  of  a  North-­‐ South  Street  _____________________________________________________________________________________________  185   Figure  74:  PET  values  for  Rotated  and  Straight  grid  alternatives,  East-­‐West  Street,  Middle  Receptor   __________________________________________________________________________________________________________  186   Figure  75:  PET  values  for  Rotated  and  Straight  grid  alternatives,  East-­‐West  Street,  Southern  

Sidewalk  ________________________________________________________________________________________________  187   Figure  76:  PET  values  for  Rotated  and  Straight  grid  alternatives,  East-­‐West  Street,  Northern   Sidewalk  ________________________________________________________________________________________________  187  

(6)

Figure  77:  PET  values  for  Rotated  and  Straight  grid  alternatives,  North-­‐South  Street,  Middle  

Receptor   ________________________________________________________________________________________________  188   Figure  78:  PET  values  for  Rotated  and  Straight  grid  alternatives,  North-­‐South  Street,  Western   Sidewalk  ________________________________________________________________________________________________  188   Figure  79:  PET  values  for  Rotated  and  Straight  grid  alternatives,  North-­‐South  Street,  Eastern   Sidewalk  ________________________________________________________________________________________________  189   Figure  80:  PET  values  during  the  day  for  various  material  reflectivity  values,  Middle  Receptor  __  190   Figure  81:  PET  values  during  the  day  for  various  material  reflectivity  values,  Southern  Sidewalk  190   Figure  82:  PET  values  during  the  day  for  various  material  reflectivity  values,  Northern  Sidewalk  191   Figure  83:  PET  values  during  the  day  for  various  material  conductivity  values,  Middle  Receptor  _  192   Figure  84:  PET  values  during  the  day  for  various  material  reflectivity  values,  Southern  Sidewalk  193   Figure  85:  PET  values  during  the  day  for  various  material  reflectivity  values,  Northern  Sidewalk  193   Figure  86:  PET  Values  for  various  plot  coverage  styles,  Middle  Receptor  ___________________________  194   Figure  87:  PET  Values  for  various  plot  coverage  styles,  Southern  Sidewalk  ________________________  194   Figure  88:  PET  Values  for  various  plot  coverage  styles,  Northern  Sidewalk  ________________________  195   Figure  89:  PET  values  throughout  the  day,  with  and  without  Balconies,  Middle  Receptor  _________  196   Figure  90:  PET  values  throughout  the  day,  with  and  without  Balconies,  Southern  Sidewalk  ______  196   Figure  91:  PET  values  throughout  the  day,  with  and  without  Balconies,  Northern  Sidewalk  ______  197   Figure  92:  PET  values  throughout  the  day,  with  and  without  Vegetation,  Middle  Receptor  _______  198   Figure  93:  PET  values  throughout  the  day,  with  and  without  Vegetation,  Southern  Sidewalk   ____  198   Figure  94:  PET  values  throughout  the  day,  with  and  without  Vegetation,  Northern  Sidewalk  ____  199   Figure  95:  PET  values,  basic  and  enhanced  urban  configurations,  East-­‐West  canyon,  Middle  

Receptor   ________________________________________________________________________________________________  200   Figure  96:  PET  values,  Basic  and  enhanced  urban  configurations,  East-­‐West  canyon,  Southern   sidewalk  _________________________________________________________________________________________________  201   Figure  97:  PET  values,  Basic  and  enhanced  urban  configurations,  East-­‐West  canyon,  Northern   sidewalk  _________________________________________________________________________________________________  201   Figure  98:  PET  values,  Basic  and  Enhanced  urban  settings,  North-­‐South  canyon,  Middle  Receptor   __________________________________________________________________________________________________________  202   Figure  99:  PET  values,  Basic  and  enhanced  urban  settings,  North-­‐South  canyon,  Western  sidewalk   __________________________________________________________________________________________________________  202   Figure  100:  PET  values,  Basic  and  enhanced  urban  settings,  North-­‐South  canyon,  Eastern  sidewalk   __________________________________________________________________________________________________________  203   Figure  101:  Average  solar  radiation  per  day  in  Iran  (source:  www.suna.org.ir)  ___________________  205   Figure  102:  Average  Annual  Solar  Irradiation   _______________________________________________________  205   Figure  103:  Solar  Water  Heaters  in  Jiroft  (Source:  mehr-­‐abad.ir)  ___________________________________  211   Figure  104:  Suitable  spots  for  Concentrating  Solar  Thermal  Power  (Source:  (Desertec  Foundation   2011))  ___________________________________________________________________________________________________  219   Figure  105:  Culture  of  Cheap  Fuel;  Water  heater  is  installed  in  the  balcony  (Source:  Author)  ____  226  

 

(7)

Table  1:  ASHRAE  thermal  sensation  index  ______________________________________________________________  36   Table  2:  Observed  climatic  data  for  the  preliminary  model  ____________________________________________  56   Table  3:  Input  assumptions  ______________________________________________________________________________  58   Table  4:  Scenarios  ________________________________________________________________________________________  59   Table  5:  Maximum  allowed  building  heights   ___________________________________________________________  66   Table  6:  Temperature  readings  in  Kerman  (Source:  Department  of  Meteorology)  ___________________  69   Table  7:  Summary  Table  of  appropriate  adaptation  solutions  in  the  problem  field  "heat  stress",   urban  climate  aspects  __________________________________________________________________________________  127   Table  8:  Summary  Table  of  appropriate  adaptation  solutions  in  the  problem  field  "heat  stress",   urban  water  management  aspects  ____________________________________________________________________  129   Table  9:    Summary  Table  of  appropriate  adaptation  solutions  in  the  problem  field  "Extreme  

