• No results found

Bus stop, property price and land value tax: A multilevel hedonic analysis with quantile calibration

N/A
N/A
Protected

Academic year: 2021

Share "Bus stop, property price and land value tax: A multilevel hedonic analysis with quantile calibration"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

LandUsePolicy42(2015)381–391

ContentslistsavailableatScienceDirect

Land

Use

Policy

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / l a n d u s e p o l

Bus

stop,

property

price

and

land

value

tax:

A

multilevel

hedonic

analysis

with

quantile

calibration

Yiming

Wang

a,∗

,

Dimitris

Potoglou

b,c

,

Scott

Orford

b

,

Yi

Gong

d

aTheBartlettSchoolofConstructionandProjectManagement,TheBartlettFacultyofBuiltEnvironment,UniversityCollegeLondon,LondonWC1E7HB,UK bSchoolofPlanningandGeography,CardiffUniversity,KingEdwardVIIAvenue,CardiffCF103WA,UK

cRANDEurope,WestbrookCentre,MiltonRoad,CambridgeCB41YG,UK

dSustainablePlacesResearchInstitute,CardiffUniversity,33ParkPlace,CardiffCF103BA,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20October2013

Receivedinrevisedform30May2014

Accepted26July2014

Keywords:

Landvaluetax Transportinfrastructure Busstop

Propertyprice

a

b

s

t

r

a

c

t

Basedonamultilevelandquantilehedonicanalysisregardingthelocalpublicbussystemandtheprices ofresidentialpropertiesinCardiff,Wales,wefindstrongevidencetosupporttworesearchhypotheses: (a)thenumberofbusstopswithinwalkingdistance(300–1500m)toapropertyispositivelyassociated withtheproperty’sobservedsaleprice,and(b)propertiesofhighermarketprices,comparedwiththeir cheapercounterparts,tendtobenefitmorefromspatialproximitytothebusstoplocations.Giventhese statisticalfindings,wearguethat,landvaluetax(LVT),albeitaclassicpoliticalideadatingbacktotheearly 20thcentury,doeshavecontemporaryrelevanceand,withmoderngeographicinformationtechnologies, canberigorouslyanalysedandempiricallyjustifiedwithaviewtoactualimplementation.LevyingLVT willnotonlygenerateadditionalfiscalrevenuestohelpfinancethedevelopmentandmaintenanceof localpublicinfrastructures,butwillalsoensureamorejustdistributionoftheeconomicwelfareyielded bypublicinvestment.

©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).

Introduction

Inrecentyears,theUnitedKingdom(UK)haswitnessedarevival ofpublicinterestsinlandvaluetax(LVT).1 Theoriginalideaof

LVTdatesbacktoGeorge(1879),anAmericanpoliticaleconomist, who,partlyinspiredbySmith(1863),positsthatthevalueofland, ultimately,comesfromtheadjacentinfrastructuresandamenities investedbythewholecommunity.Incrementsinlandvaluedue topublicinvestment,thus,oughttobere-capturedthroughLVT. TheearliestpoliticalattemptstolegislateLVTtookplaceinthelate EdwardianBritain(Short,1997,Chapter2).LVTwasofficially pro-posedinthe1909financebill(alsoknownas“People’sBudget”), whenDavidLloydGeorgeservedasChancelloroftheExchequer asamember ofthegoverningLiberalparty.However,thethen Conservatives-dominatedHouseofLords,thoughpassingthe gen-eralbudgetin1910,managedtovetotheLVTproposal.Asimilar storyhappenedlaterwiththe1931FinanceAct,whichcontained

Correspondingauthor.+4402076791890.

E-mailaddress:[email protected](Y.Wang).

1FortheexamplesofLabour’sLandValueCampaign(http://www.labourland.

org/)andtheLiberalDemocraticParty’sActionforLandTaxationandEconomic

Reform(http://libdemsalter.org.uk/).

aLVTinitiativepassedbytherulingLabourpartybutwasrejected againbytheTorygovernmentin1934(Wenzer,2000).Oneofthe latesteffortstoseeklegislationofLVTwasin2012byCarolynLucas, aGreenpartymemberoftheUKparliament(TheUKParliament,

2012).

AlthoughLVTwasneverimplementedinBritain,itstracescan beobservedinmanyotherplacesaroundtheworld,suchasinthe citiesofPittsburghandHarrisburgintheAmericanStateof Penn-sylvaniaandanumber ofcountriessuchasAustralia, Denmark, Estonia,Russia,andNewZealand(Andelson,2000;Bourassa,1990;

Dye and England, 2010; Wyatt, 1994). While the actual policy

practice varies among these international cases, LVT has been increasingly justified as a way to financethe construction and maintenanceofpublictransportinfrastructures.Thebasicrationale remainsquitethesameasperGeorgeoriginal(1879),thatpublicly investedtransportnetworkcanpromotethevaluesofnearby pri-vatelyownedlandplots,giventheirimprovedaccessibility.From apoliticaleconomyperspective,thispartofaddedlandvalue,if substantiated,becomesakindofpositiveexternalitieswhichcan beoffsetorcapturedthroughLVT.Otherwise,generaltaxpayers (whogenerategovernmentrevenues)areessentiallysubsidising landownerswho“quietly”extractthevalues ofpublictransport infrastructures.Makingthis free-rideproblemevenmore press-ingistheundersupplyandunderfundingofpublictransportinthe

http://dx.doi.org/10.1016/j.landusepol.2014.07.017

(2)

present-dayUK,whichhasresultedinaseriesofsocialexclusion issues,facedtypicallybythelowerincomepopulationwhohave difficultiesaffordingprivatetransport(Lucas,2006).

In this paper,we explore theviabilityof levyingland value taxtofinancethemaintenanceanddevelopmentoflocalpublic transportinfrastructureswithinacontemporaryUKcontext.Our empiricalstudyfocusesonthepublicbussystemownedbyCardiff citycouncilinsouthWales,whichsawa

£

0.6millionfundingcut inthefinancialyearof2012,leadingtoasecondincreaseinbus faressinceOctober2011(WalesOnline,2012).Employinga con-ventionalordinaryleastsquare(OLS)hedonicregressionapproach, wefirstlyexaminetherelationsbetweenthesalepricesofcirca 10,000residentialpropertiesacross12electoralwardsincentral Cardiff from2000to 2009(see Fig.2), and thenumber of bus stopswithintheradiiof300m,400m,500m,750m,1000mand 1500mofeachproperty,basedonthe2007NationalPublic Trans-portAccessNodes(NaPTAN)dataset(DepartmentforTransport, 2007).WethenfurtherrefinetheOLSresults,respectively,withina multilevelmodelling(JonesandBullen,1994)andquantile regres-sionframework(Koenker,2005).Ourmultilevelanalysissuggests theOLSestimatestobeunbiasedwithrespecttotheinfluenceof busstoplocationsontheimplicitlandvaluesofnearbyproperties. Likewise,ourquantilebivariateposthoctestsconfirmthe over-allrobustnessoftheOLSoutcomes.Apolicyimplicationofthese statisticalfindingsistoexerciseatwo-tierprogressivelocalland valuetaxationschemeinhelpingCardiffcouncilfinancethelocal bussystem.Our estimation, basedonthe numberof bus stops withina 1500mradiusofeveryindividualpropertyincludedin oursampledata,suggeststhat,forapropertypricedbelowcirca

£

195,000,everyadditionalbusstopcontributestoacirca0.11% marginalincreaseinpropertypricethroughlandvaluebetterment. Thecorrespondingfigureis0.22%forapropertyinthesecondtier withamarketpriceabove

£

195,000.

Theremainderofthispaperisorganisedasfollows.Thenext section“Landvaluetax:fromEdwardiantocontemporaryBritain” reviewstheliteratureonlandvaluetaxandtherelatedplanning practices,mainlywithinaUKcontext.Thisisfollowedbythedesign ofthisresearchin“Researchdesign”section,whichstudiesthecase ofCardiffBus,byfollowinganOLSandmultilevelhedonic regres-sionapproachsupplementedbyaquantilecalibration.Thedataand modelresultsarereportedinsections“ThecaseofCardiffbus”and “Modelresults”,respectively,beforethestudy’spolicyimplications arediscussedin“Policyimplications”section.Theconclusionsare summarisedin“Conclusionandfutureresearch”section,alongside thedirectionsoffutureresearch.

Landvaluetax:fromEdwardiantocontemporaryBritain

TheEdwardians

Thelatestglobaleconomicrecessionhasforcedmanycountries tocutpublicspending.ThisisparticularlythecaseintheUK,with thecoalitiongovernmentaimingtoreducepublicexpenditureby asmuchas

£

6.2 billionbetween2010and 2011(HerMajesty’s Treasury,2010).Sincebudgetarystringencycontinuedinto2012 and2013,publicfinancehasbecomeatopchallengeconfronting theWestminsterparliament,whichisseekingnewsourcesoftax income,forexample,byproposingafurtherriseinvalue-added consumptiontax(VAT)from20%to25%(TheTelegraph,2012).

