• No results found

Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Evaluation

of

acetylcholinesterase

inhibitory

activity

of

Brazilian

red

macroalgae

organic

extracts

Levi

P.

Machado

a

,

Luciana

R.

Carvalho

a

,

Maria

Cláudia

M.

Young

b

,

Elaine

M.

Cardoso-Lopes

c

,

Danilo

C.

Centeno

d

,

Leonardo

Zambotti-Villela

e

,

Pio

Colepicolo

e

,

Nair

S.

Yokoya

a,∗

aNúcleodePesquisaemFicologia,InstitutodeBotânica,SãoPaulo,SP,Brazil

bNúcleodePesquisaemFisiologiaeBioquímica,InstitutodeBotânica,SãoPaulo,SP,Brazil cDepartamentodeFarmácia,UniversidadeNovedeJulho,SãoPaulo,SP,Brazil

dCentrodeCiênciasNaturaiseHumanas,UniversidadeFederaldoABC,SãoPaul,SP,Brazil eInstitutodeQuímica,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14April2015 Accepted7September2015 Availableonline9October2015

Keywords: Acetylcholinesteraseinhibition Halogenatedmonoterpenes Hypnea Ochtodes Pterocladiella Rhodophyta

a

b

s

t

r

a

c

t

Alzheimer’sdiseaseaffectsnearly36.5millionpeopleworldwide,andacetylcholinesteraseinhibitionis currentlyconsideredthemaintherapeuticstrategyagainstit.SeaweedbiodiversityinBrazilrepresents oneofthemostimportantsourcesofbiologicallyactivecompoundsforapplicationsin phytother-apy.Accordingly,thisstudyaimedtocarryoutaquantitativeandqualitativeassessmentofHypnea musciformis(Wulfen)J.V.Lamouroux,Ochtodessecundiramea(Montagne)M.A.Howe,andPterocladiella capillacea(S.G.Gmelin)Santelices&Hommersand(Rhodophyta)inordertodeterminetheAChEeffects fromtheirextracts.Asamatteroffact,theO.secundirameaextractshowed48%acetylcholinesterase inhibitionat400␮g/ml.Thechemicalcompositionofthebioactivefractionwasdeterminedbygas chromatography–massspectrometry(GC–MS);thisfractionissolelycomposedofhalogenated monoter-penes,thereforeallowingassignmentofacetylcholinesteraseinhibitionactivitytothem.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Alzheimer’sdisease(AD)isachronicneurodegenerative

disor-dercharacterizedbyalossofbasalforebraincholinergicneurons

and reduced level of the neurotransmitter acetylcholine (ACh)

(Alzheimer’sAssociation,2014).ADaffectsupto5%ofpeopleover

65yearsofage,risingto20%ofthoseagedover80years,

suggest-ingtheimportanceoftreatingthisdiseasebaseduponincreased

life expectancy,particularly in developed countries worldwide.

Specifically,estimatesshowthat27.7upto35millionpeoplewere

affectedbythisdiseasefrom2005through2010,respectively.In

thissamesurvey,itwasfoundthattreatmentcostsincreasedfrom

156USDbillionto604billion(Wimoaetal.,2007,2013).

ControloverADisachievedbyextendingtheactionof

acetyl-choline(ACh)viaacetylcholinesteraseinhibition(AChEI).Current

drugsexhibittwoaction mechanisms,eitherprostheticor

acid-transferring.Prostheticinhibitorshaveanaffinityfortheanionic

siteofacetylcholinesteraseandpreventacetylcholinefrom

acces-singit(competitiveinhibitors).Acid-transferringinhibitorsreact

∗ Correspondingauthor.

E-mail:nyokoya@pq.cnpq.br(N.S.Yokoya).

withtheenzymeandformanintermediatecompound.

Depend-ingonthestabilityofthisproduct,theeffectscouldbeshort-term

and reversibleor long-actingand irreversible(Nairand Hunter,

2004).

ThecurrentdrugsusedagainstADareplant-derivedalkaloids:

rivastigmineandgalantamine.ThesedrugsareAChEIsandcanbe

usedtotreatearlyandmoderatestagesofADbyincreasingthe

endogenouslevelsofacetylcholinetoboostcholinergic

neurotrans-mission(McGleenonet al.,1999).Although thesedrugsdisplay

someundesirablesideeffects,suchashepatotoxicityand

gastroin-testinaldisorder,thereisagrowinginterestinfindingnewAChE

inhibitors fromnatural sources, but withfew off-targeteffects

(Rheeetal.,1997).

