• No results found

The Timepix3 readout chip for hybrid pixel detectors: design and first measurements

N/A
N/A
Protected

Academic year: 2022

Share "The Timepix3 readout chip for hybrid pixel detectors: design and first measurements"

Copied!
35
0
0

Loading.... (view fulltext now)

Full text

(1)

The Timepix3 readout chip for hybrid pixel detectors: design and first

measurements

Presented at FEE 2014, Argonne National Laboratory, May 20

th

Massimiliano De Gaspari

CERN, European Organization for Nuclear Research Geneva, Switzerland

(2)

Outline

• Introduction to Timepix3

• Front-end architecture

• Tests on bare chips

• Measurements with sensor

• Summary

(3)

3

Timepix  Timepix3

Timepix Timepix3

Year 2006 2013

# pixels 256 x 256

Pixel size 55 x 55 mm

Technology CMOS 250nm CMOS 130nm

Measurement modes - Time-Over-Threshold (TOT) - Time Of Arrival (TOA)

- Event counting (PC)

- Simultaneous 10bit TOT and 18bitTOA - 18bit TOA only

- 10bit PC and 14bit integral TOT (itot) Readout type Sequential (frame-based) - Frame-based

- Data Driven (zero suppressed)

Dead time >300ms full frame readout > 375ns packet transfer, maximum hit rate 40Mhits/s/cm2

Time resolution 10ns 1.56ns

TOT monotonicity (h+) No Yes

Power pulsing No Yes

Minimum threshold ~750e- >500e-

Timepix3 is a joint design effort by CERN, NIKHEF and the University of Bonn

Main applications are:

- Fast readout of solid-state pixelated sensors - Readout of gaseous detectors (TPC)

- Vertex Locator for LHCb (future VELOpix) - Power pulsing tests for the Linear Collider - Dosimetry

(4)

Timepix3

14100 µm

16210 µm Sensitive Area (14080 µm)

Active Periphery (1260 µm)

55 µm

55 µm

128 double columns:

2x256 pixels (64 SuperPixels) each

SuperPixel: 2 x 4 pixels 1 per SuperPixel:

VCO@640MHz for the fast TOA

Analog Front-End 13 x 55 mm2 Input pad on top of the digital area

(5)

5

Fast ToA measurement

40MHz global clock always running (14bit ToA)

One 640MHz Voltage-Controlled Oscillator per SuperPixel (2x4 pixels) activated only when a discriminator fires (4bit fast ToA)

14bit ToA registered

(6)

Pixel/SuperPixel diagram

Global threshold (LSB= ~10e-)

Front-end (Analog)

Leakage Current compensation

Preamp

Input pad

1 pixel

TpA TpB

TestBit MaskBit

4-bit Local Threshold

~50mV/ke- 3fF

3fF

T. Poikela

(7)

7

Pixel/SuperPixel diagram

Global threshold (LSB= ~10e-)

Front-end (Analog)

Leakage Current compensation

Preamp

Input pad

1 pixel

VCO

@640MHz

Super pixel (Digital)

Control voltage

Common for 8 pixels

640MHz

TpA TpB

TestBit MaskBit

Front-end (Digital)

Counters

&

Latches

clock (40MHz)

Time stamp

14-bits

Synchronizer

&

Clock gating

OP Mode

4-bit Local Threshold

~50mV/ke-

TOA (14-bit) TOT (10-bit) FTOA (4-bit) TOA & TOT

TOA (14-bit) FTOA (4-bit)

TOA

iTOT (14-bit) PC (10-bit) PC & iTOT

3fF

3fF

T. Poikela

(8)

Pixel/SuperPixel diagram

Global threshold (LSB= ~10e-)

Front-end (Analog)

Leakage Current compensation

Preamp

Input pad

1 pixel

VCO

@640MHz

Super pixel (Digital)

Control voltage

Common for 8 pixels

640MHz

TpA TpB

TestBit MaskBit

Front-end (Digital)

Counters

&

Latches

clock (40MHz)

Time stamp

14-bits

Synchronizer

&

Clock gating

OP Mode

4-bit Local Threshold

~50mV/ke-

TOA (14-bit) TOT (10-bit) FTOA (4-bit) TOA & TOT

TOA (14-bit) FTOA (4-bit)

TOA

iTOT (14-bit) PC (10-bit) PC & iTOT

3fF

3fF

Deserializer [1x31]

Super pixel FIFO [2x31]

Data out to EOC

37-bits

clock (40MHz)

Token arbitration

31-bits handshake

T. Poikela

(9)

9

Outline

• Introduction to Timepix3

• Front-end architecture

• Tests on bare chips

• Measurements with sensor

• Summary

(10)

Front-end specifications

Parameter Value Notes

Area 55mmx13.5mm

Signal polarity Positive and negative

Detector capacitance ~50fF 25fF to 100fF

Leakage current -5nA to +20nA

Amplitude linearity Not required Time measurement TOT monotonicity Yes, up to 300kh+