Precipitation"  ___________________________________________________________________________________________  130   Table  10:  Summary  Table  of  appropriate  adaptation  solutions  in  the  problem  field  "Dry  periods"  132   Table  11:  Development  goals  and  strategies  __________________________________________________________  147   Table  12:  Surface  reflectivity  __________________________________________________________________________  179   Table  13:  Material  thermal  conductivity  ______________________________________________________________  179   Table  14:  Average  PET  values  for  East-­‐West  streets  for  different  H/W  ratios  ______________________  184   Table  15:  Average  PET  values  for  North-­‐South  streets  for  different  H/W  ratios   ___________________  186   Table  16:  Average  PET  values  for  East-­‐West  streets  rotation  ________________________________________  187   Table  17:  Average  PET  values  for  North-­‐South  streets  rotation  _____________________________________  189   Table  18:  Average  PET  values  for  different  levels  of  reflectivity  _____________________________________  191   Table  19:  Average  PET  values  for  different  levels  of  conductivity  ___________________________________  193   Table  20:  Average  PET  values  for  alternatives  in  plot  coverage  _____________________________________  195   Table  21:  Average  PET  values  for  alternatives  in  balconies  __________________________________________  197   Table  22:  Average  PET  values  for  alternatives  concerning  vegetation  ______________________________  199   Table  23:  Model  properties  for  optimized  alternative  simulations  __________________________________  200   Table  24:  Average  daytime  PET  values  for  Basic  and  Optimized  settings  in  East-­‐West  canyons   __  201   Table  25:  Average  daytime  PET  values  for  Basic  and  Optimized  settings  in  North-­‐South  canyons   203   Table  26:  RETScreen  results  ___________________________________________________________________________  209   Table  27:  Costs-­‐effectiveness  of  Solar  Water  Heating  ________________________________________________  210   Table  28:  German  Feed-­‐in  Tariffs  in  2013  (Source:  www.germanenergyblog.de)  __________________  213   Table  29:  German  Feed-­‐in  Tariffs  for  Photovoltaic  energy  in  2013  (Source:  germanenergyblog.de)   __________________________________________________________________________________________________________  213   Table  30:  Metabolic  rate  and  mechanical  efficiency  for  different  activities  (Source:  Fanger  1972)246   Table  31:  Albedo  and  Absorptivity  of  typical  urban  surface  materials  (cited  in  Johansson  2006)  _  247   Table  32:  Volumetric  heat  capacity,  thermal  conductivity  and  thermal  admittance  values  of  typical   materials  (Sources:  (Johansson  2006)  and  (P.  Fanger  1973))  _______________________________________  247  

 

 

 

 

 

(8)

 

CHAPTER  1:  INTRODUCTION   1  

1.1.   BACKGROUND  AND  CONTEXT  TO  THIS  STUDY   1  

1.2.   AIMS  OF  THIS  RESEARCH   3  

1.3.   STRUCTURE  OF  THE  THESIS   3  

CHAPTER  2:  THEORETICAL  BACKGROUND   6  

2.1.   CLIMATE  CHANGE  AND  ITS  IMPACTS   6  

2.1.1.   PEAK  OIL   10  

2.1.2.   RISK  AND  VULNERABILITY   11  

2.1.3.   ADAPTATION   12  

2.1.4.   MITIGATION   17  

2.1.5.   RESILIENCE  AND  ADAPTIVE  CAPACITY   18  

2.1.6.   MAINSTREAMING   20  

2.1.7.   LIMITS  AND  BARRIERS  TO  ADAPTATION   21   2.1.8.   FOUR  SCENARIOS  IN  PEAK  OIL   23  

2.2.   URBAN  CLIMATE   24  

2.2.1.   URBANIZATION  AND  CLIMATE  CHANGE   24  

2.2.2.   URBAN  HEAT  ISLAND   25  

2.2.2.1.   Definition  and  causes   25  

2.2.2.2.   Impacts  of  UHI   27  

2.2.2.3.   UHI  Mitigation  strategies   27  

2.3.   CLIMATE  AND  COMFORT   29  

2.3.1.   TEMPERATURE  AND  RELATIVE  HUMIDITY   33  

2.3.2.   SOLAR  RADIATION   34  

2.3.3.   PRECIPITATION   34  

2.3.4.   WIND  AND  AIR  SPEED   34  

2.3.5.   MEAN  RADIANT  TEMPERATURE   34  

2.4.   HUMAN  COMFORT  INDICATORS   36  

2.5.   CLIMATE  CHANGE  AND  THERMAL  COMFORT   38  

2.5.1.   URBAN  CLIMATE  FEATURES   39  

2.5.1.1.   Urban  form  and  surface  materials   39   2.5.1.2.   Vegetation  and  green  spaces  in  urban  areas   40  

2.6.   URBAN  CLIMATE  ADAPTATION  MEASURES   40  

CHAPTER  3:  RESEARCH  PROBLEMS,  QUESTIONS  AND  GOALS   43  

3.1.   RESEARCH  PROBLEMS   43  

3.1.1.   NEGATIVE  IMPACTS  OF  CLIMATE  CHANGE  ON  HUMAN  THERMAL  COMFORT   43   3.1.2.   ABSENCE  OF  CLIMATE  CONSIDERATIONS  IN  URBAN  PLANNING  AND  DESIGN   44   3.2.   RESEARCH  AIMS  AND  QUESTIONS   45  