Marineorganismshaveahighchemicaldiversityofecologically

activesubstanceswithprotectivefunctionsagainstpredators,

bio-foulersandepiphytes,aswellasagainstconstantchangesinabiotic

conditionstoleratedbyalgaeinthemarinecoastalenvironment

(Amsler,2008;Ferreiraetal.,2012;Meskoetal.,2015).Such

diver-sityprovidesausefulresourceforthediscoveryofnovelbioactive

carboncompounds,manyofthemwithpotentialapplicationsinthe

pharmaceutical,nutraceutical,andagriculturalfields(Smit,2004;

Cardozoetal.,2006;Gressleretal.,2011a,2011b;Torresetal., 2014).

http://dx.doi.org/10.1016/j.bjp.2015.09.003

(2)

SeaweedextractshavebeentestedagainstAChenzymewith

successfulresults(Natarajanetal.,2009).Assuch,seaweeds

rep-resentapromisinggroupofspecies fordevelopingnewmarine

naturalproductsbasedontheeaseofobtainingbiomassby

per-forming cultures for the exploitation of bioactive compounds

(Bawejaetal.,2009andthereforecontributingtotheconservation

ofnaturalpopulations(YokoyaandYoneshigue-Valentin,2011).

Hence,motivatedbytheeconomicandsocialimpactofAD,this

studywasaimedattestingthequalitativeandquantitativeAChEI

activityoforganicextractsobtainedfromthreeBrazilianredalgae.

Thechemicalcompositionofthebioactivefractionswas

investi-gatedbygaschromatography–massspectrometry(GC–MS).

Materialsandmethods

Algalmaterialandextraction

Twohundredgrams (freshweight; equivalenttothirty

indi-vidualsof each species)of Hypnea musciformis (Wulfen)in J.V.

Lamouroux,Ochtodessecundiramea(Montagne)M.A.Howeand

Pte-rocladiellacapillacea(S.G.Gmelin)Santelices&Hommersandwere

collectedfromalateriticreefatManguinhosBeach(20◦1112S,

40◦1124W)in the municipalityof Serra,Espírito Santo State,

Brazil.Aftercollection,seaweedbiomasswascleanedand

immedi-atelytransportedtothelaboratoryindarkplasticflaskscontaining

filteredseawatermaintainedat22◦Cbymeansofthermal

pack-aging.Furthermore, theseaweeds wereproperly identified and

depositedintheHerbariumVIES,UniversidadeFederaldoEspírito

Santo,under voucher numbers18.853,18.854 and18.855,

cor-respondingtoH.musciformis,O.secundiramea, andP.capillacea,

respectively.

Thefreshlycleanedseaweedswereweighedandthen

imme-diately extracted by using 10ml of dichloromethane/methanol

(DCM/MeOH)(2:1,v/v)per1gofseaweed(Machadoetal.,2014a).

Thematerialwasmaintainedinadarkroomat20◦Cforoneweek,

andthentheextractswerefilteredthroughaWhatmanNo.5

fil-terpaperandconcentratedbyunderlowpressure.Theextraction

yieldwascalculatedforeachalgalsample.Allchemicalsusedwere

ofanalyticalgrade(Merck,Darmstadt,Germany).

Inhibitoryactivityofacetylcholinesterase(AChEI)

Qualitativeevaluationbyautographicassay

TheAChEIactivityofDCM/MeOHcrudeextractwasdetected

byusingathin-layerchromatography(TLC)autographicassayas

previouslydescribed(Marstonetal.,2002).Aliquotsof100␮gof

eachdriedseaweedextractand0.3␮gofphysostigmine(Sigma,

usedas positivecontrol) weredissolved,spotted onTLClayers

(Silicagel60F254,10×10cm,layerthickness0.2mm,E.Merck,

Germany),whichweredevelopedwithmobilephasehexane:ethyl

acetate:methanol(2:7:1v/v/v), and thendried.Next, theplates

weresprayedwiththeenzymesolution(6.66U/ml)(Electriceel

AChEtypeV,productno.C2888,1000U–Sigma–Aldrich),

thor-oughlydried,andincubatedinahumidatmosphereat37◦Cfor

20min. Afterwards, the plates were sprayed with 0.25% of

1-naphthylacetateinethanol(5ml)plus0.25%ofaqueousFastBlue

Bsaltsolution(20ml).Thespotscorrespondingtopotential

acetyl-cholinesteraseinhibitorswereidentifiedasclearzonesagainsta

purplebackground.

Retention factor values (Rf) of bioactive compounds were

determined and employed for theirpreparative scale isolation

by thin-layer chromatography (20cm×20cm, layer thickness

1.5mm,60F254,Sigma–Aldrich).Extractsamplesof80mgwere

appliedonpreparativeplateswhichweredevelopedunder

iden-tical conditions to those used at analytical scale essays. After

elution,theAChE-positiveregionswereremovedfromtheplates

andextractedwithDCM/MeOH(90:10v/v).

