• No results found

Integers representable by (x+y+z)3/xyz

N/A
N/A
Protected

Academic year: 2020

Share "Integers representable by (x+y+z)3/xyz"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

VOL. 21 NO. (1998) 107-116

INTEGERS REPRESENTABLE BY

(x+

,

+z)31x,z

SHARON A. BRUEGGEMAN Department of Mathematics

University of Illinois 1409 W. Green Street

Urbana, IL 61801

(Received February 21, 1996)

ABSTRACT.In

[1],

A.BremnerandR.K.Guydiscuss theproblemof findin8integerswhichmay

be represented by

(z

+

/+

z)

/z/z

where z,y, zareintegers. Tothisend,theypresent tables of solutionsfor integersninthe

ranse

-200

<

n

<_

200and offer severs/parametricsolutions which involveboth positive and negative integers. We presentfourinfinitefamilies ofsolutions which involveonlypositive

intesers.

Purthermore,these families contain sequencesthat are

8enerated

by linearly recursiverelations.

AMSSUBJECT CLASSIFICATION CODE. 11D85.

1. INTRODUCTION

Wemake thefollowingdefinitions.

.(-.,.)

("

+" +

)’

CA)

=a

,(,,,)

("

+ +

)’

()

zyz zyz

wherez,y,zarepositive integers.

"vVesaythat anintegernis representable byv2

(reap.

vs)

ifthereexists a tripleofintegers

(z,y,z)

such that

v2(z,y,z)

,

(reap.

(z,/,z)

n).

On the other hand, wesay that triple of integers

(z,y,z)

iss solution to

(A)

(reap.

(B))

H

therests integer n

su

that

r(z,,z)

n

(resp.

r,(z,,z)

n).

Notethat eschsolutionto

(A)

is

o

ssolution to

(B).

In

1993, R. K. Guy

[2]

proposed the problem offining tegers nrepresentable by Thefoongye

[3],

he sub,tied theproblemoffining integers nrepresentable by

.

Weattk thefoyerproblem

om

the oppositerection to findtples of

tesers

w

e

solutionsto

(B).

Todo

ts

wefind tp]esof positive

intesers

w

esolutions to

(A

ft them to

(B).

Thesolutions to

(A)

efound by constructingtrsof tples der gebrc

re.

Then
(2)

108 SHARONA.BRUEGGEMAN 2. CONSTRUCTION OF

THE

SOLUTION TREES

Firstwedemonstrate that there isnoloss ofgeneralityinassumingthat z,y, andzhaveno commonnontrivialfactor.

Proposition2.1.

If

(z,y,z)

is asolution to

(A),

then thereare onlyfinitelymanypositive

inte-gersk suchthat

(kz,

ky,

kz)

is asolution to

(A).

These k areprecisely the divisors

of

vz(z,y,z).

kkykz

"

k zyz

"

Nowwemayassumethat z,y, and zhavenocommonnontrivial factor. Thisisequivalentto z,y, andzbeing pairwise relatively primebecauseifaprimenumberp divides any twoof z,y,

orzand

vz(z,

yrz)

is aninteger thenp divides the third.

Nextweneed to findanefl’ective way ofidentifying tripleswhicharesolutions to

(A)

byusing only properties of z,y,z. Infact,three symmetric divisibilityconditions axesufficient.

Proposition2.2. Supposez,y,zarepairwise relativelyprime. Thenz divides

(y+

z)2,

y divides

(z

+

z)

,

andz divides

(z

+

y)2, if

andonly if,

(z,y,z)

is asolution to

(A).

Proof.

Sincez,y,z axepairwise rdativelyprime,it sufficesto cheek that z,y, andz divide the numeratorof

v(z,

y,

z).

(z

+

y

+

z)

(y

+

z)

0

(modulo

z)

(z

+

y

+

z)

(z

+

z)

_=0

(modulo

y)

(z

+

y

+

z)

_=

(z

+

y)

_=0

(modulo z)

Theconverse iscleax.

By the converse to Proposition 2.2, finding all triples with this property, will yield all the solutions to

(A).

Nowsupposewe axegivenonetriple thatisasolution to

(A).

Wewantto find othersolutionsusingthegivenone.

Proposition 2.3. Suppose

(z,y,z)

is apairise relativelyprime solutionto

(A).

Then

(a,

y,

z)

wherea

(z,

b,

z)

where b

(z,

y,

c)

wherec

(

+

z)

are also pairwise relatively prime solutions to

(A).