(9)

3.3.   RESEARCH  SCOPE  AND  LIMITATIONS   45  

CHAPTER  4:  RESEARCH  METHODS  AND  DATA   47  

4.1.   RESEARCH  METHODOLOGY   47  

4.2.   OBSTACLES  IN  RESEARCH   48  

4.3.   LITERATURE  REVIEW  AND  QUALITATIVE  STUDY   49  

4.4.   URBAN  CLIMATE  AND  HUMAN  THERMAL  COMFORT  SIMULATIONS   51  

4.4.1.   MICRO  CLIMATE  ANALYSIS   52  

4.4.1.1.   Envi-­‐met   52  

4.4.1.2.   RayMan   53  

4.5.   MODEL  CALIBRATION   55  

4.6.   CALCULATIONS  OF  HUMAN  THERMAL  COMFORT  INDICES   56  

4.7.   ENERGY  PRODUCTION  SIMULATIONS   57  

4.7.1.   RETSCREEN   57  

CHAPTER  5:  CASE  STUDIES   60  

5.1.   KERMAN,  IRAN   60  

5.1.1.   GEOGRAPHY  AND  HISTORY   60  

5.1.2.   URBAN  DESIGN  IN  KERMAN   63  

5.1.3.   CLIMATE  IN  KERMAN   68  

5.1.4.   DISASTER  MANAGEMENT  AND  RECOVERY  IN  KERMAN   72  

5.1.5.   CLIMATE  CHANGE  IN  IRAN   73  

5.1.6.   IRAN  AND  GHGS   76  

5.1.7.   GHGS  MITIGATION  POLICIES   76  

5.1.8.   GHGS  EMISSION  TRENDS   77  

5.1.9.   MITIGATION  SCENARIO  RESULTS   77  

5.2.   THE  RUHR,  GERMANY   78  

5.2.1.   GEOGRAPHY  AND  HISTORY   78  

5.2.2.   URBAN  STRUCTURE   84  

5.2.3.   BOTTROP   87  

CHAPTER  6:  ANALYSIS  AND  RESULTS  I   90  

6.   CLIMATE  RELATED  FEATURES  OF  IRANIAN  TRADITIONAL  ARCHITECTURE  AND  URBANISM  90  

6.1.   URBAN  FORMATION   91  

6.2.   IMPACTS  OF  CLIMATE  ON  EVOLUTION  OF  CITIES:   92  

6.3.   URBAN  CENTERS  AND  SPACES   94  

6.4.   NEIGHBORHOODS  AND  NEIGHBORHOOD  CENTERS   95  

6.5.   BAZAAR  AND  COMMERCIAL  STRUCTURES   96  

6.5.1.   BAZAARS  IN  HOT  AND  ARID  CLIMATE   97   6.5.2.   SARAA,  TIM,  AND  TIMCHE  IN  BAZAAR   100  

(10)

6.6.1.   MOSQUES  IN  HOT  AND  DRY  CLIMATE   101  

6.6.2.   MADRASA   105  

6.6.3.   MEYDAN,  TEKYEH  AND  HUSSAINIA   108  

6.7.   PUBLIC  BATHS   109  

6.7.1.   BATHS  IN  HOT  AND  DRY  CLIMATE   110  

6.8.   AB-­‐ANBAR   112  

6.9.   RESIDENTIAL  ARCHITECTURE   116  

6.9.1.   CHARACTERISTICS  OF  RESIDENTIAL  SPACES   120  

6.9.1.1.   Talar   120   6.9.1.2.   Windcatchers   120   6.9.1.3.   Entrance   121   6.9.1.4.   Courtyard   121   6.9.1.5.   Rooms   122   6.10.   CONCLUSION   124  

CHAPTER  7:  ANALYSIS  AND  RESULTS  II   125  

7.   ADAPTATION  AND  MITIGATION  IN  THE  RUHR   125  

7.1.   THE  URBAN  CLIMATE  HANDBOOK   125  

7.1.1.   BACKGROUND   125  

7.1.2.   TABLE  OF  STRATEGIES   127  

7.1.2.   DESCRIPTION  OF  STRATEGIES   133  

7.2.   INNOVATIONCITY  RUHR   144  

7.2.1.   HISTORY  AND  BACKGROUND   144  

7.2.2.   THE  MASTER  PLAN   145  

7.2.3.   TABLE  OF  STRATEGIES   147  

7.2.4.   DESCRIPTION  OF  STRATEGIES   149  

7.2.4.1.   ST  A:  Use  of  existing  land  resources  through  conversion  for  the  expansion  of   the  green  residential  areas  in  Bottrop:   149   7.2.4.2.   ST  B:  Protect,  renew  and  develop  the  economy  in  a  climate-­‐friendly  fashion   150  

