• No results found

Note de Calcul Mécanique Convoyeur OCP

N/A
N/A
Protected

Academic year: 2021

Share "Note de Calcul Mécanique Convoyeur OCP"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

Belt Design Summary

208,79 Required Motor Power Necessary to transmit to the belt OK Check of Motor Power

5 990 Minimum Required Counterweight 0,825 Belt Slipping Coefficient

OK Check of Counterweight OK Check of Belt Slipping

5 990 Start-up Minimum Required Counterweight 0,982 Start-up Belt Slipping Coefficient

OK Check of Counterweight @ Start-up OK Check of Belt Slipping @ Start-up 1 281 Maximum Belt Elongation

560 Minimum Required Tensile Strength OK Check of Belt Elongation Length OK Check of Belt Tensile Strength 1 523 Start-up Maximum Belt Elongation

466 Start-up Minimum Required Tensile Strength OK Check of Belt Elongation Length @ Start-up OK Check of Belt Tensile Strength @ Start-up

Working Condition

Handled Material Definition Phosphate

Brut <-Material Designation

35<-: Material Angle of Repose (Deg) 15<-: Material Surcharge Angle (Deg)

1200<-: Material Density (kg/m3)

9,81 <-g: Standard Gravity Acceleration (m/s²) Belt Definition

3600<-Q: Maximum Belt Design Capacity(Ton/h)

3,8<-v: Belt Speed (Tab.4&5&6)(m/s) 1400<-B: Belt Width (mm)

EP630/4 <-Carcass Style

630<-Wu: Belt Resistance at Break(N/mm) Wu ≥ CRmmaxS(mm) CRmS(N/mm)  ≥ 2 maxS Wu ≥ CRmS rS Fv ≥ FvminS rS ≤ 1  ≥ 2 max r ≤ 1max(mm) CRm(N/mm) P ≥ Pm Fvmin(daN) r Fv ≥ Fvmin Pm(kW) FvminS(daN) JESA Coefficient

(2)

1<-: Maximum Belt Elongation During Service (Load = 10% of Belt Resistance at Break) (%)

10<-fs: Belt Required Safety Factor

7<-fss: Belt Required Safety Factor at Starting

6<-ttc: Top Cover Thickness(mm)

4<-tbc: Bottom Cover Thickness(mm)

1,2<-r: Rubber Average Weight(kg/[m²xmm]) 1,5<-S1: Maximum Sag Along the Carrying Section(%)

1,5<-S2: Maximum Sag Along the Return Section(%)

144,07<-L: Belt Length Center-To-Center (m)

7<-: Maximum Belt Inclination (Deg)

Idlers Definition

159<-dc: Carrying Idlers Diameter (mm)

Tern<-Carrying Idlers Type

35<-: Idlers Inclination Angle (Deg) 159<-dr: Return Idlers Diameter (mm)

Plain<-Return Idlers Type

1,25 <-ac: Distance Between Carrying Idler (Tab.12) (m)

3<-ar: Distance Between Return Idler (Tab.12) (m) Upper Flight Definition

23 <-Nu: Upper Flight Number

No. Pulley Qu,n

(Ton/h) Lu,n(m) Hu,n(m)u,n

(Deg) Ncu,n Nru,n

1 D1 3600 2,301 0,283 7,00 3 0 2 NA 3600 51,804 6,361 7,00 41 0 3 NA 3600 5,224 0,595 6,50 4 0 4 NA 3600 5,224 0,503 5,50 5 0 5 NA 3600 5,224 0,411 4,50 4 0 6 NA 3600 5,224 0,320 3,50 4 0 7 NA 3600 5,224 0,228 2,50 4 0 8 NA 3600 5,224 0,137 1,50 4 0 9 NA 3600 5,224 0,046 0,50 4 0 10 NA 3600 50,492 0,000 0,00 40 0 11 NA 3600 1,8 0,000 0,00 7 0 12 D2 3600 1,102 0,000 0,00 0 0 13 D5 0 0,65 -0,174 -15,00 0 0 14 NA 0 52,744 0,000 0,00 0 17 15 NA 0 5,224 -0,046 -0,50 0 2

16 NA 0 5,224 -0,137 -1,50 0 2 <-Qu,n: Flight Capacity(Ton/h) 17 NA 0 5,224 -0,228 -2,50 0 1 <-Lu,n: Flight Length(m) 18 NA 0 5,224 -0,320 -3,50 0 2 <-Hu,n: Flight Height(m) 19 NA 0 5,224 -0,411 -4,50 0 2 <-u,n: Flight Slop (Deg)