Furthermore,

v2(=,

!,

z)

v2(a,

!,

z)

v2(z,

b,

z)

v2(z,

!,

c).

/’roof. By

Proposition 2.2, a,b, andceintegers. Thenewtriplesrepirwie relati..’ely prime incethe twoftxedentrie tinh,ve no commonrtor.

By

symmetryit

,mces

toprove thelt
(3)

Wedenotethe three transformations oftriplesinProposition2.3 asfollows:

We say that twotriples belongto thesamefamilyif thereis asequence of

b

which takesone

tripletoapermutationofthe other. Nextwedefineapartialorderontriplesin thesamefamily. Since any twoconsecutive

(under

bi)

triples share two entries, we may define anordering on

triplesinthe followingway. Wesaythat

(z,y,w)

_<

(z,y,z)

if w

_<

z. Thecompleteordering follows bytransitivity. If

(u,v,w) _<

(z,y,z),

wecall

(u,v,v)

apredecessor of

(z,y,z),

andwe ca]]

(z,

9,

z)

asuccessorof

(u,

v,

u).

Wewillwant to iterate these threetransformations togeneratemoretriplesin the family of solutions. Firstwe seehowasingletransformation works inthe contextofthe partial order. Proposition2.4. Suppose z,y,z,a,b,c satisfi./Proposition t.3andz

<_

y

<_

z, then y

<_

z

<_

a

and z

<_

z

<_

b. That i,, the triple

(a,y,z)

and

(z,

b,z)

are greater than the original triple

(z,y,z).

Wehave no

information

about the ordering withc.

Proof.

This isclear from thedefinitions ofaandb.

By

iterating these transformations,weobtainatree-likefamily ofsolutionsto

(A),

sinceeach triple yields twosucceeding triples. See Figure2.1. Wesay that anorderedtriple

(z,

y,

z)

is the rootofafamily if it does nothaveapredecessor;thatis,c

>_

z.

Proposition 2.5. Each family/

of

ordered triple

forms

a tree relative to the partial order on

triple.

Proof.

Notethat the constructionabove allowsfor atmostonepredecessorforanyordered triple

(z,

9,

z),

namely

(z,

y,

c).

Henceeach triple hasoneuniqueroot. Thereare nocyclesfor thesame

reason. [

Next weconsider the ordering ofc

(z

+ 9)2/z

where z

_<

9

-<

z. Thereare three possible situations.

c

>

zifandonlyif z

+

y

>

zif andonlyif

(z,

y,

z)

(1,1,1).

c zifandonly ifz

+

y zifandonly if

(z,y,z)

(1,1,2),(1,2,3),

or

(1,4,5).

c

<

zifand onlyifz

+

y

<

zotherwise,thatis, the triple

(z,y,z)

is notaroot.

Itremainstoshow that thereareonlyfour possible roots where theentriesarepairwise relatively prime.

Proposition2.6. There areprecisely

four

root triples

(z,9, z)

where z

<_

9

<_

z and z,y,z are

pairie relatively prime. Theyare:

(1,1,1), (1,1,2),

(1,2,3),

and

(1,4,5).

Proof.

Itsufficesto findallz,y,zsuch thatz

+

9

_>

zand

v2(z,

9,

z)

is aninteger. Supposethat

(a,

b,b

+

d)

isasolutionto

(A)

where0

_<

d

_<

a

_<

b. Wedividetheproofintothreesteps.

Step 1. Ifd 0ord a,thenweobtainallfourordered root triples. Thereforewemayassume that0<d<a.

Step2. Determine whichpairs

(a,b)

yield

v2(a,b,b

+

d)

<

1 for alld. Therecanbenorootsfor these pairs

(a,b)

since

v(a,b,b

+

d)

isnot aninteger.
(4)

110 SHARONA. BRUEGGEMAN

(841,

25,4)

(1,1,1)

(1,1,4)

(I, 25,4)

(I, 25, 169)

(1,1,2)

(1,9,2)

(121,9,2)

(121,

1681, 2)

(121,

9, 8450) (348 I, 9, 5O)

(1,9,50)

(1,289,50)

(1,2,3)

(25, 2,3) (I, 8, 3)

(25,392,

3)

(25.2,243)

(121.8.3) (1,8,27)

(1,4,5)

(81,4,5)

(1,9,5)

(81, 1849, 5)

(81,

4, 1445) (196, 9, 5)

(I,

9, 20)
(5)

(Step

1):

Set d 0. Then

(a,b,b

4-

d)

(a,b,b).