Acenturyago,theEdwardianpoliticiansweresimilarlyfaced withapublicfinancechallengetofundtheemergingwelfarestate programmes,includinganembryonicpensionscheme(Hattersley, 2004).DavidLloydGeorge,duringhisChancellorshipofthe Exche-quer as a member of thegoverning Liberal party, proposedto tax on tobaccos, luxurious goods, and most important of all,

land,inthe1909financebill.Thesetaxationmeasureswerenot

only intended to balance the government budget, but also to

tackle widespread political and economic inequalities faced by theBritish society. Given its populist flavour, the 1909budget wasoftencalledPeople’sBudget(Short,1997).However,thethen Conservatives-dominatedHouseofLords,thoughreluctantly pass-ingmanyinitiativesincludedinPeople’sBudgetoneyearlaterin 1910,managedtovetothelandvaluetax(LVT)proposal.

TheoriginalideaofLVTactuallycamefromtheothersideofthe Atlantic.George(1879),anAmericanpoliticaleconomistbornin Philadelphia,Pennsylvania,oncewrote:

“Thetaxuponlandvaluesis,therefore,themostjustandequal ofalltaxes.Itfallsonlyuponthosewhoreceivefromsocietya peculiarandvaluablebenefit,andupontheminproportionto thebenefittheyreceive.Itisthetakingbythecommunity,for theuseofthecommunity,ofthatvaluewhichisthecreationof thecommunity.”(George,1879,Chapter33)

George’scentraltenetisthatthevalueofland,ultimately,comes fromtheadjacentinfrastructuresandamenitiesinvestedbythe localcommunity.Incrementsinlandvalueduetopublic invest-mentthereforeoughttobere-capturedthroughLVT.Thisargument resonateswiththegroundrenttheoriesbySmith(1863),Ricardo

(1891),andevenMarx(1867).Thetaxonlandvaluecanalsobe

consideredakindofPigovian(1920)tax,ifoneseestheaddedland valueaccruingfromthepositiveexternalitiesyieldedby commu-nityinvestment(Petrella,1988).

TheContemporaries

ThePigovianaspectofLVTisperhapsbestfeaturedinits

con-temporarypractice, asLVT has beenmore and more exercised

as a way to support the financing of public transport infras-tructures (Ryan, 1999; Rybeck, 2004;Smith and Gihring,2006;

Al-Mosaindetal.,1993;BollingerandIhlanfeldt,1997;Bowesand

Ihlanfeldt,2001;Debrezionetal.,2007,2011;HessandAlmeida,

2007).Underpinningthispolicypracticeisatheoretical conjec-ture that publicly invested transport facilities adds significant values to the nearbyprivately owned land plots by improving theirspatialaccessibilitiestothetransportnetwork.Thiskindof public-investment-triggeredprivatelandvaluebettermentisa typ-icalinstanceofpositiveexternalitiesthatcouldbeoffsetthrough propergovernmentintervention(Pigou,1920).

Nonetheless, land value taxation remains unimplemented

withintheUK,eventhoughsomecloselyassociatedfiscal interven-tionsdoexistintheBritishtownplanningpractice.Forexample, section(106)ofthe1990TownandCountryPlanningActallows local planning authorities to charge developers, on a case-by-case basis and often by negotiation, a so-called section (106) paymenttocompensate for thepotentialnegative externalities (e.g.,congestionand crowdedness)of newdevelopmentonthe local community (The UK Parliament, 1990). Later, the Barker

ReviewofLandUsePlanning (2006)waslargelycritical of

sec-tion (106) for its vagueness in concept and inconsistencies in practice.ThecommunityInfrastructurelevy(CIL)wasintroduced inthe2008PlanningActtopartiallyreplacesection(106)(TheUK

Parliament,2008).

Likelandvaluetax,section(106)andCILarebothpublic finan-cialmeasuresintendedforexternalities,hencePigovianbynature. However,LVTdiffersfromsection(106)andCILinbeinga bet-termenttax,whichtriestocapturethepositiveexternalitiesof communityinvestmentinlocalpublicinfrastructures(Leeetal., 2013). By comparison, the two types of planning charges are employedtocompensateforthepotentialnegativeexternalities ofnewpropertydevelopmentswithrespecttothelocalhousing andinfrastructurecapacities.Theyarethusessentiallythesame

(3)

Y.Wangetal./LandUsePolicy42(2015)381–391 383 thingaswhatiscalled“impactfee”intheUS(see,e.g.,Ihlanfeldt

andShaughnessy,2004).

GiventhesubtleandyetimportantdifferencebetweenLVTand planningcharges,itperhapsmakesmoresensetolookatLVTin ref-erencetotheexistingUKtaxationsystem.2Forexample,Maxwell

andVigor(2005)suggestsubstitutingLVTforcounciltaxandthe

stampduty. Theyargue that LVT is a levyonland, while both thestampdutyandcounciltaxareestimatedbypropertyvalue andareapropertytax.Taxingonpropertyinsteadoflandvalue involvesdisincentivesforhomeownerstomaintainandimprove theirhousingconditions–themoretheyinvestinmaintenanceand renovation,themorepropertytaxliable.Thisperspectiveresonates closelywithBourassa’s(1990,1992)earlierempiricalstudiesabout asimilartopicwithintheUScontext,whichidentifiedasignificant incentiveeffectofLVTvis-à-vispropertytaxation.

Researchdesign

Researchquestion

Levyingland-valuetaxinvolvesbothsubstantialpoliticalaswell astechnicalcomplexitiesandconstitutesaradicalreformtothe existingUKpublicfinanceregime.Ourresearchfocusesmoreonthe empiricalandtechnicalaspectsoftheissue,aimingtoexplorethe waystoassesslocalpublicinfrastructures’potentialcontribution totheadjacentlandvalues andtoaddresstheaccordingpolicy implications.

While theword “infrastructure”connotesa variety of facili-ties(usuallyofphysicalpresence),thispaperconcentratesonthe relationshipbetweenlandvaluesandpublictransport infrastruc-tureintheUK.Thisisbecauseofthegeneralconsensusnowadays regardingtheubiquitousandintimateinteractionsbetween trans-portandlanduseactivities(GeursandvanWee,2004).Another reason is that landvalue taxation, in recent decades,hasbeen increasinglyrationalisedasavaluecapturemechanismtofinance thedevelopmentand maintenance ofpublictransport facilities. Last,giventhecurrenteconomicclimate,publictransport infras-tructuresintheUKaretypicallyshortoffundingandthusinneed ofstrengthenedfiscalsupport(Lucas,2006).

Ourspecificresearchquestioncentresonhowtoassessthe spa-tialrelationshipsbetweenthelocalpublictransportinfrastructures and thelandvalues ofnearbyresidential properties.A concep-tual issue is that housing sub-markets are a salient feature of theBritishlocalrealestate sector(Orford,2000).A correspond-ingmethodologicalframeworkneedstobeinplacetocapturethe latentheterogeneitieswithregardtothecharacteristicsof differ-entneighbourhoodenvironments,divergentpropertypricelevels, andthevaryingrelationsbetweentheirimplicitlandvaluesand thenearnesstopublictransportlocations.

Ahedonicapproach

Given our research question, we employ a hedonic regres-sionapproachasthebasicmodellingmethodinthisstudy.While

Rosen’s(1974) seminal theoreticalpaper recommended a

two-stageregressionprocedure,forthispolicy-orientedpaper,weadopt areduced-formversionoftheRosenoriginaland,asshowninEq.

(1),assumea linearsemi-logfunctionforminthefirststageof hedonicregression,whichallowsustosimplifythesecondstageby directlyvaluingthebusstoplocationsbasedonthecorresponding

2Actually,landvaluetax(LVT)isalsooftencalledsingletax,becauseaccording

toHenryGeorge,thecollectionofLVTshouldreplaceanyothertaxationschemes,

suchasthoseonincomesandconsumptions.

coefficientestimates (see a similarapplication,for example,by

Heikkilaetal.(1989),p.223):

log(p)=F(H,Y,W,L,ε) (1)

wherepdenotestheproperty’ssaleprice,ofwhichthenaturallog isafunctionofH,Y,WandL,plusanerrorterm,ε.Hstandsfora setofhedoniccontrolvariables,eachofwhichcorrespondstoan attributeoftheobservedproperty,intermsofwhetheritisfreehold (r),newlybuilt(n),detached(d),semi-detached(s),orterraced(t), floorarea(f),andhowfarthepropertyislocatedfromthecentral businessdistrict(z).HmaybespecifiedasEq.(2):

H={r,n,d,s,t,f,z} (2)

Yrepresentsanothersetofdummy-codedvariablescapturing theyearinwhichanobservedsaletransactiontookplace.Thisis intendedtoadjustfortemporaleffects,suchasshortterm property-priceinflationinthelocalmarket,withXdenotingthetotalnumber ofyearsunderobservation.Ifthefirstyearisnotedasyear0,we haveEq.(3):

Y={Yu|u=0,1,2,...,X−1} (3) Wconsistsofaseriesofdummy-codedvariables,each indicat-ingalocaljurisdictionwithinwhichapropertyislocated.These variables captureaveragelocal environmentaleffects related to educationalandrecreationalamenitiesaswellastheoverall rep-utationofthearea.AssumingatotalofMjurisdictionswithinthe studyarea,oneofwhichisdenotedasareferencejurisdiction,W0,

wemaydefineWasfollows:

W={Wv|

v

=0,1,2,...,M−1} (4) ItshouldbenotedthatthemodelspecificationasperEqs.(4)and (5)maybeconsideredfollowinga‘discrete-spaceexpansion’

pro-cess(JonesandBullen,1994,p.254),wherebytheconstanttermof

aregressionequationisexpandedintothe(X−1)+(M−1)dummy variables.