20 NA 0 5,224 -0,503 -5,50 0 2 <-Ncu,n: Carrying Idler Number Per Flight 21 NA 0 5,224 -0,595 -6,50 0 2 <-Nru,n: Return Idler Number Per Flight

22 D4-1 0 46,58 -5,719 -7,00 0 15 23 D3 0 0 0,000 90,00 0 0 24 25 26 27 28 29 30

(3)

Lower Flight Definition

3 <-Nl: Lower Flight Number

No. Pulley Ql,n (Ton/h) Ll,n(m) Hl,n(m)l,n (Deg) Ncl,n Nrl,n 1 D5 0 0,8 -0,214 -15,00 0,00 0,00 2 D4-2 0 6,225 -0,764 -7,00 0,00 2,00 3 D3 0 0 5,149 -90,00 0,00 0,00 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

<-Ql,n: Flight Capacity(Ton/h) <-Ll,n: Flight Length(m) <-Hl,n: Flight Height(m) <-l,n: Flight Slop (Deg)

<-Ncl,n: Carrying Idler Number Per Flight <-Nrl,n: Return Idler Number Per Flight

(4)

Pulley & Motor Definition

215<-P: Installed Motor Power (kW)

3 100<-: Counterweight Elongation Course (mm)

6 000<-Fv: Counterweight Value (daN)

195<-: Belt to Drive Pulley Contact Angle(Deg)

0,35 <-: Friction Coefficient Between Belt & Pulley (Tab.10) 1,3<-w: Starting Motor Coefficient

0,88 <-: Mechanical Efficiency Coefficient for the Transmission (Tab.8)

Type 2 <-Type of Belt Conveyor

Type 1: If Counter weight at Tail Position Type 2: If Counter weight Near Drive System

Empty Belt & Idlers Weight Computation

5,4 <-qbc: Belt Carcass Weight for square Meter (Tab.13) (kg/m²) 17,4 <-q: Belt Weight per square Meter (kg/m²)

44,3 <-qc: Carrying Idler Unit Weight (Tab.11) (kg) 33,4 <-qr: Return Idler Unit Weight (Tab.11) (kg) Friction & Length Coefficient

1,57372 <-C: Length Coefficient (Graph.2) 0,03 <-f: Idlers Friction Coefficient (Tab. 9)

bc r tc bc

q

q

t

t

 T1 T2

(5)
(6)

Forces Necessary for Movement of Belt No. F1u,n (kg) F2u,n (kg) F3u,n (kg) F1l,n (kg) F2l,n (kg) F3l,n (kg) 1 8,9207 28,588 81,232 0,9201 0 -5,2218 2 145,33 643,62 1828,8 10,313 0 -18,619 3 14,374 64,904 171,13 0 0 125,43 4 16,465 64,904 144,63 0 0 0 5 14,374 64,904 118,21 0 0 0 6 14,374 64,904 91,866 0 0 0 7 14,374 64,904 65,578 0 0 0 8 14,374 64,904 39,331 0 0 0 9 14,374 64,904 13,108 0 0 0 10 141,73 627,32 0 0 0 0 11 16,71 22,363 0 0 0 0 12 1,2674 13,691 0 0 0 0 13 0,7475 0 -4,2427 0 0 0 14 87,466 0 0 0 0 0 15 9,1617 0 -1,1106 0 0 0 16 9,1617 0 -3,3323 0 0 0 17 7,5849 0 -5,5561 0 0 0 18 9,1617 0 -7,7833 0 0 0 19 9,1617 0 -10,015 0 0 0 20 9,1617 0 -12,253 0 0 0 21 9,1617 0 -14,499 0 0 0 22 77,223 0 -139,32 0 0 0 23 0 0 0 0 0 0 24 0 0 0 0 0 0 25 0 0 0 0 0 0 26 0 0 0 0 0 0 27 0 0 0 0 0 0 28 0 0 0 0 0 0 29 0 0 0 0 0 0 30 0 0 0 0 0 0

<-F1,n: Flight Forces Necessary for Movement of Empty Belt & Carrying Idlers (kg) <-F2,n: Flight Forces Necessary for Translation of the Load (kg)

<-F3,n: Flight Forces Necessary for the Elevation of the Load (kg)

656 <-F1: Forces Necessary for Movement of Empty Belt & Carrying Idlers (kg) 1 790 <-F2: Forces Necessary for Translation of the Load (kg)