7.2.4.3.   ST  C:  Redevelopment  and  extension  of  existing  public  buildings   153   7.2.4.4.   ST  D:  Promotion  of  mixed-­‐use  and  multi-­‐functional  areas   154   7.2.4.5.   ST  E:  Protection  and  development  of  identity-­‐creating  structures   156   7.2.4.6.   ST  F:  Safeguarding  and  strengthening  of  centers  and  supply  structures   158   7.2.4.7.   ST  G:  Preservation  and  development  of  open  spaces   160   7.2.4.8.   ST  H:  Activating  the  potential  of  open  spaces:  promoting  attractiveness  and   multi-­‐functionality  of  unsealed  open  spaces  and  green  spaces   161   7.2.4.9.   ST  I:  Networking  through  preservation  and  development  of  open  space  

structures   164  

(11)

7.2.4.11.   ST  K:  Development  and  expansion  of  a  resource-­‐conserving  rainwater  and  

wastewater  management   166  

7.2.4.12.   ST  L:  Development  and  implementation  of  a  water  sensitive  urban  

development   168  

7.2.4.13.   ST  M:  Further  embed  climate-­‐conscious  urban  redevelopment  in  municipal  

planning  and  management   169  

7.2.5.   SAMPLE  PROJECT   171  

7.3.   THE  GERMAN  STRATEGY  TOOLBOX   172  

CHAPTER  8:  ANALYSIS  AND  RESULTS  III   174  

8.   MICROCLIMATE  SIMULATIONS   174   8.1.   MODEL  DETAILS   174   8.1.1.   H/W  ratio   175   8.1.2.    Orientation   178   8.1.3.    Reflectivity   178   8.1.4.    Conductivity   179   8.1.5.    Plot  coverage   179   8.1.6.    Balconies   180   8.1.7.    Vegetation   181  

8.2.   MICROCLIMATE  SIMULATION  RESULTS   181  

8.3.   OPTIMIZATION   199  

CHAPTER  9:  ANALYSIS  AND  RESULTS  IV   204  

9.   ENERGY  CALCULATIONS   204  

9.1.   POTENTIAL   204  

9.1.1.   Solar  Energy   204  

9.1.2.   Wind   206  

9.2.   COST-­‐BENEFIT  ANALYSIS   207  

9.2.1.   SOLAR  ELECTRICITY   207  

9.2.2.   SOLAR  WATER  HEATING   209  

9.3.   FEED-­‐IN-­‐TARIFF  IN  GERMANY   211  

CHAPTER  10:  DISCUSSION  AND  CONCLUSION   214  

10.1.   EFFECTS  OF  URBAN  DESIGN  ON  HUMAN  THERMAL  COMFORT   214  

10.2.   URBAN  DESIGN  GUIDELINES  FOR  HOT  AND  DRY  CLIMATES   216  

10.3.   ENERGY  CONSERVATION  AND  CONSUMPTION   218  

10.4.   ADAPTIVE  CAPACITY  IN  KERMAN   221  

10.5.   LIMITS  AND  BARRIERS  TO  ADAPTATION  IN  KERMAN   221  

10.6.   URBAN  FARMING  AND  GROUNDWATER   222  

10.7.   CLIMATE  RELATED  POLICIES  IN  IRAN   223  

(12)

10.9.   SUGGESTIONS  FOR  FUTURE  STUDIES   227  

REFERENCES   229  

APPENDIX  I   246  

(13)

 

Chapter  1:  Introduction  

 

 

1.1.  Background  and  context  to  this  study  

Climate   change   and   its   implications   have   been   widely   discussed   in   the   academic  society  during  the  past  decades.  There  are  strong  scientific  evidences   that   prove   the   existence   of   changing   trends   in   global   climate.   Changes   in   frequency,  time  and  magnitude  of  climatic  events  are  observed.  In  the  context  of   Iran,   the   majority   of   recent   research   has   been   focusing   on   the   meteorological   aspects   and   the   influences   of   climate   change   on   agriculture.   Therefore,   a   research  on  the  effects  of  climate  alterations  on  cities  was  essential.  

Moreover,  preliminary  studies  showed  that  there  is  an  absolute  absence   of   adaptation   programs   in   the   face   of   a   changing   climate.   However,   there   have   been   local   studies   on   the   mitigation   of   climate   change,   performed   to   be   presented  to  the  IPCC,  but  these  studies  cover  all  the  country  at  one  level  and  do   not   focus   on   one   climatic   region   or   city   in   particular.   Here   as   well,   the   prime   objective  of  these  studies  has  been  the  prevention  of  the  negative  impacts  on  the   agricultural   industry   and   rural   areas.   The   necessity   of   a   comprehensive   adaptation   and   mitigation   program   was   definitive.   This   research   aims   to   contribute  to  this  adaptation  and  mitigation  program,  in  urban  areas,  specifically   in  Iranian  cities  with  hot  and  dry  climate.  

It   was   essential   to   consider   the   rich   heritage   of   Iranian   urbanism   in   developing   new   programs   for   Iran.   Climate   related   practices   and   policies   of   vernacular  Iranian  urbanism  had  to  be  investigated  in  detail  to  identify  the  key   determinants  of  climate  regulating  mechanisms.  While  in  traditional  urbanism  a   great  deal  of  attention  was  spent  on  passive  climate  regulation,  and  to  achieve   the  most  of  the  environment,  during  the  past  50  years  and  with  the  introduction   of  Iranian  modern  architecture  and  urbanism,  a  national  style  of  town  planning   has  been  common.  The  same  issue  is  true  in  the  architectural  design  of  buildings.   A   major   shortcoming   of   such   a   national   style   is   the   negligence   towards   local   climates,  especially  in  a  country  like  Iran,  which  enjoys  a  broad  range  of  different  

(14)

climates   at   the   same   time.   Therefore,   new   urban   codes   and   regulations   that   consider  local  issues,  both  climatic  and  socio-­‐cultural,  were  essential.  