L={ı} (5)

LinEq.(5)representsasetoftargetvariables,whichrelatedirectly tothe locationof land beneath a property. Thesevariables are supposedtomeasurespatialaccessibilityandproximityto pub-lictransportinfrastructure.WeassumeinthispaperthatLconsists ofonlyoneelementı.ıinEq.(5)measurestheaggregatenumber ofpublictransportnodes(e.g.,trainstations,busstops,airport ter-minals)withinabufferorcatchmentareaofanobservedproperty location.3

Finally,acoupleofstandardeconometricassumptionsare asso-ciatedwiththeerrorterm,ε.First,weassumeindependenceor zeroautocorrelationintheobservedvaluesofε.Nevertheless,data collectedintherealworldarelikelytosufferfromspatialaswell astemporalautocorrelation,dependingonhowthecollectionis conducted.Second,weassumeasingleconstantvarianceinthe errortermornon-heteroskedasticity.However,thisassumptionis alsosubjecttoposthoctest,giventhathousingsub-marketsarean inherentfeatureoftheUKlocalrealestateindustryandtherefore thepossibilityofspatialheterogeneityinimplicitpricesbetween sub-markets.

3Itneedstobeacknowledgedthatrecentyearshaveseensomehighly

sophis-ticatedaccessibilitymeasures(e.g.,Ferrarietal.,2012).Whiletheseinnovative measuresarenotthecentraltopicofthispaper,theycanbeveryusefulforfuture research.

(4)

Multi-levelmodelling

Multilevelmodellingmaybeseenasageneralisedversionof lin-earregression(Duncanetal.,1998).Amultilevelmodellinganalysis combinesbothindividualandcontextualparameters,suchasthe geographicaljurisdiction(e.g.,electoralwards)inwhichaproperty islocatedandtheyearswhenapropertyistransacted.Multilevel modelsareintendedtoassessthecorrelationbetween observa-tionswithinthesame level ofanalysis and attempttocapture thesevariationsbyallowingtheregressionintercepttovaryacross, forexample,thejurisdictionsandtheyearsofsale.Thisapproach isknownasa“randomintercept”multi-levelmodellingmethod

(JonesandBullen,1994).

ˇ0,v,u=ˇ0+ vv,u (6)

ˇ0inEq.(6)istheaverageinterceptforalloftheobserved prop-ertiesacrossdifferentjurisdictionsandsoldindifferentyears.v and˚v,uaretwoindependenterrorcomponents:vmeasuresthe extenttowhichtheregressioninterceptforobservationswithin agivenjurisdiction,Wv (

v

=0,1,2,...,M−1),deviatesfromthe overallaveragedconstantterm,ˇ0.Likewise,˚v,u measuresthe differencebetweenˇ0andtheinterceptforobservations,notonly withinWv,butalsosoldinagivenyear,Yu(u=0,1,2,...,X−1).

Wedeploythismultilevelspecificationtocapturebothspatial andtemporallandvaluevariations,asperFig.1.InFig.1(a),thedata aregroupedgeographicallyintheupmostlevelbyelectoralward (ourproxyforhousingsub-markets),hopedtoaddresspotential issuesofspatialautocorrelationandheterogeneity.Thedifferent yearsofhousesalesarethendefinedasthesecondlevelofanalysis, inviewofdealingwithpotentialtemporalautocorrelation.Fig.1(b) presentsanalternativepanelstructure,wherewardremainsthe firstlevelofanalysisandeachindividualpropertyisnowsituated atthenextstage.However,theyearofsaleforeverypropertyis furtherdefinedasatertiarylevel.Thisalternativehierarchyis rele-vantwhenadatasetcontainsmanypropertiesthathavebeensold multipletimesduringtheperiodofobservation.

Quantilecalibration

The method of quantile regression is firstly introduced by

KoenkerandBassett(1978).Quantileregressionessentially

esti-matesmultiplequantiles(e.g.10%,50%or75%)inthedependent variable’sconditionaldistribution.Asaresult,theapproachtends togeneratemorerobustcoefficientestimatesandprovidemore comprehensiveinformationaboutthedistributionoftheresponse variablethanconventionalregressiontowardsthemean(Koenker,

2005).

Inthecaseofthispaper,weareconcernedwiththe substan-tialpricedifferentiationfeaturingmanyUKlocalpropertymarkets

(Orford,2000).We hypothesisethat propertiesatthe highend

ofalocalrealestatemarketmayexhibitsystematicallydifferent transport-landrelationsthan thoseat thelowerend. In econo-metricterms,this leadstonon-constantconditionalvariance in log(p)(i.e.,thenaturallogofpropertyprice),henceaviolationof thehomoscedasticityassumption.Toadjustfortheheterogeneous relationsbetweenpropertypriceandthenumberofnearbypublic transportfacilities,weapplyabivariatequantileregressionmethod inourposthocrobustnesstest:

log(p)iq=G(ı,ε) (7)

wherei(i=1,2,...,q)standsfortheithquantileintheconditional distributionoflog(p),ifthedistributionisdividedintoatotalofq equalintervals.

Fordemonstrationpurposes,assumeK(log(p))asthekernel densityfunctionoflog(p).Oneshallseethatthequantileestimation

isdifferentfromtheconventionalmeanestimation.Specially,to estimatethemeanorexpectedvalueoflog(p),wehave

E(log(p))=

log (p)max log(p)min

log(p)×K(log(p))dlog(p) (8)

The quantile estimation is however different by solvingthe belowequationinreferencetolog(p)iq:

log (p)iq log(p)min

K(log(p))d log(p)= i

q (9)

A quantile coefficient, given a linear function form, can be workedoutthrough linearprogramming(KoenkerandHallock, 2001).Acquiring alargenumber of quantilecoefficients in this wayenablesustoconductbootstrappingre-samplingandgenerate anasymptotickerneldensitydistributionsuchasK(log(p)), allow-inganassessmentoftheasymptoticstandarderrorandconfidence intervalforeveryquantilecoefficient(MachadoandMata,2005).

ThecaseofCardiffbus

Thelocalbackground

TheWelshCapitalcityofCardiffisourstudysite,becausethecity exemplifiesanarrayofUK-wideissueswithregardtothefinancing oflocalpublictransport.PublicservicesintheUKhaveexperienced widespreadfundingcutsandausteritymeasuressince2008.Local publictransportisoneoftheseverelyaffectedsectors.Forexample, inCardiff,thelocalcouncil-ownedCardiffbussystemwitnesseda

£

0.6millionfundingcutbytheWelshGovernmentin2012,leading toasecondincreaseinbusfaresinceOctober2011(WalesOnline,

2012).

Aselsewhere,lackoffundingforpublictransportimplicatesa numberofpotentialissuesinCardiff.Inflatedbusfare,for exam-ple,islikelytodiscourageenvironment-friendlytravelbehaviour andpushpeoplebackintotheircars(NewmanandKenworthy, 1999).Internationalexperiencealsoshowsthatrestrictedpublic transporttendstomakecommutingcostparticularlyunaffordable forthelowerincomepopulation, exacerbatingthe“spatial

mis-match” betweenwhere theylive andwhere theycanfind jobs

(Kain,1992).Business opportunitiescanalsobeaffectedifthey

becomelessaccessibleduetoashrinkingsupplyofpublic trans-port facilities. Allof theseissues, among many others, alert us tothechallengeoffinancingpublictransportinadireeconomic climate.