Quantitativeevaluationbymicroplateassay

AChE activity was measured using a modified 96-well

microplateassaybasedonEllman’smethod(Ellmanetal.,1961,as

modifiedbyRheeetal.,2001).Suchextremelysensitivemethod

isbased onmeasuringthiocholineproductionwhen

acetylthio-choline is hydrolyzed. This is accomplished by the continuous

reactionofthiolwith5,5-dithiobis(2-nitrobenzoicacid).Solutions:

A.Tris/HCl50mM,pH8;B.Tris/HCl50mM,pH8,with0.1%bovine

albuminfractionV;C.Tris/HCl50mM,pH8,withNaCl(0.1M)and

MgCl2·6H2O(0.02M).

Toeachwellofa 96-wellmicroplate,25␮lacetylthiocholine

iodide(15␮M), 125␮l of 5,5-dithiobis(2-nitrobenzoic acid) in

solution C (3␮M DTNB or Ellman’s reagent), 50␮l of solution

B, 25␮l of seaweedextract dissolved in MeOH and diluted in

solutionAat concentrationsof 1.56,12.5, 25, 50,100, 200and

400␮g/mlwereadded.Theabsorbancewasmeasuredat405nm

for30sec.After25␮loftheenzymeAChE(0.22U/ml)wasadded,

theabsorbancewasagainreadevery5minofincubationforfour

times.ThepercentageofAChEinhibitionwascalculatedby

com-paringthereactionratesofsamplestothenegativecontrol(10%

MeOHinsolutionA,considering100%asthetotalactivityofAChE).

Physostigmine wasused as standard at concentrations ranging

from1.56to400␮g/ml.ABioTekELISAreader(PowerWaveTMHT

MicroplateReaderand KC4TM software)wasusedtodetermine

reactionrates.Thisanalysiswascarriedoutintriplicate(n=3)to

calculatethemeanandstandarddeviation.

CG–MSanalysisofbioactivefractionobtainedfromO.

secundirameaextract

Currently,differentstrategieshavebeenreportedinthe

litera-tureinordertoestimatealgalcompoundsapplyingCGMS(Gressler

et al., 2009). The bioactive fraction obtained from O.

secundi-rameawasanalyzedbyagaschromatograph-massspectrometer

(GCMS-QP2010Plus,Shimadzu,Japan)provided withaHP-5MS

column(30m×0.25mm×0.1␮m).Thesampleswereinjectedin

splitmodeat220◦C,andthetransferlinewassetto240◦C.Helium

(99.999%)wasusedasthecarriergasataconstantflowrateof

1ml/min.Alinearoventemperatureprogramwasemployed.The

temperaturewasrampedfrom60to260◦Catarateof3◦C/min

andthenheldat260◦Cfor40min.Detectionwasperformedin

fullscanmode,mass-to-chargeratio(m/z)50–650.Electronimpact

ionizationwasemployed(collisionenergy=70eV),andthemass

spectrometerion sourcewasmaintainedat240◦C. Compounds

were identified by their GC retention times and mass spectra

(NIST08MassSpectralLibraryandliteraturedata).Theareaofeach

peakinthetotalionchromatogramwasintegrated.

Resultsanddiscussion

Fig.1shows thequalitative resultsoftheautographicassay

of acetylcholinesterase inhibition activity (AChEI), and Table 1

displaysthe freshseaweed biomass weights, dried extract and

extractionyieldalongwithAChEIdataoftheautographicassay:

Rfandbioactivecompoundintensity.

TheAChEIactivityofplantextractsisclassifiedaccordingto

Vinuthaetal.(2007)aspotentinhibitors(greaterthan50%

inhibi-tion),moderateinhibitors(30–50%inhibition)andweakinhibitors

(below30%inhibition).Accordingtothisclassification,theextracts

ofO.secundirameahavemoderateactivity(48.59±0.8%),whileH.

musciformisandP.capillaceaextractshaveweakactivity(7.21and

5.38%,respectively),atahigherconcentration(Fig.2).

Asdescribedin theliterature,seaweedextractsexhibit poor

(3)

Table1

Seaweedbiomass,extractdryweights,extractionyieldsandautographicacetylcholinesteraseinhibition(AChEI)assayresults.

Seaweed Freshweight(g) Driedextracts(g) Yield(%) RfofAChEIcompounds IntensityofAChEIactivity

Hypneamusciformis 200 1.82 0.91 0.01 Low

Pterocladiellacapillacea 200 0.4 0.2 0.65 Low

Ochtodessecundiramea 200 2.82 1.41 0.62–0.71 Strong

smallerthanthatshowedbyO.secundirameaextract.TheEcklonia

stoloniferaethanolic extract (IC50 100␮g/ml)and Ishige

okamu-raemethanolicand ethanolicextracts(IC50 163.07␮M andIC50

137.25␮M, respectively) are the only exceptions (Stirk et al.,

2007;Yoonetal.,2008;Kartaletal.,2009;Suganthyetal.,2010; PangestutiandKim,2011).

DCM/MeOHextract (15mg) were employed in the

fraction-ationcarriedoutunderthesameconditionsasthosedescribedfor

theanalyticalTLCexperiments.Thebioactivefraction(2.45mg;Rf

0.62–0.71),whichcorrespondedto16.3%ofthecrudeextract,was

analyzedbyGC–MS;theresultingdataareshowninTable2and

Fig.3.