2 457 <-F3: Forces Necessary for the Elevation of the Load (kg) 113 <-Ft,L: Tail Losses Between Take Up & Drive Pulley (kg)

Lower Flight Upper Flight 1, , ,

1000

n n c c n r r n

B

F

Cf

L q

q N

q N

2,

3.6

n n n

Q

F

CfL

v

3,

3.6

1000

n n n n

Q H

B

F

q

H

v

(7)

Total Force and Motor Power Calculation

4 903 <-Fmin: Total Periphery Force Necessary to transmit to the belt (kg)

182,78 <-Pa: Theorical Motor Power Necessary to transmit to the belt (kW)

208,79 <-Pm: Required Motor Power Necessary to transmit to the belt (kW)

P ≥ Pm OK

Tension Calculation (During Operation) 4 953 <-F: Installed Periphery Force (daN)

0,436 <-K: Friction Factor

7 115 <-Tu,1n: Nominal Tight Side Tension (daN)

2 162 <-Tl,1n: Nominal Slack Side Tension (daN)

2 275 <-Tv1: Minimum Tension to Allow the Motion Transmission (daN)

2 995 <-Tsup: Minimum Tension For Max Sag of Carrying Idler (daN)

609 <-Tinf: Minimum Tension For Max Sag of Return Idler (daN)

5 990 <-Fvmin: Minimum Required Counterweight (daN)

725 <-Tv: Take-Up Over tension (daN)

7 840 <-Tu,1: Maximum Tight Side Tension (daN)

2 887 <-Tl,1: Maximum Slack Side Tension (daN)

min 1 2 3

F

F

F

F

min a

P

gF v

a m

P

P

1

1

K

e



,1

1

u n

T

F K

,1 l n

T

FK

1 ,1 , v l n t L

T

T

F

sup 1

8

1000

3.6

c

a

qB

Q

T

S

v

inf 2

8

1000

r

a

qB

T

S

min

2

1

;

sup

;

inf

v v

F

Max T T

T

, ,1

2

v v t L l n

F

T

F

T

P

F

v

,1 ,1 u u n v

T

T

T

,1 ,1 l l n v

T

T

T

(8)

0,825 <-r: Belt Slipping Coefficient

Fv ≥ Fvmin OK

r ≤ 1 OK

Tension Calculation (During Start-up)

6 439 <-Fs: Installed Periphery Force at Starting (daN)

9 250 <-Tu,1nS: Start-up Nominal Tight Side Tension (daN)

2 811 <-Tl,1nS: Start-up Nominal Slack Side Tension (daN)

2 923 <-Tv1S: Start-up Minimum Tension to Allow the Motion Transmission (daN)

5 990 <-FvminS: Start-up Minimum Required Counterweight (daN)

77 <-TvS: Start-up Take-Up Over tension (daN)

9 326 <-Tu,1S: Start-up Maximum Tight Side Tension (daN)

2 887 <-Tl,1S: Start-up Maximum Slack Side Tension (daN)

0,982 <-rS: Start-up Belt Slipping Coefficient

Fv ≥ FvminS OK rS ≤ 1 OK ,1 ,1 u l

T

r

T e



s

w P

F

v

,1

1

u nS s

T

F K

,1 l nS s

T

F K

1 ,1 , v S l nS t L

T

T

F

min

2

1

;

sup

;

inf

v S v S

F

Max T

T

T

, ,1

2

v vS t L l nS

F

T

F

T

,1 ,1 u S u nS vS

T

T

T

,1 ,1 l S l nS vS

T

T

T

,1 ,1 u S S l S

T

r

T

e



(9)

Belt Tensile Strength Check (Operation Case) No. Tu,n (kg) Tu,n (kg) Tl,n (kg) Tl,n (kg) 1 119 7 840 -4 2 887 2 2 618 7721,5 -8 2882,9 3 250 5103,7 125 2874,6 4 226 4853,3 0 3000 5 197 4627,3 0 0 6 171 4429,8 0 0 7 145 4258,7 0 0 8 119 4113,8 0 0 Notes

9 92 3995,2 0 0 Tension will be Regulated via Material

10 769 3902,8 0 0 Trampling Losses Addition

11 39 3133,8 0 0 The Tension in Pulley Remains inchanged

12 15 3094,7 0 0 13 -3 3079,8 0 0 14 87 3083,3 0 0 15 8 2995,8 0 0 16 6 2987,7 0 0 17 2 2981,9 0 0 18 1 2979,9 0 0 19 -1 2978,5 0 0 20 -3 2979,4 0 0 21 -5 2982,5 0 0 22 -62 2987,8 0 0 23 0 3049,9 0 0 24 0 3049,9 0 0 25 0 0 0 0 26 0 0 0 0 27 0 0 0 0 28 0 0 0 0 29 0 0 0 0 30 0 0 0 0 31 0 0