Levyinglandvaluecapturepropertytaxappearstobea prom-isingsolution.InthecaseofCardiffBus,asinglefareof

£

1.70only accountsforthevalueofbusservicetoapassenger,whileaproperty ownerwholivesadjacenttotheCardiffbusnetworkdoesnot nec-essarilypaythebusfareinsofarasnotusingtheservice.However,

fromaGeorge(1879)perspective,theCardiff Busnetworkmay

havepromotedtheaccessibilityofitsnearbyrealestateproperties, hencecontributingtoanappreciationofeachproperty’svalueby ameasurablepercentage.Ifthisresearchhypothesiscanbe sub-stantiatedand evidenced,a landvaluecapturetaxation scheme becomesjustifiable.

Thedata

Thedatasetusedinthisstudycontainsobservedpropertyprices andbusstoplocationsmainlywithincentralCardiffbetween2000 and2009(seeFig.2).Ourstudyareacovers12localelectoralwards. TheareacontainstypicalVictorianandEdwardianterracedhouses, flatsinconvertedbuildingsandsuburbanstylesemi-detachedand

(5)

Y.Wangetal./LandUsePolicy42(2015)381–391 385

Fig.1.Cross-sectional(a)vsmultilevelpanel;(b)structuresforpropertydataanalysis.

Notes:adaptedfromDuncanetal.(1998).

Table1

Definitionofvariablesanddescriptivestatistics.

Continuousvariables Definition Mean St.dev.

p PropertysalepriceinBritishpoundsterling(£) 143922 87264

log(p) Naturallogarithmofpriceofthepropertywhensold 11.725 0.5

ı300m Numberofbus-stopswithin300metres(m)offtheproperty 7.4 3.7

ı400m Numberofbus-stopswithin400metres(m)offtheproperty 13.3 5.3

ı500m Numberofbus-stopswithin500metres(m)offtheproperty 20.7 7.4

ı750m Numberofbus-stopswithin750metres(m)offtheproperty 45.2 14.8

ı1000m Numberofbus-stopswithin1000metres(m)offtheproperty 77.7 24.4

ı1500m Numberofbus-stopswithin1500metres(m)offtheproperty 167.7 57.5

F Floorareaofapropertyinsquaremetres(m2) 105.2 48.9

Z Distancetothecentralbusinessdistrictinmetres(m) 3225.3 1408.7

Categoricalvariables Definition Proportion

r 1ifpropertyisonfreeholdtenure,0otherwise 89.7%

n 1,ifpropertyisnewlybuiltwhensold,0otherwise 3.8%

Propertytype

Flatasathereferencecategory 4.1%

d 1,ifpropertyisadetachedhouse,0otherwise 12.0%

s 1,ifpropertyisasemi-detachedhouse,0otherwise 25.6%

t 1,ifpropertyisaterracedhouse,0otherwise 58.3%

Year

Y0 1,ifpropertywassoldin2000,0otherwise(referencecategory) 11.2%

Y1 1,ifpropertywassoldin2001,0otherwise 13.4%

Y2 1,ifpropertywassoldin2002,0otherwise 14.5%

Y3 1,ifpropertywassoldin2003,0otherwise 12.6%

Y4 1,ifpropertywassoldin2004,0otherwise 12.3%

Y5 1,ifpropertywassoldin2005,0otherwise 9.6%

Y6 1,ifpropertywassoldin2006,0otherwise 12.9%

Y7 1,ifpropertywassoldin2007,0otherwise 12.4%

Y8 1,ifpropertywassoldin2008,0otherwise 1.1%

Ward

W0 1,ifapropertyislocatedinCyncoed(referencecategory) 11.5%

W1 1,ifpropertyislocatedinAdamsdownorButetown,0otherwise 12.1%

W2 1,ifpropertyislocatedinCathays,0otherwise 2.4%

W3 1,ifpropertyislocatedinHeath,0otherwise 1.6%

W4 1,ifpropertyislocatedinLlanishen,0otherwise 1.3%

W5 1,ifpropertyislocatedinSplottorRumney,0otherwise 23.1%

W6 1,ifpropertyislocatedinPenylan,0otherwise 15.0%

W7 1,ifpropertyislocatedinPentwyn,0otherwise 17.6%

W8 1,ifpropertyislocatedinPlasnewydd,0otherwise 13.9%

(6)

Fig.2.PropertiesandbusstopsincentralCardiff.

purpose-buildflats.Over 9700residentialpropertieswithinthe areahavebeensoldatleastoncebetween2000and2009, pro-viding12,887salerecords,accordingtotheLandRegistry.Apart fromthesale records,LandRegistry alsocarries detailed infor-mationregardingtheseproperties,includingtheirdwellingtypes

(detached,semi-detached,terraceorflat),tenures(freeholdand leasehold),andwhethera propertywasa newbuild. Floorarea wascalculated forevery propertyin thesample usinga meth-odologydescribed in Orford (2010). The bus stoplocationsare retrievedfrom the2007NationalPublicTransportAccessNode

Table2

Numberoftimesapropertyissoldwithinthe9-yearperiodofthedata.

Numberoftimesapropertyissoldwithinthe9-yearperiodofobservation

1 2 3 4 5 6 7

(7)

Y. Wang et al. / Land Use Policy 42 (2015) 381–391 387 Table3

Resultsofordinaryleastsquares,log(p)asdependentvariable.

Model1 Model2 Model3 Model4 Model5 Model6

Within300m Within400m Within500m Within750m Within1000m Within1500m

ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e.

Constant 10.506*** 0.025 10.479*** 0.027 10.438*** 0.028 10.417*** 0.034 10.343*** 0.039 10.269*** 0.048 Freehold(r) 0.120*** 0.009 0.121*** 0.009 0.123*** 0.009 0.126*** 0.009 0.127*** 0.009 0.125*** 0.009 New-built(n) 0.228*** 0.013 0.230*** 0.013 0.232*** 0.013 0.230*** 0.013 0.237*** 0.013 0.217*** 0.013 Detached(d) 0.651*** 0.016 0.654*** 0.016 0.654*** 0.016 0.647*** 0.016 0.644*** 0.016 0.645*** 0.016 Semi-detached(s) 0.468*** 0.014 0.471*** 0.014 0.469*** 0.014 0.465*** 0.014 0.464*** 0.014 0.465*** 0.015 Terraced(t) 0.360*** 0.014 0.361*** 0.014 0.359*** 0.014 0.356*** 0.014 0.354*** 0.014 0.357*** 0.014 Floorarea(f) 0.004*** 0.000 0.004*** 0.000 0.004*** 0.000 0.004*** 0.000 0.004*** 0.000 0.004*** 0.000 DistancetoCBD(z) 0.035*** 0.004 0.038*** 0.004 0.042*** 0.004 0.046*** 0.005 0.055*** 0.005 0.066*** 0.007 Salein2001(Y1) 0.112*** 0.009 0.110*** 0.009 0.111*** 0.009 0.112*** 0.009 0.113*** 0.009 0.110*** 0.009 Salein2002(Y2) 0.301*** 0.009 0.297*** 0.009 0.297*** 0.009 0.297*** 0.009 0.299*** 0.009 0.295*** 0.009 Salein2003(Y3) 0.526*** 0.009 0.522*** 0.009 0.524*** 0.009 0.525*** 0.009 0.522*** 0.009 0.520*** 0.009 Salein2004(Y4) 0.694*** 0.009 0.693*** 0.009 0.693*** 0.009 0.694*** 0.009 0.693*** 0.009 0.691*** 0.009 Salein2005(Y5) 0.781*** 0.010 0.778*** 0.010 0.776*** 0.009 0.778*** 0.009 0.777*** 0.009 0.776*** 0.010 Salein2006(Y6) 0.791*** 0.009 0.789*** 0.009 0.789*** 0.009 0.791*** 0.009 0.791*** 0.009 0.789*** 0.009 Salein2007(Y7) 0.842*** 0.009 0.840*** 0.009 0.840*** 0.009 0.841*** 0.009 0.840*** 0.009 0.839*** 0.009 Salein2008(Y8) 0.858*** 0.023 0.857*** 0.023 0.861*** 0.022 0.860*** 0.022 0.861*** 0.022 0.861*** 0.022 Adamstown(W1) −0.512*** 0.014 −0.508*** 0.014 −0.502*** 0.014 −0.499*** 0.014 −0.488*** 0.014 −0.465*** 0.015 Splott(W2) −0.513*** 0.012 −0.507*** 0.012 −0.493*** 0.012 −0.486*** 0.013 −0.464*** 0.014 −0.430*** 0.017 Cathays(W3) −0.196*** 0.020 −0.194*** 0.020 −0.186*** 0.020 −0.182*** 0.020 −0.164*** 0.020 −0.152*** 0.021 Heath(W4) −0.142*** 0.019 −0.137*** 0.019 −0.139*** 0.019 −0.143*** 0.019 −0.146*** 0.019 −0.144*** 0.019 Llanishen(W5) −0.240*** 0.024 −0.250*** 0.024 −0.257*** 0.024 −0.262*** 0.025 −0.269*** 0.025 −0.276*** 0.025 Penylan(W6) −0.064*** 0.011 −0.064*** 0.011 −0.062*** 0.011 −0.051*** 0.011 −0.039*** 0.011 −0.018 0.013 Pentwyn(W7) −0.648*** 0.010 −0.647*** 0.010 −0.643*** 0.010 −0.644*** 0.010 −0.638*** 0.010 −0.638*** 0.010 Plasnewydd(W8) −0.235*** 0.014 −0.230*** 0.014 −0.225*** 0.014 −0.229*** 0.014 −0.229*** 0.014 −0.218*** 0.014 Pontprennau(W9) −0.500*** 0.020 −0.502*** 0.020 −0.502*** 0.020 −0.506*** 0.020 −0.508*** 0.020 −0.505*** 0.020

Numberofbusstops(ı) 0.003*** 0.001 0.003*** 0.001 0.003*** 0.000 0.001*** 0.000 0.001*** 0.000 0.001*** 0.000

Samplesize 9655 9650 9656 9653 9659 9669 R2 0.850 0.850 0.850 0.851 0.850 0.849 F-test(df) 2176(25) 2179(25) 2185(25) 2195(25) 2186(25) 2167(25) p-Value 0.000 0.000 0.000 0.000 0.000 0.000 *p<0.1;**p<0.05. ***p<0.001.