Theactivefractioncompoundspresentthetypical

fragmenta-tionlossesrelatedtochlorineandbrominelosses(respectively,35

and79m/z),asclearlyobservedonthemassspectra.The

char-acteristicmultiplicityofhalogenisotopeabundance(35Cl:37Cl

75.2:24.8%and79Br:81Br50:50%)wasobservedintheir

molecu-larions.Asreportedinnumerousstructuralstudies,bothmagnetic

resonancespectra(13CNMR)(McConnellandFenical,1978;Paul

etal.,1980;Nayloretal.,1983)andmassfragmentation(Polzinand Rorrer,2003;BarahonaandRorrer,2003)haveplayedakeyrole

in thestructural characterizationof halogenatedmonoterpenes

(Maliakaletal.,2001;Machadoetal.,2014a).

However,itcanalsobeobservedinthetotalionchromatogram

inwhichthepeak8correspondstothemajoritycompoundthathas

m/zvalue329.Itsmassspectrashowedfragmentionsatm/z294,

indicativeofchlorineloss(M+−Cl),andatm/z213andm/z133,

PC 1 2 3

Fig.1.TLCqualitativeacetylcholinesteraseinhibition(AChEI)assay.PC:positive control,physostigmine(0.03␮g).DCM/MeOHextracts(100␮g)of(1)Hypnea mus-ciformis,(2)Pterocladiellacapillaceaand(3)Ochtodessecundiramea.TLCelution system:hexane:ethylacetate:methanol(2:7:1v/v/v).

whicharecharacteristicofbromineandchlorinelosses(M+−BrCl

andM+−Br

2Cl),respectively.Theionsatm/z93and atm/z133

areobservedinthefragmentationofacyclicmonoterpenes.This

compound(C10H15Br2Cl)hasbeenidentifiedas

(E)-1,2-dibromo-3-chloromethylene-7-methyloct-6-ene,bycomparisonofitsmass

spectrum data withthose foundin the literature, and allowed

itsdiscriminationamongisomericcompounds(CollandWright,

1987).

Thecompounds1,2,7,9,and 10couldalsobeidentifiedby

comparingthedatacollectedfromtheirmassspectra(Table2)

totheliteratureones.Compounds1 (C10H16), 2(C10H15OBr),7

(C10H14Br3Cl),9(C10H15Br2ClO),and10(C10H14Br2Cl2)arenamed

as 7-methyl-3-methyleneocta-1,6-diene (myrcene) (Polzin and

Rorrer, 2003); 6(S*)-bromoocta-1,3(8)-dien-4(R*)-ol (Paulet al.,

1980);2-chloro-1,6(S*),8-tribromo-3-(8)(Z)-ochtodene(Gerwick,

1984);

7-chloro-4,8,dibromo-1-ethyl-3,3-dimethyl-6-hidroxi-7,8-cyclohexene (Naylor et al.,1983);

(3R*,4S*,5E)-4,8-dibromo-3,7-dichloro-3,7-dimethylocta-1,5-diene (Coll et al., 1988),

respec-tively.

The compound 2 (C10H15OBr) [6(S*) bromoocto-1,3(8)

dien-4(R)-ol] was prepared by synthesis and the remaining ones

were not properly identified due to insufficient data: the

compounds 3 (C10H14Br2), 4 (C10H14BrCl, and 6 (C10H13Br2Cl)

are known as 3,7-dibromo-myrcene (Barahona and Rorrer,

2003); (Z)-10-bromo-7-chloro myrcene (Burresonet al., 1975);

and(Z)-10-chloro-3,7-dibromo-myrcene(Gerwick,1984),

respec-tively.

Massspectralfragmentationofcompound5suggestsan

aro-maticstructureduetoasequenceofpeaksatm/z91,79,65,41;

howeverthegreatnumberofisomershavingthesamestructural

formuladidnotallowthecompoundidentification.

Currently,monoterpenesarethesecondmajorclassof

natu-ralmetaboliteswithAChEIactivity,surpassedonlybyalkaloids

(Barbosa-Filhoet al.,2006), andextractscontainingmixturesof

100 90 80 70 60 50 40 30 20 10 0 0 100 Seaweed extract (μg ml–1) O. secundiramea P. capillacea H. musciformis Positive control AChE inhibition, % 200 300 400

Fig. 2. Quantitative evaluation of acetylcholinesterase activity (AChE) of the DCM/MeOHalgalextracts(1.56,12.5,25,50,100,200and400␮g/ml),comparedto thestandardphysostigmine.Meanandstandarddeviation(n=3).