Moreover,   it   was   necessary   to   search   for   successful   examples   of   adaptation   and   mitigation   activities   with   similar   contexts   in   other   countries   of   the   region.   This   could   enable   the   decision   makers   to   learn   from   mistakes   and   successes  of  similar  experiences.    

However,  the  study  of  successful  cases  should  not  be  limited  to  countries   with   similar   contexts.   The   research   had   to   be   more   progressive,   and   consider   countries   with   massive   discrepancies   in   contexts,   which   in   turn   might   uncover   fresh   ideas   and   concepts   of   adaptation   that   are   also   applicable   to   the   Iranian   case.    

Germany,   as   a   global   leader   in   adaptation   programs   and   as   the   physical   location  where  this  research  is  performed,  was  selected  as  a  reference  case.  In   particular,  the  Ruhr  area  received  much  attention,  since  it  is  undergoing  massive   structural  and  demographic  transformations.  There  are  already  adaptation  and   mitigation   plans   available   for   this   region,   which   create   a   platform   for   further   investigation.  

On   the   other   hand,   a   framework   had   to   be   developed   to   facilitate   the   comparison  of  various  adaptation  strategies.  To  do  this,  first,  relevant  adaptation   strategies  had  to  be  extracted  from  both  Iranian  and  German  cases  to  establish  a   toolbox  of  possible  approaches  in  face  of  climate  change.  Then  these  strategies   had  to  be  categorized  and  classified,  so  that  proper  applicability  study  could  be   devised  for  each  group.  

Since   these   strategies   were   mostly   too   broad   to   be   covered   in   a   single   research,  much  delimitation  had  to  be  performed.  Eventually  two  main  groups  of   strategies   emerged:   One   that   focused   on   the   thermal   comfort   situation   of   pedestrians  and  the  second  group  that  was  dedicated  to  energy.  Naturally,  these   two  groups  constitute  the  pillars  of  this  research.  

In   the   field   of   urban   climate,   a   massive   amount   of   research   has   been   performed.   These   studies   cover   human   thermal   comfort   in   many   climates   around   the   world,   but   do   not   present   any   specific   connection   between   climate   change  and  thermal  comfort.  Moreover,  there  is  a  very  limited  body  of  research   available  on  the  current  urban  climate  of  Iran  and  its  future  fate.  Therefore,  there   was  a  missing  link  between  international  and  local  research  that  had  to  be  found.    

(15)

1.2.  Aims  of  this  research  

In   general,   this   research   seeks   to   create   a   repository   of   adaptation   and   mitigation   strategies,   out   of   Iranian   traditional   urbanism   and   also   adaptation   activities   performed   in   the   Ruhr   area.   Furthermore,   it   seeks   to   explore   the   applicability   of   such   strategies   to   the   Iranian   contemporary   cities,   particularly   with  hot  and  dry  climate.    

The   outcome   of   this   research   is   a   set   of   suggestions   to   be   incorporated   into  the  Iranian  urban  design  codes,  both  on  local  and  regional  scales  that  will   facilitate   a   climate   conscious   urban   development   based   on   scientific   facts   and   evidences.  This  research  targets  cities  around  the  Iranian  central  desert.  

1.3.  Structure  of  the  thesis  

This   dissertation   consists   of   ten   chapters   and   two   appendices.   The   current  chapter  (Introduction)  presents  a  brief  background  to  the  research  and   demonstrates  the  gaps  in  knowledge  that  will  be  bridged  by  this  study.    

The  second  Chapter  (Theory)  sums  up  the  literature  review  conducted  in   this   research   and   creates   a   theoretical   basis   for   the   analysis   and   discussion.   Based   on   this   theoretical   background,   the   third   chapter   identifies   research   problems,   research   questions   and   goals.   The   delimitations   involved   in   this   research  and  other  scopes  are  also  discussed  in  this  chapter.  

The  forth  chapter  describes  the  tools  and  methods  used  in  this  research.   The  methodology  is  explained  and  then  some  softwares  that  were  involved  are   introduced.  Moreover,  the  data  sources  are  introduced  and  the  obstacles  faced  in   the  course  of  this  research  are  discussed.  

The   fifth   chapter   is   dedicated   to   introduction   of   case   studies   of   this   dissertation.   It   consists   of   two   parts.   The   first   part   provides   a   brief   insight   on   Kerman,   in   terms   of   geography,   predicted   future   climate   and   current   urban   design  codes  and  trends.  The  second  part  introduces  the  Ruhr  area  in  Germany.   A  brief  history  of  this  region  is  narrated  and  its  unique  features  as  a  previously   industrial   polycentric   agglomeration   are   discussed.   This   chapter   intends   to   familiarize  the  reader  with  the  contexts  that  are  subject  to  further  analysis  in  this   research.    