(8)

Table4

TestingautocorrelationandhomoscedasticityinOLSresults.

Model1 Model2 Model3 Model4 Model5 Model6

Within300m Within400m Within500m Within750m Within1000m Within1500m Independenceofε Durbin–Watson 1.773 1.777 1.779 1.779 1.779 1.776 p-Value 0.000 0.000 0.000 0.000 0.000 0.000 Spatialautocorrelation Moran’sI 0.150 0.150 0.149 0.149 0.150 0.149 Expected −0.0001 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001 Standarddeviation 0.0004 0.0004 −0.0004 0.0004 0.0004 0.0004 p-Value 0.000 0.000 0.000 0.000 0.000 0.000

Homoscedasticity BreuschandPagan(1979)test

2(df) 0.233(1) 0.101(1) 0.533(1) 0.887(1) 1.503(1) 0.612(1)

p-Value 0.6293 0.7512 0.4651 0.3461 0.2202 0.4341

(NaPTAN-v2.2)dataset(Department forTransport,2007).These arealsoshowninFig.2.Thenumberofbusstopswithinspecified radiiofeachproperty(i.e.,300m,400m,500m,750m,1000m,and 1500m)wascalculatedusingArcGIS.Table1presentsasummary ofthevariablesincludedinthesampleofpropertiesinthedataset.

Table2alsoshowsthatthisisbroadlyacross-sectionalratherthan

paneldataset,asmorethan75%ofthepropertieshaveonlybeen soldonceduringthe9-yearperiod.

Modelresults4

OLSresults

Table3presentstheresultsofsixordinaryleastsquare(OLS)

regressions based on the conventional hedonic approach

pre-scribedin“AHedonicApproach”section.Thedependentvariable ineveryregressionisthenaturallogarithmofprice(log(p))andall ofthesixmodelsattempttocapturetheeffectofCardiffBuson landvalueviaı,whichmeasuresthenumberofbusstopswithin differentwalkableradii(i.e.,300m,400m,500m,750m,1000m, and1500m)aroundeachpropertycontainedinthedataset. Fol-lowingBelsleyetal.(1980)avarietyofregressiondiagnostictests wereperformedontheOLSmodelsinordertocheckwhetherany oftheregressionassumptionshadbeenviolated.Theseincluded identifyingoutliersthatmayhaveadisproportionateinfluenceon themodels,andremovingthecorrespondingobservationsif neces-sary;checkingforseriousmulti-collinearityinthemodels;testing thenormalityoftheerrorterm;andcheckingforheteroscedasticity andautocorrelationintheerrorterm.Thelattertestsarediscussed inmoredetailinalatersection.

Model1,forexample,includestheexplanatoryvariablewith regardtothenumberofbusstopswithin300maroundeach prop-erty.Theestimatedparametercorrespondingtothisvariableshows that theeffect of Cardiff Buson property priceor, more accu-rately, onland value as reflected in property price,is positive andstatisticallysignificantatthe1%significancelevel. Inother words,themorebusstopstherearearoundaproperty,thehigher thevalueoflandbeneaththatproperty.Similarfindingsarealso discerniblefromtheotherregressionsestimatingtheeffectof num-berof busstopswithin400m, 500,750m,1000mand 1500m, respectively.

Bybacktransformingthemagnitudeoftheestimated coeffi-cientwithregardtothenumberof busstopswithin300m, we cancalculatethemarginalincreaseinlandvalueasaresultof pla-cingeveryextrabusstoparoundaproperty.Inpercentage, this

4 OLSresultsareestimatedinIBMSPSSStatistics20,whilethemulti-levelanalysis

isconductedwithMLWinv.3.20(Rasbashetal.,2012).Thequantileregressionis

exercisedusinganR/SPSSinterfacebasedontheoriginal“quantreg”Rcodesby

Koenker(2007).

addedlandvalueequalsto(e0.0031)×1000.3%.Examinationof

thecoefficientsofthenumberofbus-stopswithindifferentbuffer zonesaroundpropertyinTable3suggeststhattheeffectofbus stopswithindistanceisrelativelystableandstatistically signifi-cant.Thelandvaluebenefitofeveryadditionalbusstopwithina circularcatchmentarealargerthan500mbyradiusisabout0.1% ofthecorrespondingpropertyprice.Thefigurerisesto0.3%ifthe sizeofcatchmentshrinksto500morlessbyradius.Overall,all modelsshowthattheavailabilityofpublictransportinfrastructure cansignificantlypromotelandvalueand therebyraiseproperty price.

Thecoefficientofz,thedistancetoCardiff’scentralbusiness district(CBD),isalsopositiveandstatisticallysignificant. Accord-ingtosomestudies,thisfindingiscounter-intuitiveandagainst theconventionalwisdomabouturbanspatialstructure.Per clas-sicurbaneconomictheory(e.g.,Anasetal.,1998),propertyprices shoulddeclinealongsideincreaseintheproperties’distancetocity centre.However,previousstudieshavealsoprovidedseveral expla-nationsforthepositiveinfluenceofdistancetoCBDonproperty price.Forexample,theassumptionofa declininglandvalueas distanceincreasesfromCBDisbasedontheadoptionofa mono-centriclocationchoicemodel(DubinandSung,1987),whileCardiff appearstobearatherpolycentriccity.

Floorareaisalsoapositiveandstatisticallysignificantfactorin termsofitsimpactonpropertyprice.Theeffectoffloorspaceis consistentacrossallsixmodelspresentedinTable3.Followinga backtransformationoftheparameterwithrespecttofloorspace, wefindthateveryadditionalsquaremetreinapropertyincreases itsvalueby(e0.0041)×1000.4%.

Wecapturemeanspatialvariationinpropertypricebyusinga seriesofdummy-codedvariablesrepresentingthewardsinwhich eachpropertyislocated.ThewardnamedCyncoedisusedasthe referencecategoryasitistheareawiththehighestaverage prop-ertypriceinthedataset.Allmodelsshowasignificantdifferencein propertypricefromCyncoed,althoughthelastregression(model

6inTable3)indicatesnosignificantdifferenceinpropertyprice

betweenCyncoedandPenylan.

Allothercoefficientshavetheexpectedsignsandagreewith conventionalfindingsinthehedonicliterature(Edmonds,1984). Forexample,apropertyunderafreeholdtenureislikelytoshowa higherpricecomparedwithaleaseholdproperty.Similarly,anewly builtpropertytendstohavemoremarketvaluethananaged prop-erty.Detachedpropertiesexhibitthehighestprices,followedby semi-detachedpropertiesandflats,ofwhichthelatterisdefined asthereferencepropertytypeinthisanalysis.Finally,thedummy variableswithregardtopricedifferencesduetothecalendaryear whenapropertywassoldareallsignificantlydifferentfromzero. Theyearof2000isusedasthereferenceyear,whiletheremaining coefficientsindicateaconstantincreaseinpropertypriceovertime, partlyduetoinflationinpoundsterlingandpartlyduetodynamics inthelocalhousingmarket.

(9)

Y.Wangetal./LandUsePolicy42(2015)381–391 389 Multilevelresults

Asmentioned earlier, ordinaryleast square(OLS) regression mayinvolvepotentialissuesrelatedtospatialandtemporal auto-correlations. In terms of spatial autocorrelation, the prices of propertieswithinasamejurisdiction(i.e.,electoralwardsinour data)arelikelytobemoresimilarthanthoseoutside.Intermsof temporalautocorrelation,propertiessoldwithinthesameyearmay showaconvergenceinsalepricevis-à-visthosetransactedwithin adifferentyear.Toaccountforboththegeographicaswellas tem-poralautocorrelations,ourOLSmodelswouldhavetobeexpanded extensivelytoaccommodate(M−1)×(X−1)interactionfactors.In contrast,multilevelmodellinganalysisappearstobeamore effi-cientalternativetoaddresstheissueofautocorrelation(Jonesand

Bullen,1994).