ToA jitter and mismatch Compatible with

1.56ns resolution Gas detector applications Time-to-peak Target 25ns In view of VELOpix

Noise +

threshold mismatch ~90e- for a minimum threshold ~500e- Equalization DACs 4bit Compensate pixel-to-pixel

threshold mismatch Power consumption 12mW/pixel

(11)

11

Front-end architecture

Polarity switches PMOS diodes (TOT linearity)

Preamplifier + Discriminator OTA + Discriminator

Krummenacher feedback Equalization DAC 1st stage 2nd stage (constant total current)

(12)

Timepix/Timepix3: preamplifier

Triple well

Timepix Timepix3 Notes

Preamplifier Differential Single-ended More efficient power usage

Cfb 8fF 3fF Larger gain

Input pad size

& positioning

20x20mm, over analog domain

12x12mm, over digital domain

Minimize parasitics, shielding to

analog ground

(13)

13

TOT monotonicity

TOT monotonicity issue for large positive input charges:

Qin>100kh+  V(In)>V(NodeX)  current through the wrong path

Added diode-connected PMOS transistors  good current path

In Out

NodeX

In Out

NodeX

(14)

TOT monotonicity

0 2 4 6 8 10 12 14 16 18 20

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

TOT ms

Qin ke-

TOT

TOT no diodes

(15)

15

Outline

• Introduction to Timepix3

• Front-end architecture

• Tests on bare chips (using test pulses)

• Measurements with sensor

• Summary

(16)

Test setup

SPIDR: Speedy PIxel Detector Readout

Developed for Timepix3 (from single chips up to quads) 1 x 10Gbps Ethernet link IO

Credits:

Bas van der Heijden, Frans Schreuder, Henk Boterenbrood (NIKHEF) Timepix3 Chip on

SPIDR board

VC707

Evaluation Board 10 Gbit

Ethernet

Virtex 7 FPGA

(17)

17

S-curves

0 100 200 300 400 500

-25 0 25 50 75 100 125 150 175 200 225 250

Couunts

Threshold DAC [LSB]

Noise Floor TP=988e- TP=1542e- TP=2004e-

250 test pulses injected and counted in Photon Counting mode ENC extracted from the S-width: 5.7LSB = 64e- rms

250 counts plateau

X. Llopart

(18)

Timewalk and TOT linearity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 10 20 30 40 50 60 70 80

0 2.5 5 7.5 10 12.5 15 17.5 20

[µs]

time [n s]

[ke-]

TOA TOT

TOT (Linear fit) Threshold 500e-

TOT slope ~75ns/ke-

Timewalk

10ns@1500e- TOA jitter

<0.5ns@5.5ke- TOA<25ns@800e-

(19)

19

Outline

• Introduction to Timepix3

• Front-end architecture

• Tests on bare chips

• Measurements with sensor:

300mm Silicon P-on-N available since last week

• Summary

(20)

Fluorescence measurements (65k pixels)

Noise hits start at 2keV=550e-

FWHM  energy resolution s=124e- (Cu) Equalization using noise floor

(21)

21

Gain calibration using fluorescence (65k pixels)

40.5eV/LSB = 11.2e-/LSB = 44.6mV/ke- E. Fröjdh

(22)

Noise map before/after bonding

Same chip measured at wafer level and after sensor bonding:

(23)

23

Noise distribution

Average noise over the full matrix stays the same. Its distribution widens a little bit.

(24)

17 14 15 14

2 7 10 11 12 12 13 17 11 15 10 15 9 11 9 11 12 10 11 10 5

6 6 7 12

9 9 13 12 9 10 17 8

40 45 50 55 60 65 70 75

2 4 6 8 10 12 14 16

ToT

1 1 1 1 44 7

5 5 4 4 4 4 4 4 5 5 12 8 13 12 13 13 12 13 16 19 21 18 16 16 19 18 18 23 23 24 29

40 45 50 55 60 65 70 75

5 10 15 20 25 30 35 40

Time (ns)

MIP (cosmic)

(25)

25

Alpha particle

1 1 1

1 2 2 2 2 2 2

1 3 3 4 5 4 3 2 2

2 3 6 16 32 23 9 4 2 1

2 5 17 71 213 123 31 8 3 2

1 3 6 40 225 305 331 83 13 4 2

1 3 5 29 169 360 316 70 12 3 2

2 4 12 41 86 73 25 7 3 2

2 3 4 10 14 13 7 3 3

2 2 3 4 3 3 2 1

1 2 2 2 1

224 226 228 230 232 234 236 0

2 4 6 8 10 12

0 50 100 150 200 250 300 350

Tot

20 19 20

20 11 12 6 9 8 14

20 11 9 5 5 5 5 9 15

11 8 5 1 1 3 3 6 12 19

9 5 5 1 1 3 3 5 8 14

23 8 5 5 3 1 3 5 5 6 14

20 8 5 5 1 3 3 3 5 5 14

11 5 5 5 5 3 5 6 9 17

11 8 6 6 5 3 5 6 11

11 8 8 6 6 9 11 20

20 14 11 11 19

224 226 228 230 232 234 236 0

2 4 6 8 10 12

0 2 4 6 8 10 12 14 16 18 20 22

Time (ns)