The   next   four   chapters   are   dedicated   to   the   analyses   performed   in   this   research.   The   first   one   (Chapter   6)   of   is   the   analysis   of   Iranian   traditional   architecture   and   urbanism.   The   second   one   (Chapter   7)   analyzes   the   German   adaptation   and   mitigation   activities   that   were   presented   in   two   separate  

(16)

projects.  These  two  chapters  are  the  basis  of  the  next  two  chapters.  The  results   of   these   analyses   on   Iranian   and   German   adaptation   strategies   constitute   the   input  data  of  further  analyses  in  other  chapters.  The  third  section  in  this  series   (Chapter   8)   is   on   microclimate   simulations.   In   this   part,   some   adaptation   strategies  that  were  extracted  before  are  put  into  test  to  examine  their  influence   on   outdoor   thermal   comfort.   The   next   chapter   (Chapter   9)   is   about   energy   conservation  and  production  of  renewable  energies.  In  this  section,  the  potential   to   produce   energy   from   renewable   sources   in   Kerman   is   discussed   and   then   simple   financial   analyses   investigate   the   feasibility   of   such   change   towards   renewable  energies.    

It   all   comes   to   an   end   in   chapter   ten,   which   discusses   the   results   of   the   previous   analyses   and   sets   forth   conclusions   based   on   these   results.   Furthermore,   recommendations   are   introduced   in   form   of   urban   design   guidelines   that   can   be   incorporated   into   official   regulations   for   urban   development  in  order  to  promote  a  climate  conscious  urban  growth.    

The  first  appendix  that  accompanies  this  research  gathers  a  list  of  sample   values  for  the  metabolic  rate  M  in  relation  to  a  1m2  surface  area  (ADu  surface  area   of  the  human  body)  for  different  activities.  The  second  appendix  demonstrates   different  physical  characteristics  of  construction  materials.  

(17)

 

Figure  1:  Research  Roadmap  

 

(18)

 

 

Chapter  2:  Theoretical  Background  

 

   

This   chapter   seeks   to   establish   a   solid   theoretical   background,   upon   which  the  research  questions  are  explained  and  investigated.  Topics  on  climate   change  and  its  implications  on  cities  and  human  livelihood  are  discussed.    

2.1.  Climate  Change  and  its  impacts  

Although   the   climate   change   has   attracted   much   attention   in   the   recent   years,   it   is   not   a   new   agenda   in   the   academic   world.   The   possibility   that   the   climate  could  be  changing  was  first  noticed  as  far  back  as  the  1960s.  Since  the   1950s,   physical   measurements   of   global   CO2   emissions   have   been   performed.   According   to   the   records,   there   is   an   18%   increase   in   the   mean   annual   concentration,  from  316  parts  per  million  by  volume  (ppmv)  of  dry  air  in  1959  to   373   ppmv   in   2002   and   389   in   2009   (Figure   2).   The   1997-­‐98   increase   in   the   annual   growth   rate   of   2.87   ppmv   was   the   largest   single   yearly   jump   since   the   Mauna  Loa  record  began  in  1958  (Roaf,  Crichton  and  Nicol  2009).    

First  large  scale  modeling  study  of  global  environmental  conditions  that   was   prepared   as   input   to   the   1972   United   Nations   Conference   on   the   Human   Environment  noted  the  possibility  of  “inadvertent  climate  modification”.    

By  the  mid-­‐1980s,  with  clear  evidence  of  increasing  temperatures  and  the   frequency   and   intensity   of   extreme   weather   events,   the   scientific   simulated   predictions  on  the  warming  climate  began  to  demonstrate  a  close  approximation   to  what  was  actually  happening  in  the  measured  record.    

In   1988,   the   UN   Environment   Program   and   the   World   Meteorological   Organization  established  the  Intergovernmental  Panel  on  Climate  Change  (IPCC),   consisting  of  hundreds  of  leading  scientists  and  experts  on  global  warming.  The   Panel   was   asked   to   assess   the   state   of   scientific   knowledge   concerning   climate  

(19)

change,   evaluate   its   potential   environmental   and   socio-­‐economic   impacts,   and   formulate  realistic  strategies  to  deal  with  the  problem.  

On  11  December  1997,  at  the  conclusion  of  COP-­‐3  in  Kyoto,  Japan,  more   than  150  nations  adopted  the  Kyoto  Protocol.  By  this  unprecedented  treaty,  the   industrialized   nations   committed   to   make   reductions   in   emissions   of   six   greenhouse  gases:   • Carbon  dioxide.   • Methane   • Nitrous  oxide   • Hydro-­‐fluorocarbons  (HFCs)   • Per-­‐fluorocarbons  (PFCs)   • Sulfur  hexafluoride  (SF6  )    

The  called-­‐for  reductions  varied  from  country  to  country,  but  would  cut   emissions   by   an   average   of   about   5%   below   1990   levels   by   the   period   2008   –   2012.  