By the relatively primecondition,b 1. Since

a

<

b,a 1 also. Note

v(1,1,1)

9.

Set d a. Then

v(a,b,b

+

d)

v(a,b,b

+

a)

(a

.

+

b.b

+

b

+

a)

4(a+b)

4(a+b)

(b

+

)

b(

+

b)

b

Since

(a,b)

1,

(a,a+b)

(b,

a4-b)

1. Henceab divides 2

.

By

therelatively primecondition, therearethree possibilities:

a 1 b 1

v:(1,1,2)

8,

a--1 b 2

v(1,2,3)

--6,

a 1 b 4

v(1,4,5)

5.

(Step

2):

Nowconsider 0

<

d

<

a. Notea 1soa

<

b.

(,

b,b

+

d)

(

+

b

+

b

+

d)

(

+

b

+

b

+

)

b

(b+a)

<

a.b.(b/O)

4(a

4-

b)

4a 8 4 ab

-

+

-

+

-,

Wesolvetheinequality, 4 4

D-

+

+

<

1, for a, b positive integers. The fonowing tablelists values ofaandb thatdonotyield integer-valuedvs.

a-5 b

>

43 a--11 b

>

17

a-6 b

>

27 a:12 b

>

17

a-7 b

>

22 a--13 b

>

17

a-8 b>20 a=14 b17

a--9 b

>

19 a--15 b

>

17

a 10 b

>

18 a

>

16

(Step

3):

Nowthat wehave eliminated thecasesin Step2,it suffices to show thatnoneof the remainingcasesyield roots.

Considerthe above table. Afinitecomputercheck,withavaryingfrom5to15andbvarying from a

+

1 to 42,determines that there are noroots with a 4. The algorithmis simple. If

(a,b, c)

solved

(A),

then c would divide

(a

+

b)

by Proposition 2.2.

So,

for each pair

(a,b),

it

sufficesto test

v(a,

b,

c)

for eachdivisorcof

(a

+

b)

.

Buteach such

v(a,

b,

c)

is not aninteger.

Itremainstoshow that therearenotripleswhicharesolutions to

(A)

withthepropertythat

a 1,2, 3,4and0

<

d

<

a

<

b. Wehavethe following cases:

a 1,nodarepossible.

a=2, d=l:

(2

4-b4-b4-

1)

(2b

4-

3)

2b(b

+

1)

2b(b

+

1

a=3, d=l"

(3

4- b4-b4-

1)

4(b

4-

2)

3b(b

4-

1)

3b(b

4- 1

a 3,d 2:

(3

+

b

+

b

+

2)

(2b

+

5)

3b(b

4-

2)

3b(b

+

2)

is notanintegersince2 doesnot divide 2b

+

3.

is notanintegersince

(b

+

1, b

+

2)

1andb

+

1

>

4.
(6)

SHARON A. BRUEGGEMAN a=4,d=l:

(

+

b

+

b

+

a)’

(2b

+

)’

4b(b

+

1

45(b

+

1

a 4,d 2:

(4+b+b+2)

4b(b

+

2)

is notanintegersince2doesnot divide2b

+

5.

(b

+

3)

b(b

+’)

isnotanintegersinceb

+

2doesnot divide

(b

+

3)

2. a 4, d 3:

(4

+

b

+

b

+

3)

2

(2b

+

7)

2

4b(b

+

3)

4b(b

+

3)

is notanintegersince 2 does not divide 2b

+

7.

Thiscompletesthe proof of Proposition2.6. D

Finallyweremovetherelatively prime condition. Weget8possiblevaJuesforv2 and 13trees

ofsolutions. Thisresult isa subcase ofa problem

[2]

in the Amer. Math. Monthly.

I

state it here forcompleteness.

Proposition2.7. Thepositive integers 1,2,3, 4,5, 6, 8, and9 are the only positiveintegers that

are representable as

(z

+

y

+

z)

where z,y,z arepositive integers. zyz

Proof.