Table4identifiesaproblemofautocorrelationunderlyingall

thesixOLSmodels.TheDurbin–Watsontestsuggestsanoverall significantserialinterdependenceoftheerrorterms(ε)inevery OLSmodel.BecausetheDurbin–Watsonresultismoresensitive totemporalautocorrelation,wefurtherexerciseaMoran’sItest

(Anselin,1988),ofwhichtheestimatesalsoconfirmapresenceof

asignificantalbeitweakspatialautocorrelation(Moran’sI0.15). However,theBreuschandPagan(1979)testforthewholemodel suggeststhatheteroscedasticityisnotaproblemintheerrorterms andtheyhaveconstantvariance.Toaddresstheautocorrelation problem,sixmultilevelregressions(models7–12)arefurther con-ducted.Sinceover75%ofthesampledpropertiesaresoldonlyonce between2000and2009,weestimatethemultilevelmodelsin ref-erencetothecross-sectionalhierarchyshowninFig.1(a)instead ofthepanelstructureasperFig.1(b).

Table5illustratestheresultsofourmultilevelmodelling

anal-ysis. Both theward-by-ward (2

ward) and year-to-year variance

(2

year)arestatisticallysignificant,confirmingtheOLSfindingthat

therearegeneralisabledifferencesacrosswardsandyearsinterms ofpropertyprice.Around19%oftheaggregatevarianceinproperty price(2

property)canbeattributedto2ward,comparedwitharound

56%to2

year.Nevertheless,ı,which measurestheimpactofbus

stopsonnearbylandvalue,remainsstableandisthusunbiased. ThisessentiallyconfirmstherobustnessoftheOLSestimates,even infaceoftheidentifiedspatialandtemporalautocorrelations.

Quantileresults

Table6reportstheresultsofourquantilebivariateregressions.

Asnotedabove,weconductthisquantileanalysismainlyasapost hoccalibrationoftheOLSestimates,incaseprice-based hetero-geneitiesleadtoabiasedcoefficientmeasureofı.We thususe log(p)asthedependentvariableand ıastheonlyindependent variabletogaugethenumberofbusstopswithindifferentwalkable distances,from300mto1500m,aroundeveryobservedproperty location.

Generallyspeaking, Table6 indicatesrelativelyweakand/or insignificantassociationsbetweenthenumberofbus stopsand propertypricesatthe10%and20%quantiles,wheretheobserved propertypricesarebelow

£

74,000inthedataset.Incontrast,the strongestandmostsignificantcorrelationscanbefoundfor proper-tiesatthe80%quantile,pricedaround

£

195,000.Thoseevenmore expensivepropertiesatthe90%quantile(i.e.,

£

250.000),however, seemtobenefitnomorefromthenumberofnearbybusstopsthan thoseatthe80%quantile,eventhoughtheytendtobebetteroff comparedwithallpropertiesbelowthe80%quantile,especially whenweincreasethesearchradiustomorethan750m.

WhileconfirmingtheoverallrobustnessofOLSestimateswith regardtothemeanofı,theresultsofourquantileanalysisdo

sug-gestıtobesystematicallyvolatileacrossdifferentpricesegments. Table

5 Results of multi-level modelling, log( p ) as dependent variable. Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Within 300 m Within 400 m Within 500 m Within 750 m Within 1000 m Within 1500 m ˇ0 s.e. ˇ0 s.e. ˇ0 s.e. ˇ0 s.e. ˇ0 s.e. ˇ0 s.e. Constant 10.735 *** 0.070 10.710 *** 0.071 10.671 *** 0.071 10.660 *** 0.073 10.590 *** 0.075 10.520 *** 0.079 Freehold ( r ) 0.116 *** 0.009 0.117 *** 0.009 0.119 *** 0.009 0.122 *** 0.009 0.123 *** 0.009 0.121 *** 0.009 New-built ( n ) 0.221 *** 0.013 0.223 *** 0.013 0.224 *** 0.013 0.221 *** 0.013 0.226 *** 0.013 0.208 *** 0.013 Detached ( d ) 0.659 *** 0.016 0.662 *** 0.016 0.663 *** 0.016 0.655 *** 0.016 0.653 *** 0.016 0.654 *** 0.016 Semi-detached ( s ) 0.476 *** 0.014 0.480 *** 0.014 0.478 *** 0.014 0.473 *** 0.014 0.472 *** 0.014 0.474 *** 0.014 Terraced ( t ) 0.369 *** 0.014 0.371 *** 0.014 0.370 *** 0.014 0.366 *** 0.014 0.364 *** 0.014 0.367 *** 0.014 Floor area ( f ) 0.004 *** 0.000 0.004 *** 0.000 0.004 *** 0.000 0.004 *** 0.000 0.004 *** 0.000 0.004 *** 0.000 Distance to CBD ( z ) 0.035 *** 0.004 0.038 *** 0.004 0.042 *** 0.004 0.045 *** 0.005 0.054 *** 0.005 0.065 *** 0.007 Number of bus stops ( ı ) 0.003 *** 0.001 0.003 *** 0.001 0.003 *** 0.000 0.001 *** 0.000 0.001 *** 0.000 0.001 *** 0.000 2 ward 0.034 ** 0.020 0.033 ** 0.020 0.033 ** 0.020 0.033 ** 0.020 0.033 ** 0.020 0.033 ** 0.020 2 year 0.099 *** 0.016 0.099 *** 0.016 0.098 *** 0.016 0.099 *** 0.016 0.098 *** 0.016 0.099 *** 0.016 2 property 0.044 *** 0.001 0.044 *** 0.001 0.043 *** 0.001 0.043 *** 0.001 0.044 *** 0.001 0.044 *** 0.001 Contribution of 2 ward to 2 property 0.192 0.188 0.190 0.189 0.189 0.188 Contribution of 2 year to 2 property 0.559 0.563 0.563 0.566 0.560 0.563 Sample size 9655 9650 9656 9653 9659 9669 * p < 0.1. ** p < 0.05. *** p < 0.001.

(10)

Table6

Resultsofquantilebivariateregressions,log(p)asdependentvariableandıasindependentvariable.

Quantile ı300m ı400m ı500m ı750m ı1000m ı750m

ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e. ˇ s.e.

10% −0.004 0.003 0.001 0.002 0.007*** 0.002 0.004*** 0.001 0.002*** 0.000 0.001*** 0.000 20% 0.004 0.003 0.003* 0.002 0.005*** 0.001 0.003*** 0.000 0.002*** 0.000 0.001*** 0.000 30% 0.011*** 0.002 0.007*** 0.002 0.007*** 0.001 0.003*** 0.001 0.002*** 0.000 0.001*** 0.000 40% 0.013*** 0.002 0.009*** 0.001 0.009*** 0.001 0.004*** 0.001 0.002*** 0.000 0.001*** 0.000 50% 0.013*** 0.001 0.013*** 0.001 0.009*** 0.001 0.004*** 0.000 0.003*** 0.000 0.001*** 0.000 60% 0.010*** 0.002 0.010*** 0.002 0.009*** 0.001 0.004*** 0.000 0.002*** 0.000 0.001*** 0.000 70% 0.013*** 0.002 0.013*** 0.002 0.008*** 0.001 0.003*** 0.000 0.002*** 0.000 0.001*** 0.000 80% 0.020*** 0.002 0.020*** 0.002 0.010*** 0.001 0.005*** 0.001 0.003*** 0.000 0.002*** 0.000 90% 0.011*** 0.002 0.011*** 0.002 0.008*** 0.001 0.005*** 0.001 0.003*** 0.000 0.002*** 0.000 * p<0.1. **p<0.05. ***p<0.001.

Specifically,spatialproximitytoCardiffBusstopstendsto ben-efitpropertiesatthehighendofthelocalrealestatemarket.The strongestpositiveexternalitiescanbeobservedinpropertiesabove the80%pricequantile,witheveryadditionalbus stopwithin a 1500mbufferzone,forexample,contributingtoanincreaseby about0.22%inpropertysalepricethroughlandvaluebetterment. Thecorrespondingfigureforthecheaperpropertiesishalvedto around0.11%.

Policyimplications

Theresultsofourregressionanalysisbasedonempiricaldata fromCardiff havesomeimportantpolicyimplications.First and foremost,theoutcomesofourordinaryleastsquareregressionand multilevelmodellinganalysisprovideconvincingevidenceto sup-portaclassicGeorgisthypothesisinthecaseofCardiffBus,thata significantpartoftheaddedlocalpropertyvaluesdoescomefrom thelandbeneaththem,ormorespecifically,fromthelandplots’ geographicadjacencytothebusstoplocations.Thisfinding jus-tifiesapotentialpolicyinterventionintermsoffinancingCardiff Busthroughalandvaluetaxmechanism,giventhesubstantiated positiveexternalitiesyieldedbyCardiffBus.