 

Figure  2:  Increasing  historic  concentrations  (parts  per  million)  of  CO2  in  the  global  atmosphere.  The  

line  thickness  indicates  uncertainty  in  the  concentrations.  (Source:  IPCC  from  (Roaf,  Crichton  and   Nicol  2009))  

According  to  the  latest  report  of  the  IPCC,  Each  of  the  last  three  decades   has  been  successively  warmer  at  the  Earth’s  surface,  than  any  preceding  decade   since  1850.  In  the  Northern  Hemisphere,  1983–2012  was  likely  the  warmest  30-­‐ year   period   of   the   last   1400   years.   The   atmospheric   concentrations   of   carbon   dioxide   (CO2),   methane,   and   nitrous   oxide   have   increased   to   levels   unprecedented   in   at   least   the   last   800,000   years.   CO2   concentrations   have   increased  by  40%  since  pre-­‐industrial  times,  primarily  from  fossil  fuel  emissions   and   secondarily   from   net   land   use   change   emissions.   The   ocean   has   absorbed   about   30%   of   the   emitted   anthropogenic   carbon   dioxide,   causing   ocean   acidification  (Working  Group  I  of  the  IPCC  2013).    

(20)

More  than  90%  of  the  energy  accumulated  between  1971  and  2010,  led  to   ocean   warming,   which   dominates   the   increase   in   energy   stored   in   the   climate   system.  

There   is   a   high   confidence   that   the   rate   of   sea   level   rise   since   the   mid-­‐ 19th   century   has   been   larger   than   the   mean   rate   during   the   previous   two   millennia.  Over  the  period  1901–2010,  global  mean  sea  level  rose  by  0.19  [0.17   to   0.21]   m.   Global   mean   sea   level   will   continue   to   rise   during   the   21st   century   and   global   glacier   volume   will   further   decrease.   Moreover,   the   contrast   in   precipitation   between   wet   and   dry   regions   and   between   wet   and   dry   seasons   will   increase,   although   there   may   be   regional   exceptions.   Sea   levels   will   rise   almost   everywhere   and   many   islands   around   the   world   will   disappear   as   sea   levels  rise.  Also,  saltwater  intrusion  affects  drinking  water  and  food  production.    

According  to  the  International  Red  Cross  and  Red  Crescent,  the  intensity   and  frequency  of  disasters  has  increased  and  climate  change  will  only  make  this   worse.   During   1994-­‐1998   an   average   of   428   disasters   were   reported   per   year,   however  the  same  figure  for  the  period  of  1999-­‐2003  has  jumped  to  707,  mainly   in   the   developing   countries   with   a   devastating   increase   of   142   percent   (UN-­‐ HABITAT  2006,  136).    

The   main   cause   of   global   warming   is   the   accumulation   of   greenhouse   gases   in   the   atmosphere.   Greenhouse   gases   are   building   up   in   the   upper   atmosphere  to  form  an  increasingly  dense  layer  that  allows  solar  radiation  into   the  Earth’s  atmosphere,  but  as  this  layer  gets  denser,  it  prevents  more  and  more   heat   from   radiating   back   into   space,   so   warming   the   lower   atmosphere   and   changing  our  climate  (Roaf,  Crichton  and  Nicol  2009).  

Hansen   et   al.   (2008)   conclude   that   the   current   levels   of   CO2   in   the   Atmosphere  are  too  high:  

“Continued   growth   of   greenhouse   gas   emissions,   for   just   another   decade,   practically   eliminates   the   possibility   of   near-­‐term   return   of   atmospheric   composition  beneath  the  tipping  level  for  catastrophic  effects”  

Changes   in   the   climate   are   likely   to   emerge   in   four   main   ways:   slow   changes   in   mean   climate   conditions,   increased   inter-­‐annual   and   seasonal   variability,   increased   frequency   of   extreme   events,   and   rapid   climate   changes   causing  catastrophic  shifts  in  ecosystems  (Tompkins  and  Adger  2004).    

There  is  no  doubt  that  the  humans  have  had  an  influence  on  the  climate   system.  This  is  evident  from  the  increasing  greenhouse  gas  concentrations  in  the   atmosphere,  positive  radiative  forcing,  observed  warming,  and  understanding  of  

(21)

the  climate  system.  IPCC  reports  that  it  is  extremely  likely  that  human  influence   has   been   the   dominant   cause   of   the   observed   warming   since   the   mid-­‐20th   century   (Working   Group   I   of   the   IPCC   2013).   Buildings   are   responsible   for   producing  over  half  of  all  climate  change  emissions.  

The   impacts   of   a   changing   climate   are   already   visible   throughout   the   world;   mass   population   migrations,   increased   regional   conflicts   (i.e.   Darfur),   massive  water  shortages  and  other  human  catastrophes  (HM  Treasury  2006).  

Climate   change   has   a   negative   impact   on   human   and   animal   health   as   well.   A   study   by   scientists   at   the   World   Health   Organization   (WHO)   in   2003   found   that   160,000   people   die   every   year   from   side-­‐effects   of   global   warming;   increased   rates   of   death   resulting   from   a   range   of   causes   from   malaria   to   malnutrition,   and   predicted   that   the   number   would   double   by   2020   (WHO   2003).  In  warmer  climates,  diseases  spread  by  animals  such  as  rats  and  insects   are  more  common  and  issues  such  as  the  increasing  scarcity  of  clean  water  with   hotter,   drier   climates   will   also   play   a   major   part   in   increasing   the   number   of   deaths  from  illness  and  malnutrition.  In  addition,  the  combination  of  increasing   temperature   and   more   still   water   resulting   from   storms   creates   conditions   conducive   to   epidemics,   such   as   those   of   malaria.   These   conditions   provide   perfect  breeding  grounds  for  the  insects  and  speed  up  their  life  cycle  as  a  result   of   the   warmer   conditions.   Furthermore,   the   climate   warming   causes   a   shift   in   regions  where  diseases  can  survive.    