7 840 <-Tmax: Maximum Belt Tension (daN) 1 281 <-max: Maximum Belt Elongation (mm)

560 <-CRm: Minimum Required Tensile Strength (N/mm) Upper Flight Lower Flight

max m s

T

CR

f

B

, 1 , 2 , 3 , u n u n u n u n

T

F

F

F

, 1 , 2 , 3 , l n l n l n l n

T

F

F

F

, 1 , , u n u n u n

T

T

 

T

, 1 , , l n l n l n

T

T

 

T

max max

10

T

L

B Wu

(10)

 ≥ 2 max OK

Wu ≥ CRm OK

Belt Tensile Strength Check (Start-up Case)

No. Pulley Tu,n

(kg) Tu,nS (kg) Pulley Tl,n (kg) Tl,nS (kg) 1 D1 119 9 326 D5 -4 2 887 2 NA 2 618 9207,4 D4-2 -8 2882,9 3 NA 250 6589,6 D3 125 2874,6 4 NA 226 6339,2 0 0 3000 5 NA 197 6113,2 0 0 0 6 NA 171 5915,8 0 0 0 7 NA 145 5744,6 0 0 0 8 NA 119 5599,8 0 0 0 Notes

9 NA 92 5481,2 0 0 0 Tension will be Regulated via Material

10 NA 769 5388,8 0 0 0 Trampling Losses Addition

11 NA 39 4619,7 0 0 0 The Tension in Pulley Remains inchanged

12 D2 15 4580,6 0 0 0 13 D5 -3 4565,7 0 0 0 14 NA 87 4569,2 0 0 0 15 NA 8 4481,7 0 0 0 16 NA 6 4473,7 0 0 0 17 NA 2 4467,8 0 0 0 18 NA 1 4465,8 0 0 0 19 NA -1 4464,4 0 0 0 20 NA -3 4465,3 0 0 0 21 NA -5 4468,4 0 0 0 22 D4-1 -62 4473,7 0 0 0 23 D3 0 4535,8 0 0 0 24 0 0 4535,8 0 0 0 25 0 0 0 0 0 0 26 0 0 0 0 0 0 27 0 0 0 0 0 0 28 0 0 0 0 0 0 29 0 0 0 0 0 0 30 0 0 0 0 0 0 31 0 0

9 326 <-TmaxS: Start-up Maximum Belt Tension (daN) 1 523 <-maxS: Start-up Maximum Belt Elongation (mm)

Upper Flight Lower Flight

, 1 , 2 , 3 , u n u n u n u n

T

F

F

F

, 1 , 2 , 3 , l n l n l n l n

T

F

F

F

, 1 , , u n S u nS u n

T

T

 

T

, 1 , , l n S l nS l n

T

T

 

T

max max

10

S S

T

L

B

Wu

(11)

466 <-CRmS: Start-up Minimum Required Tensile Strength (N/mm)  ≥ 2 maxS OK Wu ≥ CRmS OK Pulleys Tensions No. Zx (kg) Zs (kg) 1 9 326 2 887 2 4 581 3 2 875 4 2 883 5 2 883 6 D5 2 887 Designation D1 D2 D3 D4-1 D4-2 max S mS ss

T

CR

f

B

References

Related documents

[r]

Through analysis of case studies showcasing greenery in an inventive way, observations of public using subtropical public space, and a discussion of the current policy frameworks

a) The rainfall-runoff model should be applied on basins with different topography and stream structure, such as basins with finer slope and more stream tributaries.

 Philip Shafer [Doctoral Candidate] is a full-time faculty member in the English Department at Tennessee State University..  Aaron Shapiro [M.A., 2010] is a full-time

УДК 371.13:373.3(474) Іванюк Ганна Іванівна доктор педагогічних наук, професор, завідувач кафедри педагогіки та психології

Seventy three percent of the patients (n=42) for instance received 2 cycles or more of intra-arterial chemotherapy combined with radiotherapy. Based on the intention to

A psychophysical subjective loudness perception test was performed using two biphasic waveforms: a standard rectangular waveform and an energy-efficient waveform, having

ISS supports NASA's Strategic Goal 1 to &#34;Extend and sustain human activities across the solar system.&#34; The ISS National Laboratory will enable research for