(4)

Table2

GC–MSdatafrombioactivefraction(Rf0.62–0.71)obtainedfrompreparativeTLCcarriedoutwithOchtodessecundirameaextract. Peak Retentiontime(min) (%)Area Molecularmass

m/z

M+−halogen Mainmassfragments

(intensityofsignal)

Molecularformula Reference

1 18.036 5.23 136 – 41(50)69(100)78,

81(20)

93(90)107(25)119(50) 135(80)136(trace)

C10H16 PolzinandRorrer(2003)

2 30.913 11.41 229;230 149(M+−Br) 41(40)53(40)79(70) 91(100) 105(95)122(85) 133(55) 149(80)185(30)229, 230(70)

C10H15OBr Pauletal.(1980)

3 31.636 2.82 292;294;296 213(M+−Br) 133(M+-Br 2) 41(15)65(15)77(20) 93(50)105(40)118(50) 133(100)

C10H14Br2 BarahonaandRorrer(2003)

4 36.215 3.09 248;249;251 214(M+−Cl) 167(M+−Br) 133(M+−BrCl) 44(60)51(10)65(20) 77(30) 93(100)105(40) 117(60) 133(60)167169(20) 212 213(5) C10H14BrCl Burresonetal.(1975) 5 39.856 13.82 311 229(M+−Br) 149(M+−Br 2) 41(50)55(50)65(40) 79(80) 91(100)105(40) 118(60) 133(95)149(25) 229(20)

C10H12OBr2 Pauletal.(1980)

6 40.682 5.81 323;325 217(M+−BrCl) 167(M+−Br 2) 133(M+−Br 2Cl) 41(40)65(30)77(50) 93(95) 105(50)117(60) 133(100) 167(40)217(40) C10H13Br2Cl Polzinetal.(2003) 7 43.298 13.81 408;410 375(M+−Cl) 329(M+−Br) 249(M+−Br 2) 167(M+−Br 3) 133(M+−Br 3Cl) 41(10)77(40)91(50) 105(30) 117(50)133(100)167 197213249294329 375(5) C10H14Br3Cl Gerwick,1984 8 45.273 30.13 328;330;332 294(M+−BrCl) 249(M+−Br) 213(M+−BrCl) 167(M+−Br 2) 133(M+−Br 2Cl) 69(15)77(40)93(50) 105(40) 133(100)167(50) 213(5) 249(5)294(3)

C10H15Br2Cl CollandWright(1987)

9 46.900 2.52 344;346;348 310(M+−Cl) 267(M+−Br) 229(M+−BrCl) 185(M+−Br2) 147(M+−Br 2Cl) 65(20)77(30)91(100) 105(40)117(60) 133(60); 147(15)185,187(20) 197,199(5)212,213(5) 229(10); 267269(5) 285287(5); 310311(5)

C10H15Br2ClO Nayloretal.(1983)

10 47.972 18.36 360;362;364 329(M+−Cl) 294(M+−Cl 2) 284(M+−Br 2) 247(M+−BrCl) 213(M+−BrCl 2) 167(M+−Br 2Cl) 133(M+−Br 2Cl2) 77(40)91(50)105(30) 117(50)133(100) 167(80) 213(40)247(15) 284(20) 294(15)329(5) C10H14Br2Cl2 Colletal.(1988)

monoterpenesgenerallydisplayhighAChEI.Theyarereversible

competitiveinhibitorsofacetylcholinenesterase(KeaneandRyan,

1999) and sucheffect is attributedto thecombined actions of

thesemultifunctionalcompoundswhichcanexerttheiractivities

throughdifferentmechanisms(Korochetal.,2007).These

obser-vationsare in accordance withthepresent study documenting

thepotentialAChEIofanO.secundirameaextractcontaining

halo-genatedmonoterpenes.

Brominatedmonoterpenesareformedviareactionscatalyzed

byenzymescapableofgeneratingnucleophilichalideanions,

elec-trophilichypohalite species, orhalogenradicals, promotingthe

substitutionofhydrogenatomsforhalogensinaliphatic

hydro-carbons(Moore, 2006;Hillwig and Liu, 2014).TheirAChEI can

resultfromtheeasydisplacementofbrominebyneutraloranionic

nucleophileswhichcouldthenberemovedbyelimination

reac-tions(Daganietal.,2014).

Whereasthetoxicity,orsideeffects,ofalkaloids,widelyused

asasourceofpotentialacetycholinesteraseinhibitors,isa

draw-backin Alzheimer’sdisease treatment, O. secundiramea extract

showed,inpreliminarytrials,nocytotoxicityormutagenic

activ-itiesatconcentrationstwiceasmuchthosetestedinthepresent

study(Machadoetal.,2014b).

Theresultspresentedherewithprovidedevidenceto

corrob-oratethetherapeuticpotentialofO.secundirameamonoterpenes

based upon theirmoderate AChEIactivity in combination with

(5)

10 1 2 3 4 5 6 7 8 10 9 2.0 TIC (x1 000 000) 1.5 1.0 0.5 20 30 40 50 60

Fig.3.Totalionchromatogram(TIC)fromGC–MSanalysisofAChEIfractionobtainedbypreparativeTLCcarriedoutwithO.secundirameaextract.