Human  health  is  affected  by  climate  change  in  three  different  ways:   • Direct  impacts:  death  and  injury  from  heat  waves  

• Indirect   impacts:   occurrence   of   health   conditions   intensified   by   weather   conditions  

• Migratory  impacts:  movement  of  sources  of  infection  via  various  carriers   with  warming  climates,  e.g.  malaria  

Heat   and   cold   stress,   over   exposure   to   sunlight,   insect   infestations,   air   pollution,   water   pollution,   waste,   noise   and   fires   are   all   features   that   are   exacerbated  by  the  changing  climate,  which  affect  human  health.  They  also  have   a   negative   impact   on   the   biodiversity.   Plant   and   animal   species   are   being   lost   around   the   world   with   rising   temperatures   at   a   rate   that   has   alarmed   many   scientists.  Some  of  the  most  notable  extinctions  that  are  anticipated  for  the  near   future  are  those  of  the  coral  reefs,  the  Sumatran  tiger,  the  Malaysian  bear  and  the   western   gorilla.   For   some   of   these   species   there   will   no   longer   be   anywhere   suitable   to   live.   Others   will   be   unable   to   reach   places   where   the   climate   is  

(22)

suitable  to  breed,  feed  or  avoid  thermal  stress  (Roaf,  Crichton  and  Nicol  2009).   The   negative   effects   of   climate   change   on   human   health   are   more   visible   in   energy-­‐inefficient   homes   and   households   with   low   incomes,   a   portion   of   the   community  that  is  more  vulnerable  because  of  fuel  poverty.  

Climate  change  is  a  key  driver  for  mass  violence  as  people  begin  to  fight   over  increasingly  scarce  resources.  Water  shortages  after  droughts  may  lead  to   conflicts  in  societies.    

Climate  change  impacts  on  communities  may  include:  1)  the  direct  local   effects  of  prevailing  conditions  and  extreme  events  associated  with  issues  such   as   sea-­‐level   rise,   drought,   heavy   precipitation   and   flooding,   etc.   2)   the   indirect   effects   of   climate   change   in   other   places,   such   as   storm   disruption   of   remote   energy  supply-­‐lines,  drought  in  other  food-­‐exporting  regions,  and  in-­‐migration  of   environmental  refugees  (Sheppard,  Pond  and  Campbell  2008).  

Nearly  all  human  societies  and  activities  are  sensitive  to  climate  in  some   way  or  other  because  the  place,  where  people  live  and  the  systems  by  which  they   generate  a  livelihood  and  wealth  is  influenced  by  the  ambient  climate.    

Significance  of  climate  change  impacts  can  be  judged  by  five  numeraires:   monetary  loss,  loss  of  life,  biodiversity  loss,  distribution  and  equity,  and  quality   of   life,   including   factors   such   as   coercion   to   migrate,   conflict   over   resources,   cultural   diversity,   and   loss   of   cultural   heritage   sites   (Schneider,   Kuntz-­‐Duriseti   and  Azar  2000).  

2.1.1.  Peak  Oil  

Peak  oil  is  the  point  in  time  when  the  maximum  rate  of  global  petroleum   extraction  is  reached,  after  which  the  rate  of  production  enters  terminal  decline.   The   aggregate   production   rate   from   an   oil   field   over   time   usually   grows   exponentially  until  the  rate  peaks  and  then  declines—sometimes  rapidly—until   the  field  is  depleted  (Winfrey  2010).  Peak  oil  is  often  confused  with  oil  depletion;   peak  oil  is  the  point  of  maximum  production  while  depletion  refers  to  a  period  of   falling  reserves  and  supply.    

Some  observers,  such  as  petroleum  industry  experts  Kenneth  S.  Deffeyes   and  Matthew  Simmons,  believe  the  high  dependence  of  most  modern  industrial   transport,  agricultural,  and  industrial  systems  on  the  relatively  low  cost  and  high   availability  of  oil  will  cause  the  post-­‐peak  production  decline  and  possible  severe   increases  in  the  price  of  oil  to  have  negative  implications  for  the  global  economy.     According  to  the  Export  Land  Model,  oil  exports  drop  much  more  quickly  than  

References

Related documents

A centrifuge decanter; consists of a solid cylindirical bowl rotating at high speed, a scroll rotating at the same axis with a slightly different speed, a drive

The first equation relates the monthly average yield on Irish ten-year sovereign bonds to the vector of macroeconomic variables, the banking variables, and the OMT and

Participants, in a study regarding faux pas postings (Roulin, 2014), were placed in an experimental condition which manipulated the proportion of employers using SNS to

This includes revenue raised by the state and local governments through taxes, fees, and other sources, and does not include any revenue from the federal government.. Looking

• MikroTik proprietary (i.e., incompatible with other vendors) wireless protocol that works with a pair of wireless cards (Atheros chipset cards only) – one transmitting,

 work with at least 150 regions and communities to accelerate their transformation to a climate resilient future, supporting them in the co-creation of transformative innovation

Climate Adaptation in Action: sharing knowledge to adapt the National Climate Change Adaptation Research Facility (NCCARF) Climate Adaptation in Action 2012 conference will be

To facilitate this process, I argue that a direct subsidy should be extended to Everglades farmers who plant and adaptively manage stands of native vegetation (Everglades Custard