Second,theresultsofourquantilecalibrationentailsomeeven moreintriguingpracticalinsights.Wefindthatthepositive exter-nalitiesofCardiffBusaredistributedunevenlyamongproperties atdifferentpricelevelsinthelocalrealestatemarket.Generally speaking,accordingtoTable6,propertiesatthehighend(atthe80% and90%quantiles)ofthemarkettendtobenefitmorethanthoseat thelowend(atthe10%and20%quantiles).Thisimplicatesa neces-sitytoexerciseprogressivelandvaluetaxation,wherebyproperties atdifferentpricelevelsneedtobetaxedatdifferentrates,sothat theunevendistributionofpositiveexternalitiescanbeaccordingly captured.Ourestimation,basedonthenumberofbusstopswithin a1500mradiusofeveryindividualpropertyincludedinoursample data,suggestsatentativelandvaluebettermenttaxrateof0.11% pernewbusstopforthefirsttierofpropertieswhicharepriced below

£

195,000and0.22%forthesecondtierofpropertieswhich areofhighermarketvalues.

Wenoticeasomewhatsimilarprogressivetaxationmechanism alreadyincorporatedinCardiff’sexistingcounciltaxsystem,which divideslocalresidential propertiesinto ninedifferentbands by theirestimatedvaluesandappliesincrementaltaxrates.Thereis thusapossibilityofintroducinganembryoniclandvaluetax ele-mentintothecurrentcounciltaxscheme,dependingonhowwe translatethequantilehedonicapproachfeaturedinthisstudyinto thecounciltaxationsystemusedinpracticeandalsoonwhethera largeenoughdatasetcoveringtheentireCardiffCounciljurisdiction willbecomeavailableinthenearfuture.

Third, our overall empirical analysis defies a conventional wisdomthatpublicinfrastructure alwaysservespublicinterest.

Arguably,thecase ofCardiffBusillustratesafree-ridescenario,

wherein the most wealthy property owners, intentionally or

unintentionally,endupextractingthevaluesofpubliclyfunded transport infrastructures. Asimilar findinghasalso beenmade recentlybyBanisterandThurstain-Goodwin(2011,pp.216–221), whosuggestlandvaluebettermentcreatedbytherailnetworks tobeevenmoreextensive.Inthissense,levyinglandvaluetax isnotonlytocaptureeconomicexternalities,butalsotoensure socioeconomicjusticeandfairness,aspertheEdwardiantradition.

Conclusionandfutureresearch

Inthispaper,weexplorethepotentialviabilityoflevyingland valuetaxwithinalocalUKcontext.Wefocusontheempiricaland technicalaspectsbyaskinghowtoassessthespatialisedrelations betweenthelocalpublictransportinfrastructuresandtheland val-uesofnearbyresidentialproperties.Weanswerthisquestionby studyingthecaseofCardiffBus.Basedonourmultileveland quan-tilehedonicanalysis,wefindstrongevidencewithregardtothe positiveexternalitiesofCardiffBusnetworktowardsthemarket valuesofnearbyresidentialproperties.Giventheuneven external-itydistributionbetweenpropertiesatdifferentpricelevels,wecall foraprogressivelandvaluetaxscheme.

Becauseofthepoliticalcontextofourstudy,weconsideraction researcha key directionof ourfuture research.We would like totakemore opportunitiesto useourresearchtoeducate and informthegeneralpublicaboutwhylandvaluetax(LVT)isan economicallyaswellassociallydesirableidea.Potential opposi-tionstoLVTareless likelyfromanefficiencyperspective,since mostclassicresearchhasalreadyconfirmedthatpurelytaxingon incomesfromlandwould notdistortresource allocation(Mills,

1981;Tideman,1982;Wildasin,1982).Morerecentresearchalso

showsthatitisactuallyeasierthanthoughttoimplementneutral ornon-distortionallandtaxation(Arnott,2005).Evenwitherrors inlandvaluation,thecollectionofLVThasbeenfoundtoresult innomore distortionsthan theconventionalproperty taxation scheme(Chapmanetal.,2009).ResistancestoLVTarethusmore likelyaboutthedistributionaleffectsoflandtaxation,orputsimply, regardinghowtosplitthebillsthatfundpublicinvestments. Con-troversialasthisquestionis,wehopeourcurrentstudyandfuture researchonlandvaluetaxwillhelpthevotersmakeaninformed decision.

Acknowledgements

The research reported in this paper is funded by the

BritishAcademy/LeverlulmeSmallResearchGrantinitiative(ref: SG122122).Allerrorslurkinginthepaperaretheauthors’.

(11)

Y.Wangetal./LandUsePolicy42(2015)381–391 391

References

Al-Mosaind,M.A.,Dueker,K.J.,Strathman,J.G.,1993.Light-railTransitStationsand PropertyValues:AHedonicPriceApproach.CenterforUrbanStudies,Schoolof UrbanandPublicAffairs,PortlandStateUniversity,Portland,OR,USA.

Anas,A., Arnott, R.,Small, K., 1998. Urbanspatial structure. J. Econ. Lit.36, 1426–1464.

Andelson,R.V.,2000.Land-valueTaxationAroundtheWorld:StudiesinEconomic

ReformandSocialJustice.Blackwell,Oxford.

Anselin,L.,1988.SpatialEconometrics:MethodsandModels.Springer,London.

Arnott,R.,2005.Neutralpropertytaxation.J.PublicEcon.Theory7(1),27–50.

Banister,D.,Thurstain-Goodwin,M.,2011.Quantificationofthenon-transport ben-efitsresultingfromrailinvestment.J.Transp.Geogr.19(2),212–223.

Barker,K.,2006.BarkerReviewofLandUsePlanning:FinalReport,

Recommenda-tions.H.M.TreasuryStationeryOffice,Norwich.

Belsley,D.A.,Kuh,K.,Welsch,R.E.,1980.RegressionDiagnostics:Identifying Influ-entialDataandSourcesofCollinearity.JohnWiley&Sons,NewYork.

Bollinger,C.R.,Ihlanfeldt,K.R.,1997.Theimpactofrapidrailtransitoneconomic development:thecaseofAtlanta’sMARTA.J.UrbanEcon.42,179–204.

Bourassa,S.C.,1990.Landvaluetaxationandhousingdevelopment:effectsofthe propertytaxreforminthreetypesofcities.Am.J.Econ.Sociol.49(1),101–111.

Bourassa,S.C.,1992.Economiceffectsoftaxesonland.Am.J.Econ.Sociol.51(1), 109–113.

Bowes,D.R.,Ihlanfeldt,K.R.,2001.Identifyingtheimpactsofrailtransitstationson residentialpropertyvalues.J.UrbanEcon.50(1),1–25.

Breusch,T.S.,Pagan,A.R.,1979.Asimpletestforheteroscedasticityandrandom coefficientvariation.Econometrica47(5),1287–1294.

Chapman,J.I.,Johnston,R.J.,Tyrrell,T.J.,2009.Implicationsofalandvaluetaxwith errorinassessedvalues.LandEcon.85(4),576–586.

Debrezion,G.,Pels,E.,Rietveld,P.,2007.Theimpactofrailwaystationsonresidential andcommercialpropertyvalue:ameta-analysis.J.RealEstateFinanc.Econ.35, 161–180.

Debrezion,G.,Pels,E.,Rietveld,P.,2011.Theimpactofrailtransportonrealestate pricesanempiricalanalysisofthedutchhousingmarket.UrbanStud.48(5), 997–1015.

DepartmentforTransport,2007.NationalPublicTransportAccessNodes,v2.2.

http://www.dft.gov.uk/naptan/schema/schemas.htm(accessed14.08.13). Dubin,R.A.,Sung,C.-H.,1987.Spatialvariationinthepriceofhousing:rentgradients

innon-monocentriccities.UrbanStud.24,193–204.

Duncan,C.,Jones,K.,Moon,G.,1998.Context,compositionandheterogeneity:using multilevelmodelsinhealthresearch.Soc.Sci.Med.46(1),97–117.

Dye,R.F.,England,R.W.,2010.AssessingtheTheoryandPracticeofLandValue

Taxation.LincolnInstituteofLandPolicy,MA,USA.

Edmonds,R.G.,1984.Atheoreticalbasisforhedonicregression:aresearchprimer. RealEstateEcon.12(1),72–85.

Ferrari,L.,Berlingerio,M.,etal.,2012.Measuringtheaccessibilityofpublictransport usingpervasivemobilitydata.IEEEPervasiveComput.12(1),26–33.

