• No results found

N,N′ Bis(2,6 di­chloro­benzyl­­idene)hydrazine

N/A
N/A
Protected

Academic year: 2020

Share "N,N′ Bis(2,6 di­chloro­benzyl­­idene)hydrazine"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1913–o1914 doi:10.1107/S1600536806012918 Zhenget al. C

14H8Cl4N2

o1913

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N

,

N

000

-Bis(2,6-dichlorobenzylidene)hydrazine

Peng-Wu Zheng,a* Qiao-Mei Qiu,bYu-Yan Lincand Ke-Fan Liud

aSchool of Pharmacy, Jiangxi Science and

Technology Normal University, Nanchang 330013, People’s Republic of China,bShenzhen

Municipal Dongshen Water Resource Protection Office, Shenzhen, Guangdong 518113, People’s Republic of China,cShenzhen Academy of Metrology and Quality Inspection, Shenzhen, Guangdong 518109, People’s Republic of China, anddShenzhen Environ-mental Management System Certification Centre, Shenzhen, Guangdong 518033, People’s Republic of China

Correspondence e-mail: nczhengpw@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.040

wRfactor = 0.105

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 7 April 2006 Accepted 9 April 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C14H8Cl4N2, was synthesized by the reaction of 2,6-dichlorobenzaldehyde with hydrazine hydrate. The two benzene rings are nearly parallel, forming a dihedral angle of 2.9 (4). A weak intermolecular C—H N hydrogen

bond links the molecules into an infinite chain running along [100].

Comment

Recently, a number of azine compounds containing both a diimine linkage and an N—N bond have been investigated in terms of their solid state structures and coordination chem-istry (Xu et al., 1997; Armstrong et al., 1998; Kesslen et al., 1999; Duan et al., 2005; Kundu et al., 2005; Zheng et al., 2005a,b). We report here the crystal structure of the title compound, (I), where two 2,6-dichlorobenzylidene units are directly linked through the imine N atoms.

The title molecule crystallizes in anE,Econfiguration but is not centrosymmetric (Fig. 1). The molecule is not planar, the mean deviation being 0.1586 (3) A˚ , while a planar molecule is observed for benzalazine (Burke-Laing & Laing, 1976). This configuration is different from that found in a number of analogous azine compounds in which there is a crystal-lographically imposed centre of symmetry at the mid-point of the N—N bond (Liuet al., 2004; S¸engu¨let al., 2004; Duanet al., 2005; Zhenget al., 2005a,b). The two benzene rings in (I) are nearly parallel, making a dihedral angle of 2.9 (4). The N—N

bond length (Table 1) is slightly longer than that observed in related azine compounds (Liuet al., 2004; S¸engu¨let al., 2004; Duanet al., 2005; Xuet al., 2005; Zheng et al., 2005a,b). The C7—N1—N2—C8 torsion angle indicates that the C N— N C linkage is not a planar system. The C N—N angles are significantly smaller than the ideal value of 120expected for

sp2-hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent C N bonds. The four C—Cl bond lengths are slightly different but are similar to those of Csp2—Cl bonds in related compounds (Jiang & Hu, 2004; Zhenget al., 2005a).

(2)

running along [100]. Furthermore, a weak Cl Cliicontact is observed between chains [Cl Clii = 3.356 (3) A˚ ; van der Waals radii for Cl = 1.75 A˚ ; symmetry code: (ii) 1x,y,z].

Experimental

The title compound was synthesized by the reaction of 2,6-dichlorobenzaldehyde with hydrazine hydrate in refluxing ethanol (Liu et al., 2004). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a tetrahydrofuran solution.