Wehave alreadyseenthat each triple

(z,y,z)

in tree

(1,1,1)

yields

v2(z,y,z)

9. The other trees yield

v2(z,y,z)

8, 6, and5 respectively. Then the appropriate multiples of the abovetrees yield

v2(z,y,z)

1, 2,3, and4. SeeProposition 2.1. [

Forexample,the tree with root

(1,2,

3)

maybe multiplied by 1,2,3or6. v2

(1,

2,

3)

6;

v2(2,

4,

6)

3;

v2(3,

6,

9)

2;

v2(6,12,18)--1.

3. LIFTING FROM

(A)

TO

(B)

As stated eaxlier, each solution to

(A)is

also a solution to

(B).

But since

v(z,y,z)

(z

+

y

+

z).

v2(z,y,z)

the function value statements need to be altered. So we repeat the previouspropositions withappropriate changes.

Proposition 3.1.

I[

(z,y,z)

is a solution to

(B),

then

vs(kz,

ky,

kz)

vs(z,y,z)

.for

each integerk. Hence wemay assume that z,y,z arepairwie relatively prime.

,,,(,,)

(

+

u

+

z)’

(

+

u

+

)

,,,(,,).

kzkykz k zyz

Proposition3.2. Suppose z,y,z are pairwise relatively prime.

If

z divides

(y

+

z)2,

!t divides

(z

+

z)2,

andzdivides

(z

+

y)2,

then

(z,y,z)

is asolution to

(B).

(7)

Proposition3.3.

If

(z,y,z)

is apairwise relatively prime solutionto

(A)

and

(B),

then

(a,

1,

z)

where

(z,b,z)

where b

(z,

y,

c)

where c

(

+

z)

Z

(z

+

z)

are

pairwise relatively prime solutions to

(A}

and

Furthermore,

vta,

+

z

C,,z),

(,b,z)

=

+

z

(,,z),

(,-:,’

++z

)’

((+ +C+))

+

v(a,,z)

(’+’)’z

(

+

z)=

z

=

vs(z,b,z)

and

vs(z,!/,c)

followsimilarly.

Wedenote the three transformations of triplesinProposition3.2asfollows:

Proposition 3.4. Suppose z,y,z,a,b,c satisfy Proposition 3.3 andz

<

y

<

z, theny

<

z

<

a

and z

<

z

<

b. That is, the triples

(a,y,z)

and

(z,b,z)

are greater than the original triple

(z,y,z).

Wehaveno

information

about the ordering withc.

Note that,in thissituation, the partial orderhasadouble meaning. Considerthe aboverelation that

(z,y,z) <

(a,l,z).

Since z

<

y

_<

z, wealso have that

>

1. So that

vs(z

y,z) <

vs(a,y,z).

Hencewemayregardthe partial orderas beingdefinedbyeitherthe differing entry

orby theresultingvalues of

vs.

Proposition 3.5. Each family

of

ordered triples

forms

a tree relative to the partial order on

triples.

Proposition3.6. There are precisely

our

root triples

(z,y,z)

where:

<_

y

<_

z and z,y,z are

pairwise relativel!/prime. Theyare:

(1,1,1),

(1,1,2), (1,2,3),

and

(1,4,5).

(8)

SHARON A. BRUEGGEMAN

4.

INFINITE SEQUENCES

We

construct thesesequences as follows. Take anytriple in a treeand write it in the form

(a,

bz0,cy0

)

where b and c axe squaxefree. Applying the maps

b2

and

bs

following Proposi-tion3.3 inalternating fashion,weobtainasequenceof triplesof theform

(a,

bz0, cy0),

(a,

bz], cy0),

(a,

bz,

cy

),...

where

(

+

c)

(+

bzn+l

)

or

bznzn+l

a

+

qt

or Cyny,+l a

+

bz+l.

The forms

bz,

and

c1/

axeokaysinceb andcaresquaxefree.

Weseekasimplifiedvalueformulaforvs in termsofz, aaxdI/-. Define

(

+

b0

+

0).

Proposition4.1. Uain9the notation above,

(,

b,

)

i-aa

a,

+:,)

+un.

P[.

By

detionof

A,

,

)

+

+

)

ApplyProposition3.3.

A c1/o A A

(,b

0

)

T00

+

+

zy0

by

(1)

bz

0"

bzo

A

bz]

A

bz]

A

,d

,(,b.

)

0.

+

z.

+

o

zy

by

(2).

(1)

(2)

(3)

(4)

The proposition follows byinductiononthe subscripts. F1

Finally wedetermine the lineaxly recursive relation onz," and1/,,. First weneed a 1emma.