Authors’contributions

LPM collected and identified seaweed samples, as well as

carried out lab experiments,analyzed thedata, and wrote the

manuscript.LRCperformedchemicalandchromatographic

anal-ysesandprovidedcriticalreadingofthemanuscript.MCMYand

EMCLperformedlaboratoryexperimentsinvolvingbiological

stud-ies.DCCandLZVcarriedoutchemicalstudies.PCandNSYdesigned

thestudy,supervisedthelaboratoryworkandcontributedto

crit-ical reading of the manuscript. All authorshave read the final

manuscriptandapprovedthesubmission.

Conflictsofinterest

Authorshavenoconflictsofinteresttodeclare.

Acknowledgments

TheauthorsthankfinancialsupportsfromCNPqandFAPESP,

scholarshipfromCAPEStothefirstauthor,andgrantsfromCNPq

toMCMY,PC,andNSY.Thisstudyispartofthesispresentedby

thefirstauthortotheGraduateProgrammeinPlantBiodiversity

andEnvironment,InstituteofBotany,SãoPaulo,Brazil.Theauthors

wouldalsoliketothankProf.O.Vieiraforproof-readingandediting

themanuscriptinEnglish.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,atdoi:10.1016/j.bjp.2015.09.003.

References

Alzheimer’sAssociation,2014.Alzheimer’sdiseasefactsandfigures.Alzheimer’s Dement.10,1–80.

Amsler,C.D.,2008.AlgalChemicalEcology.Springer,Berlin.

Barahona,L.F.,Rorrer,G.L.,2003.Isolationofhalogenatedmonoterpenes from bioreactor-cultured microplantletsof the macrophytic red algae Ochtodes secundirameaandPortieriahornemannii.J.Nat.Prod.66,743–751.

Barbosa-Filho,J.M.,Medeiros,K.C.P.,Diniz,M.F.,Batista,L.M.,Athayde-Filho,P.F., Silva,M.S.,Cunha,E.V.L.,Almeida,J.R.G.S.,Quintans-Júnior,L.J.,2006.Natural productsinhibitorsoftheenzymeacetylcholinesterase.Rev.Bras.Farmacogn. 16,258–285.

Baweja,P.,Sahoo,D.,García-Jiménez,P.,Robaina,P.R.,2009.Seaweedtissueculture asappliedtobiotechnology:problems,achievementsandprospects.Phycol.Res. 57,45–58.

Burreson,B.J.,Woolard,F.X.,Moore,R.M.,1975.Evidenceforthebiogenesisof halo-genatedmyrcenesfromtheredalgaChondrococcushornemanii.Chem.Lett.4, 1111–1114.

Cardozo,K.H.M.,Carvalho,V.M.,ErnaniPinto,E.,Colepicolo,P.,2006.Fragmentation ofmycosporine-likeaminoacidsbyhydrogen/deuteriumexchangeand electro-sprayionisationtandemmassspectrometry.RapidCommun.MassSpectrom. 20,253–258.

Coll, J.C., Wright, A.D., 1987. Tropical marine algae. I. New halogenated monoterpenesfromChondrococcushornemannii(Rhodophyta,Gigartinales, Rhi-zophyllidaceae).Aust.J.Chem.40,1893–1900.

Coll,J.C.,Skelton,B.W.,White,A.H.,Wright,A.D.,1988.Tropicalmarinealgae. II.Thestructuredeterminationofnewhalogenatedmonoterpenesfrom Plo-camiumhamatum(Rhodophyta,Gigartinales,Plocamiaceae).Aust.J.Chem.41, 1743–1753.

Dagani,M.J.,Barda,H.J.,Benya,T.J.,Sanders,D.C.,2014.Organicbrominecompounds. In:Ullmann’sFineChemicals.Wiley-VCHVerlagGmbH&Co,Weinhein, Ger-many.

Ellman,G.L.,Courtney,K.D.,AndresJr.,V.,Featherstone,R.M.,1961.Anewandrapid colorimetricdeterminationofacetylcholinesteraseactivity.Biochem. Pharma-col.7,88–95.

Hillwig,M.L.,Liu,X.,2014.Anewfamilyofiron-dependenthalogenasesactson freestandingsubstrates.Nat.Chem.Biol.10,921–923.

Ferreira,L.D.S.,Turatti,I.C.C.,Lopes,N.P.,Guaratini,T.,Colepicolo,P.,Oliveira,E.C., Garla,R.C.,Pohlit,A.M.,Zucchi,O.L.A.D.,2012.Apolarcompoundsinseaweeds fromFernandodeNoronhaarchipelago(NortheasternCoastofBrazil).Int.J. Anal.Chem.,http://dx.doi.org/10.1155/2012/431954.