Crystal data

C14H8Cl4N2

Mr= 346.02 Monoclinic,P21=n

a= 4.265 (3) A˚

b= 13.548 (9) A˚

c= 25.593 (17) A˚ = 94.008 (12)

V= 1475.2 (17) A˚3

Z= 4

Dx= 1.558 Mg m 3

MoKradiation = 0.79 mm1

T= 294 (2) K Block, light yellow 0.200.100.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.902,Tmax= 0.954

8021 measured reflections 2999 independent reflections 1718 reflections withI> 2(I)

Rint= 0.041

max= 26.3

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.040

wR(F2) = 0.105

S= 0.99 2999 reflections 181 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0382P)2

+ 0.7304P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.28 e A˚

3

min=0.34 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Cl1—C1 1.732 (3)

Cl2—C5 1.745 (3)

Cl3—C10 1.737 (3)

Cl4—C14 1.739 (3)

N1—C7 1.248 (3)

N1—N2 1.424 (3)

N2—C8 1.242 (3)

C7—N1—N2 112.2 (2) C8—N2—N1 112.7 (2)

C7—N1—N2—C8 166.3 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C8—H8 N2i

0.93 2.58 3.487 (3) 166

Symmetry code: (i)x1;y;z.

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93 A˚ andUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for

The authors gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science and Technology Normal University.

References

Armstrong, J. A., Barnes, J. C. & Weakley, T. J. R. (1998).Acta Cryst.C54, 1923–1925.

Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Burke-Laing, M. & Laing, M. (1976).Acta Cyst.B32, 3216–3224.

Duan, X.-M., Zheng, P.-W. & Zhou, B. (2005).Acta Cryst.E61, o3449–o3451. Jiang, Y. Z. & Hu, W. X. (2004).Chin. J. Struct. Chem.23, 875–877. Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999).Chem. Mater.11, 336–340. Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005).Acta

Cryst.E61, m1583–m1585.

Liu, S. L., Chen, Y., Dai, J. F. & Liu, H. W. (2004).Chin. J. Synth. Chem.12, 219–221.

S¸engu¨l, A., Karadayi, N. & Bu¨yu¨kgu¨ngo¨r, O. (2004).Acta Cryst.C60, o507– o508.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Xu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005).Acta Cryst.E61, o31–o32.

[image:2.610.316.564.70.192.2]

Xu, Z., Thompson, L. K. & Miller, D. O. (1997).Inorg. Chem.36, 3985–3995. Zheng, P.-W., Wang, W. & Duan, X.-M. (2005a).Acta Cryst.E61, o3020–o3021.

Figure 1

[image:2.610.314.562.235.422.2]

View of the molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o1913–o1914

supporting information

Acta Cryst. (2006). E62, o1913–o1914 [https://doi.org/10.1107/S1600536806012918]

N

,

N

-Bis(2,6-dichlorobenzylidene)hydrazine

Peng-Wu Zheng, Qiao-Mei Qiu, Yu-Yan Lin and Ke-Fan Liu

N,N′-Bis(2,6-dichlorobenzylidene)hydrazine

Crystal data

C14H8Cl4N2

Mr = 346.02

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 4.265 (3) Å

b = 13.548 (9) Å

c = 25.593 (17) Å

β = 94.008 (12)°

V = 1475.2 (17) Å3

Z = 4

F(000) = 696

Dx = 1.558 Mg m−3

Melting point = 428–429 K Mo radiation, λ = 0.71073 Å Cell parameters from 2167 reflections

θ = 2.8–25.4°

µ = 0.79 mm−1

T = 294 K

Block, light yellow 0.20 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.902, Tmax = 0.954

8021 measured reflections 2999 independent reflections 1718 reflections with I > 2σ(I)

Rint = 0.041

θmax = 26.3°, θmin = 1.6°

h = −5→5

k = −16→16

l = −31→31

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.105

S = 0.99 2999 reflections 181 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0382P)2 + 0.7304P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.28 e Å−3