Rearrange (3)

and

(4)

asfallows:

a

+

bz

+

cy

Azny,"

(3’)

a

+

bz,+

+

cy. Az,+11/,.

(4’)

Lemma

4.2. Udngthe notation

above,

(n+

+

.)

(A

/)+

and

()

(6)

Prooi.

Consider equations

(3’)

and

(4’).

Toshow

(5),

first subtracta

+

bxn+

.+.

C1/n

AXn+lYn

froma

+

bz+

+

c1/,’+1 Az,’+l1/,’+. Thenremovethe factor 1/.+1 1/. and square, yielding

c2(1/,+1

+

1/,’)2

A

z,+

1. Similaxly, toshow

(6),

subtract a

+

bz+

(9)

Proposition4.3. Usitql the notationabove,

z.+2

(A2/bc-

2)z.+i

z.

and Yn+

(A/bc-

2)yn+1

Y. where

A/bc-2

is an integer.

(7)

(8)

Pro@

Firstnote

X2/be

a.

v2(a,

bzo,Cl)

isaninteger. Considerbz,,+lz,,+2 a

+

By adding0 a- a

+

2bz+

2bz,,+1

2

+

cy

cj,

wefind that

2(a

cy

2bz,+z

(a

4-

c).

bz,+az,+2 c+1

+

+

bz+a)

+

By

(2)

and

(1),

wefindthat

Nowby

(5),

itis easytoseethat

z.+

(Albc)z.+

2z+i

z.

(A2lbc-

2)=,,+,

=,,.

Asimilarargumentworksfory,+

(A/bc

2)y,+

y,. Consider cg,+ay,+ a

+

bz,+.

Add0 a

a+

2CYn+l

2Cyn+l

+

bz=+

bz.+

Apply

(6)

instead of

(5).

Sincethesesequencesarelinearly recursive,it iseasy to findformulasin terms ofntosatisfy eachsequence. Notealso thattheorder oftheentriesisirrelevant aslong as wedonotstart the recursionby replacing thelargest one. Soweget 4increasing sequences starting fromatriple

(a,b,c)

witha

_<

b

_<

c. Theyareachievedasfollows:

(1)

Fixc andstartby replacinga. Think

(c,a,b).

(2)

Fixc and start by replacing b. Think

(c,b,a). (3)

FIX

b and start by replacinga.

Think

(b,a,c).

(4)

Fixa and startby replacing b. Think

(a,b,c).

Notethat sequences

(2)

and

(4)

agreeatthe second tripleasdosequences

(1)

and

(3)

althoughthey all differafter that. Ifwe

traversebyreplacingthelargest entryfirst, the sequence decreases initially until itreaches the "oldestancestor" containing thefixed entry andthen it increases. Ifthat ancestoristheroot,

thesequence will turnaroundattherootandwillgivenonewvalues asit willeventually repeat

oneof the increasingsequences above.

ACKNOWLEDGEMENTS.

I

wouldlike tothank Nigel

Boston

forsuggestingthisproblem and

KenOno forhis great suggestionsonimprovingthe manuscript. REFERENCES

1.

BREMNER,

A. and

GUY,

R.K. Two More RepresentationProblems, Edin. Math. Soc.

(to

appear).

2.

GUY,

R.K.Problem 93:31,WesternNumber TheoryProblems 93 12 21

(1993).

References

Related documents

The basic alternatives are three forms of showing the current positions: as points on a scaled diagram with the coordinates X-Y-Z (illustrated in Fig. 2 and 3), as trajectories of

The ongoing glacier shrinkage and the consequent proglacial area widening, are changing in a deep way the mountain landscape of Lombardy Alps (where the Italian side of Bernina Group

Slater, Associate of Arts; Jade A.. Van Meeteren, Medical Coding, Pharmacy Technician;

(1994) shows comprehensive evidence. This study looks at the performance of twelve privatised firms in four different countries. The methodology of their case study

Thus the kernel is closed under addition and under scalar multiplication, so it is a subspace.. (5) Let V be an inner product space, and let u, v be vectors

Does every triple (X, Y, Z) of Banach spaces have the compact operators transitivity property.. As announced in [Alencar

The important aspect is the estimation of how much cash, stock and other liquid assets of the firm can keep operating day to-day function.. Financial analysis is the process

Complementary and alternative medicine (CAM) is a group of diverse medical and health care systems, practices, and products that are not generally considered to be part