Gerwick,W.H.,1984.2-Chloro-1,6(S*),8-tribromo-3-(8)(Z)-ochtodene:a metabo-liteofthetropicalredseaweedOchtodessecundiramea.Phytochemistry23, 1323–1324.

Gressler,V.,Colepicolo,P.,Pinto,E.,2009.Usefulstrategiesforalgalvolatileanalysis. Curr.Anal.Chem.5,271–292.

Gressler,V.,Fujii,M.,Martins,A.P.,Colepicolo,P.,Mancini,J.,Pinto,E.,2011a. Bio-chemicalcompositionoftworedseaweedspeciesgrownontheBraziliancoast. J.Sci.FoodAgric.91,1687–1692.

Gressler,V.,Stein,E.M.,Dörr,F.,Fujii,M.T.,Colepicolo,P.,Pinto,E.,2011b. Sesquiter-penesfromtheessentialoilofLaurenciadendroidea(Ceramiales,Rhodophyta): isolation,biologicalactivitiesanddistributionamongseaweeds.Rev.Bras. Far-macogn.21,248–254.

Kartal,M.,Orhan,I.,Abu-Asaker,M.,Senol,F.S.,Atici,T.,Sener,B.,2009.Antioxidant andanticholinesteraseassetsandliquidchromatography-massspectrometry prefaceofvariousfresh-waterandmarinemacroalgae.Pharmacogn.Mag.5, 291–297.

Keane,S.,Ryan,M.F.,1999.Purification,characterisation,andinhibitionby monoter-penesofacetylcholinesterasefromthewaxmoth,Galleriamellonella(L.).Insect Biochem.Mol.Biol.29,1097–1104.

Koroch,A.R.,Juliani,H.R.,Zygadlo,J.A.,2007.Bioactivityofessentialoilsandtheir components.Flav.Fragr.Chem.87,547–553.

Machado, L.P., Carvalho, L.R., Young, M.C.M., Zambotti-Villela, L., Colepicolo, P., Andreguetti, D.X., Yokoya, N.S., 2014a. Comparative chemical analy-sisandantifungalactivityofOchtodessecundiramea(Rhodophyta)extracts obtained usingdifferent biomassprocessingmethods.J. Appl.Phycol. 26, 2029–2035.

Machado,L.P.,Matsumoto,S.T.,Jamal,C.M.,Silva,M.B.,Centeno,D.C.,Colepicolo,P., Carvalho,L.R.,Yokoya,N.S.,2014b.Chemicalanalysisandtoxicityofseaweed extractswithinhibitoryactivityagainsttropicalfruitanthracnosefungi.J.Sci. Food.Agric.94,1739–1744.

Maliakal,S.,Cheney,C.,Rorrer,G.,2001.Halogenatedmonoterpeneproductionin regeneratedplantletculturesofOchtodessecundiramea(Rhodophyta, Cryptone-miales).J.Phycol.37,1010–1019.

Marston,A.,Kissling,J.,Hostettmann,K.,2002.ArapidTLCbioautographicmethod forthedetectionofacetylcholinesteraseandbutyrylcholinesteraseinhibitorsin plants.Phytochem.Analysis13,51–54.

McConnell,O.J.,Fenical,W.,1978.Ochtodeneandochtodiol:novelpolyhalogenated cyclicmonoterpenesfromtheredseaweedOchtodessecundiramea.J.Org.Chem. 43,4238–4241.

McGleenon,B.M.,Dynan,K.B.,Passmore,A.P.,1999.Acetylcholinesteraseinhibitors inAlzheimer’sdisease.Br.J.Clin.Pharmacol.48,471–480.

Mesko,M.F.,Picoloto,R.S., Ferreira,L.R.,Costa,V.C.,Pereira,C.M.P.,Colepicolo, P., Muller, E.I., Flores, E.M.M.,2015. Ultraviolet radiation combinedwith microwave-assistedwetdigestionofAntarcticseaweedsforfurther determi-nationoftoxicelementsbyICP-MS.J.Anal.At.Spectrom.30,260–266.

(6)

Moore,B.S.,2006.Biosynthesisofmarinenaturalproducts:macroorganisms(Part B).Nat.Prod.Rep.23,615–629.

Nair,V.P.,Hunter,J.M.,2004.Anticholinesterasesandanticholinergicdrugs.Cont. Edu.Anaest.Crit.Care.Pain4,164–168.

Natarajan,S.,Shanmugiahthevar,K.P.,Kasi,P.D.,2009.Cholinesteraseinhibitors fromSargassumandGracilariagracilis:seaweedsinhabitingSouthIndiancoastal areas(HareIsland,GulfofMannar).Nat.Prod.Res.23,355–369.

Naylor,S.,Hanke,F.J.,Manes,L.V.,Crews,P.,1983.Chemicalandbiologicalaspects ofmarinemonoterpenes.FortschrittederChemieOrganischerNaturstoffe/Prog. Chem.Org.Nat.Prod.44,189–241.