(26)

Outline

• Introduction to Timepix3

• Front-end architecture

• Tests on bare chips

• Measurements with sensor

• Summary

(27)

27

Summary

• Timepix3 designed and fabricated in 2013

• Tests on bare chips and on wafers give good results

• First measurements with 300mm Silicon sensors look promising

Bare chip With 300mm Silicon sensor

Noise 55±2.9 e- rms 55±3.4 e- rms

Threshold mismatch (equalized) 35e- rms 35e- rms

Minimum threshold 500e- 550e-

TOT mismatch 6.5% rms

Timewalk (1ke- above threshold) 10ns

TOA < 25ns Charge > 0.8ke- TOA jitter < 0.5ns Charge > 5.5ke-

Energy resolution 124e- (Cu)

with equalization on noise floor

(28)

Thanks for your time and attention!

• Timepix3 designed and fabricated in 2013

• Tests on bare chips and on wafers give good results

• First measurements with 300mm Silicon sensors look promising

Massimiliano De Gaspari for the CERN Medipix team (J Alozy, R Ballabriga, M Campbell, E Fröjdh, J Idarraga, S Kulis, X Llopart, T Poikela, P Valerio, W Wong), in collaboration

Bare chip With 300mm Silicon sensor

Noise 55±2.9 e- rms 55±3.4 e- rms

Threshold mismatch (equalized) 35e- rms 35e- rms

Minimum threshold 500e- 550e-

TOT mismatch 6.5% rms

Timewalk (1ke- above threshold) 10ns

TOA < 25ns Charge > 0.8ke- TOA jitter < 0.5ns Charge > 5.5ke-

Energy resolution 124e- (Cu)

with equalization on noise floor

(29)

29

Thanks for your time and attention!

References:

- M. De Gaspari et al.

“Design of the analog front-end for the Timepix3 and Smallpix hybrid pixel detectors in 130 nm CMOS technology,” 2014 JINST 9 C01037

- T. Poikela et al.

“Digital column readout architectures for hybrid pixel detector readout chips,”

2014 JINST 9 C01007 - Y. Fu et al.

“The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC,” 2014 JINST 9 C01052

Massimiliano De Gaspari for the CERN Medipix team (J Alozy, R Ballabriga, M Campbell, E Fröjdh, J Idarraga, S Kulis, X Llopart, T Poikela, P Valerio, W Wong), in collaboration with NIKHEF and the University of Bonn.

(30)

Outline

• Back up slides

(31)

31

Timepix3 floorplan

14.1mm 2.1mm

14.1mm

(32)

Readout modes

Data-driven readout mode.

Sequential frame-based mode.

(33)

33

Threshold equalization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-1500 -1250 -1000 -750 -500 -250 0 250 500 750 1000 1250 1500

Counts

[e-]

µ0 = -762e- σ0 = 195e-

µF = 762e- σF = 197e- µeq = 0e-

σeq = 35e-

Pixel DAC = 0x0 Pixel DAC = 0xF

(34)

Threshold equalization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-1500 -1250 -1000 -750 -500 -250 0 250 500 750 1000 1250 1500

Counts

[e-]

1 256

256

1

X (column number) Y

-1500 -750 0 750 1500

µ0 = -762e- σ0 = 195e-

1 256

256

1

X (column number) Y

-1500 -750 0 750 1500

µF = 762e- σF = 197e-

1 256

256

1

X (column number) Y

-1500 -750 0 750 1500

µeq = 0e- σeq = 35e-

Pixel DAC = 0x0 Pixel DAC = 0xF

(35)

35

Fluorescence measurements

References

Related documents

The purpose of our study is to explore outsourcing strategies among small manufacturing firms in Sweden, and to test how these strategies can be linked to financial performance..

Tired of the temp scene? Do you want to join a growing team that’s setting industry standards in training, retention and employee satisfaction? Whether you have previous

Although these observations are consis- tent with predictions based on the ACH model, the validity of the expression hub/active chromatin compartment model (see below) cannot be

Izrada prethodnog sastava stabilizacijske mješavine za izradu nosivog sloja od zrnatog kamenog materijala stabiliziranog hidrauli č nim vezivom mora biti sukladna potpoglavlju

Overall, in the first stage regressions without an additional Latin American dummy, both years of schooling and the skilled share of the population are negatively and

It is the first in Indonesia, where the national government and local government agreed to jointly sign the zoning plan and committed to share responsibility to implement the

Workplace Forms provide a security-rich, dynamic front-end to business processes, enabling process automation that leverages the major components of a complete On Demand