George,H.,1879.ProgressandPoverty.Schalkenberg,NewYork,Reprinted1962.

Geurs,K.,vanWee,B.,2004.Accessibilityevaluationofland-useandtransport strategies:reviewandresearchdirections.J.Transp.Geogr.12(2),127–140.

Hattersley,R.,2004.TheEdwardians.LittleBrown,London.

Heikkila,E.,Gordon,P.,Kim,J.I.,Peiser,R.B.,Richardson,H.W.,Dale-Johnson,D.,1989.

WhathappenedtotheCBD-distancegradient?Landvaluesinapolycentriccity. Environ.Plan.A21(2),221–232.

Hess,D.B.,Almeida,T.M.,2007.Impactofproximityto lightrailrapidtransit onstation-areapropertyvaluesinBuffalo,NewYork.UrbanStud.44(5–6), 1041–1068.

Ihlanfeldt,K.R.,Shaughnessy,T.M.,2004.Anempiricalinvestigationoftheeffects ofimpactfeesonhousing andlandmarkets.Reg.Sci.UrbanEcon.34(8), 639–661.

Jones,J.,Bullen,N.,1994.Contextualmodelsofurbanhouseprices:acomparisonof fixedandrandom-coefficientmodelsdevelopedbyexpansion.Econ.Geogr.70 (3),252–272.

Kain,J.K.,1992.Thespatialmismatchhypothesis:threedecadeslater.Hous.Policy Debate.3(2),371–392.

Koenker,R.,2005.QuantileRegression.CambridgeUniversityPress,Cambridge.

Koenker,R.,2007.quantreg:QuantileRegression.Rpackageversion4.10.

Koenker,K.,Bassett,G.,1978.Regressionquantiles.Econometrica.46(1),33–50.

Koenker,R.,Hallock,K.,2001.Quantileregression:anintroduction.J.Econ.Perspect. 15(4),43–56.

Lee,S.S.,Webster,C.J.,Melián,G.,Calzada,G.,Carr,R.,2013.Apropertyrightsanalysis ofurbanplanninginSpainandUK.Eur.Plan.Stud.21(10),1475–1490.

Lucas,K.,2006.Providingtransportforsocialinclusionwithinaframeworkfor environmentaljusticeintheUK.Transp.Res.A:PolicyPract.40(10),801–809.

Machado,J.A.F.,Mata,J.,2005.Counterfactualdecompositionofchangesinwage distributionusingquantileregression.J.Appl.Econom.20(4),445–465.

Marx,K.,1867.DasKapital,Bd.1.MEW,Bd.23.,pp.405.

Maxwell,D.,Vigor,A.,2005.TimeforLandValueTax?InstituteforPublicPolicy Research,London.

Mills,D.E.,1981.Thenon-neutralityoflandvaluetaxation.Natl.TaxJ.34(1), 125–129.

Newman,P.,Kenworthy,J.R.,1999.SustainabilityandCities:Overcoming Automo-bileDependence.IslandPress,WashingtonDC.

Orford,S.,2000.Modellingspatialstructuresinlocalhousingmarketdynamics:a multi-levelperspecitive.UrbanStud.13(9),1643–1671.

Orford,S.,2010.Towardsadata-richinfrastructureforhousing-marketresearch: derivingfloor-areaestimatesforindividualpropertiesfromsecondarydata sources.Environ.Plan.B:Plan.Des.37(2),248–264.

Petrella, F.,1988. HenryGeorgeandtheclassicalscientificresearchprogram:

George’smodificationofitandhisrealsignificanceforfuturegenerations.Am. J.Econ.Sociol.47(3),371–384.

Pigou,A.C.,1920.TheEconomicsofWelfare,4thed.Macmillan,London.

Rasbash,J.,Steele,F.,Browne,W.J.,Goldstein,H.,2012.AUser’sGuidetoMLwiN, v2.26.CentreforMultilevelModelling,UniversityofBristol,Bristol,UK.

Ricardo,D.,1891.PrinciplesofPoliticalEconomyandTaxation.G.BellandSons, London.

Rosen,S.,1974.Hedonicpricesandimplicitmarkets:productdifferentiationinpure competition.J.Polit.Econ.82(1),34–55.

Ryan, S., 1999. Property values and transportation facilities: finding the

transportation-landuseconnection.J.Plan.Lit.13(4),412–427.

Rybeck,R.,2004.Usingvaluecapturetofinanceinfrastructureandencourage com-pactdevelopment.PublicWorksManag.Policy8(4),249–260.

Short,B.,1997.LandandSocietyinEdwardianBritain.CambridgeUniversityPress, Cambridge.

Smith,A.,1863.AnInquiryintotheNatureandCausesoftheWealthofNations.A. andC.Black,London.

Smith,J.J.,Gihring,T.A.,2006.Financingtransitsystemsthroughvaluecapture.Am. J.Econ.Sociol.65(3),751–786.

TheTelegraph,2012.GeorgeOsborneMayHavetoRaiseVATto25%toBalance

the Budget, Retrieved from: http://www.telegraph.co.uk/news/uknews/

9701989/IFS-George-Osborne-may-have-to-raise-VAT-to-25-to-balance-the-budget.html(17.05.13).

TheUKParliament,1990.TownandCountryPlanningAct.

TheUKParliament,2008.PlanningAct.

TheUKParliament,2012.LandValueTaxBill.

Tideman,T.N.,1982.Ataxonlandvalueisneutral.Natl.TaxJ.35(1),109–111.

WalesOnline,2012.CardiffBusFaresCouldRiseforSecondTimeinFourMonths,

Retrieved from:

http://yourcardiff.walesonline.co.uk/2012/02/27/cardiff-bus-could-rise-for-second-time-in-four-months/(18.05.12).

Wenzer,K.C.,2000.Land-valueTaxation:TheEquitableandEfficientSourceofPublic Finance.MESharpe,NewYork.

Wildasin,D.E.,1982.Moreontheneutralityoflandtaxation.Natl.TaxJ.35(1), 105–108.

Wyatt,M.D.,1994.Acriticalviewoflandvaluetaxationasaprogressivestrategyfor urbanrevitalization,rationallanduse,andtaxrelief.Rev.Radic.Polit.Econ.26, 1–25.

ScienceDirect w w w . e l s e v i e r . c o m / l o c a t e / l a n d u s e p o l (http://creativecommons.org/licenses/by/3.0/ (http://www.labourland. http://libdemsalter.org.uk/). Light-rail 36,1426–1464. Land-value Spatial 27–50. 212–223. Barker Regression 179–204. 101–111. 51 50 1287–1294. 576–586. 35,161–180. 48 http://www.dft.gov.uk/naptan/schema/schemas.htm 193–204. 97–117. Assessing 72–85. 26–33. 1962. 127–140. The 221–232. 44 34 252–272. 371–392. Quantile quantreg: 33–50. 43–56. 1475–1490. 801–809. 445–465. 405. Time 34 Sustainability 1643–1671. 248–264. 371–384. 4th A Principles 34–55. 412–427. 249–260. Land An 751–786. http://www.telegraph.co.uk/news/uknews/ 9701989/IFS-George-Osborne-may-have-to-raise-VAT-to-25-to-balance-the-budget.html Town Planning Land 109–111. http://yourcardiff.walesonline.co.uk/2012/02/27/cardiff-bus-could-rise-for-second-time-in-four-months/ Land-value 35 26,1–25.

Figure

Fig. 1. Cross-sectional (a) vs multilevel panel; (b) structures for property data analysis.
Fig. 2. Properties and bus stops in central Cardiff.
Table 4 identifies a problem of autocorrelation underlying all the six OLS models. The Durbin–Watson test suggests an overall significant serial interdependence of the error terms (ε) in every OLS model

References

Related documents

Let the driver know you emerge to pull off The Bus at through one full block professor of hard stop by pulling the stop requested pull cord Don't worry the pier does not..

a) Conventional public transport (bus), including the attributes walking time to the bus stop, waiting time at the bus stop, and travel time in the vehicle. b) Walking, including

It is due to this reason that this research was aimed at validating and extending the use of the VUW NMR-guided screening method for the isolation of secondary metabolites from

Lower Downs Road Bus Stop ‘L’ Edge Hill Bus Stop ‘N’ Ridgway Wimbledon Village Wimbledon Hill Road Bus Stop ‘S’ Bus Stop ‘H’ Wimbledon Bus Station Somerset Road Bathgate

[r]

ANTI-GRAFFITI COATING SPECIFICATIONS SHALL BE PER SIGN FABRICATOR'S RECOMMENDATION... FINISH

Route 40 – Spenard / Airport &amp; Route 65 – Jewel Lake / Airport. The bus stop at the North Terminal (Stop #3034) and the bus stop on Postmark Drive (Stop # 3519) will be

Univariate and repeated measures ANOVAs calculated with and without control for potentially confounding variables (including general trust, sensation seeking, first