Pangestuti,R.,Kim,S.K.,2011.Neuroprotectiveeffectsofmarinealgae.Mar.Drugs 9,803–818.

Paul,V.J.,McConnell,O.J.,Fenical,W.,1980.Cyclicmonoterpenoidfeedingdeterrents fromtheredmarinealgaOchtodescrockeri.J.Org.Chem.45,3401–3407.

Polzin, J.P., Rorrer, G.L., 2003. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airliftphotobioreactorundernutrientmediumperfusion.Biotechnol.Bioeng. 82,415–428.

Polzin,J.J.,Rorrer,G.L.,Cheney,D.P.,2003.Metabolicfluxanalysisofhalogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodessecundiramea.Biomol.Eng.20,205–215.

Rhee,I.K.,Meent,M.V.,Ingkaninan,K.,Verpoorte,R.,Okada,M.,Marimo,M.,1997.

Studiesoninhibitoryactivityagainstacetylcholinesteraseofnew bisbenzyliso-quinolinealkaloidanditsrelatedcompounds.Heterocycles45,2253–2260.

Rhee,I.K.,Meent,M.V.,Ingkaninan,K.,Verpoorte,R.,2001.Screeningfor acetyl-cholinesterase inhibitors from Amaryllidaceae using sílica gel thin-layer chromatographyincombinationwithbioactivitystaining.J.Chromatogr.A915, 217–223.

Smit,A.J.,2004.Medicinalandpharmaceuticalusesofseaweednaturalproducts:a review.J.Appl.Phycol.16,245–262.

Stirk,W.,Reinecke,D.,vanStaden,J.,2007.Seasonalvariationinantifungal, antibac-terialandacetylcholinesteraseactivityinsevenSouthAfricanseaweeds.J.Appl. Phycol.19,271–276.

Suganthy,N.,Pandian,S.K.,Devi,K.P.,2010.Neuroprotectiveeffectofseaweeds inhabitingSouthIndiancoastalarea(HareIsland,GulfofMannarmarine bio-spherereserve):cholinesteraseinhibitoryeffectofHypneavalentiaeandUlva reticulata.Neurosci.Lett.468,216–219.

Torres,F.A.E.,Passalacqua,T.G.,Velasquez,A.M.A.,Souza,R.A.,Colepicolo,P., Gram-inha,M.A.S.,2014.Newdrugswithantiprotozoalactivityfrommarinealgae:a review.Rev.Bras.Farmacogn.24,265–276.

Vinutha,B.,Prashanth,D.,Salma,K.,Sreeja,S.L.,Pratiti,D.,Padmaja,R.,Radhika, S.,Amit,A.,Venkateshwarlu,K.,Deepak,M.,2007.ScreeningofselectedIndian medicinalplantsforacetylcholinesteraseinhibitoryactivity.J.Ethnopharmacol. 109,359–363.

Wimoa,A., Winblada,B.,Jönssonb,L.,Bond,J.,Princee,M.,Winblad,B.,2013.

Theworldwideeconomicimpactofdementia2010.Alzheimer’sDement.9, 1–11.

Wimoa,A.,Winblada,B.,Jönssonb,L.,2007.Anestimateofthetotalworldwide societalcostsofdementiain2005.Alzheimer’sDement.3,81–91.

Yokoya,N.S.,Yoneshigue-Valentin,Y.,2011.Micropropagationasatoolfor sus-tainableutilizationandconservationofpopulationsofRhodophyta.Rev.Bras. Farmacogn.21,334–339.

Yoon,N., Chung,H., Kim,H., Choi, J.,2008. Acetyland butyrylcholinesterase inhibitoryactivitiesofsterolsandphlorotanninsfromEckloniastolonifera.Fish. Sci.74,200–207.

References

Related documents

Accenture can help companies transform their field-based workforces by applying a unique array of capabilities and assets—including mobility-focused tools, operational diagnostics,

Electrical Technology, Plumbing Technology, HVAC/R, Carpentry, Welding Technology, Masonry, Diesel Technology.. ROANE-JACKSON

Industries where foreign firms have larger domestic shares are usually industries with better profit opportunities, as shown by higher entry rates, but if we include exports into

Comprehensive Evaluation of Economic and Social Development of Lithuanian Regions Based on a Structured set of Criteria, in 4th International Conference Citizens and

The proportion of shareholders' funds in total resources of four select housing finance companies as shown in Table-5 reveals the following... Since the equity share capital could

Once the file appears in Certificate Signing Request field on the Apple portal page, click the Upload button to upload the CSR to Apple.. The Apple portal displays a page

Several summary points emerge from this literature: gesture production predicts learning and performance; in reciprocal fashion, directed actions are a malleable factor that

The first step of reducing the profile of the bundle is done by assuming a similar coupling of different wires. For these wires we assume a similar current distribution in the lines,