Δρmin = −0.34 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.3727 (2) 0.10137 (7) −0.03267 (4) 0.0727 (3) Cl2 −0.2341 (2) 0.38720 (6) 0.07086 (3) 0.0637 (3) Cl3 0.3099 (2) −0.09400 (7) 0.16006 (3) 0.0674 (3) Cl4 −0.3065 (2) 0.16937 (6) 0.27618 (3) 0.0631 (3) N1 −0.0261 (6) 0.1810 (2) 0.10135 (10) 0.0582 (8) N2 0.1116 (6) 0.1243 (2) 0.14383 (10) 0.0589 (8) C1 0.1699 (6) 0.2120 (2) −0.03094 (11) 0.0410 (7) C2 0.1070 (7) 0.2617 (2) −0.07756 (11) 0.0478 (8) H2 0.1782 0.2370 −0.1085 0.057* C3 −0.0605 (7) 0.3473 (2) −0.07783 (12) 0.0535 (8) H3 −0.1039 0.3810 −0.1092 0.064* C4 −0.1662 (7) 0.3844 (2) −0.03221 (12) 0.0502 (8) H4 −0.2808 0.4428 −0.0326 0.060* C5 −0.1005 (6) 0.3340 (2) 0.01445 (11) 0.0404 (7) C6 0.0689 (6) 0.2463 (2) 0.01691 (10) 0.0348 (6) C7 0.1552 (7) 0.1912 (2) 0.06552 (11) 0.0431 (7) H7 0.3539 0.1628 0.0697 0.052* C8 −0.0837 (7) 0.0967 (2) 0.17452 (11) 0.0424 (7) H8 −0.2923 0.1159 0.1682 0.051* C9 0.0030 (6) 0.0344 (2) 0.22064 (10) 0.0343 (6) C10 0.1758 (6) −0.0529 (2) 0.21880 (11) 0.0418 (7) C11 0.2390 (7) −0.1112 (2) 0.26281 (13) 0.0559 (9) H11 0.3525 −0.1695 0.2604 0.067* C12 0.1327 (8) −0.0823 (3) 0.31005 (13) 0.0620 (10) H12 0.1757 −0.1212 0.3396 0.074* C13 −0.0353 (8) 0.0028 (3) 0.31381 (11) 0.0548 (9) H13 −0.1068 0.0220 0.3458 0.066* C14 −0.0981 (6) 0.0602 (2) 0.26964 (11) 0.0410 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o1913–o1914

C3 0.064 (2) 0.062 (2) 0.0344 (17) 0.0029 (18) −0.0002 (15) 0.0183 (16) C4 0.056 (2) 0.0442 (18) 0.0505 (19) 0.0073 (16) 0.0012 (16) 0.0125 (16) C5 0.0414 (16) 0.0443 (17) 0.0357 (16) −0.0010 (14) 0.0044 (13) 0.0008 (14) C6 0.0322 (15) 0.0397 (16) 0.0324 (15) −0.0011 (13) 0.0020 (12) 0.0056 (13) C7 0.0362 (16) 0.0548 (19) 0.0383 (17) 0.0046 (14) 0.0020 (14) 0.0118 (14) C8 0.0340 (15) 0.0555 (19) 0.0378 (16) 0.0005 (14) 0.0027 (13) 0.0073 (14) C9 0.0300 (14) 0.0439 (17) 0.0287 (15) −0.0080 (13) 0.0007 (12) 0.0036 (13) C10 0.0375 (16) 0.0482 (18) 0.0394 (17) −0.0074 (14) −0.0001 (13) −0.0006 (14) C11 0.054 (2) 0.0478 (19) 0.065 (2) −0.0007 (16) −0.0025 (17) 0.0124 (17) C12 0.063 (2) 0.077 (3) 0.045 (2) −0.008 (2) −0.0027 (17) 0.0270 (19) C13 0.059 (2) 0.074 (2) 0.0315 (17) −0.0167 (19) 0.0042 (15) 0.0066 (17) C14 0.0390 (16) 0.0426 (17) 0.0414 (17) −0.0128 (13) 0.0039 (14) 0.0013 (14)

Geometric parameters (Å, º)

Cl1—C1 1.732 (3) C5—C6 1.390 (4) Cl2—C5 1.745 (3) C6—C7 1.475 (4) Cl3—C10 1.737 (3) C7—H7 0.9300 Cl4—C14 1.739 (3) C8—C9 1.476 (4) N1—C7 1.248 (3) C8—H8 0.9300 N1—N2 1.424 (3) C9—C10 1.396 (4) N2—C8 1.242 (3) C9—C14 1.399 (4) C1—C2 1.380 (4) C10—C11 1.387 (4) C1—C6 1.405 (4) C11—C12 1.378 (5) C2—C3 1.362 (4) C11—H11 0.9300 C2—H2 0.9300 C12—C13 1.365 (5) C3—C4 1.375 (4) C12—H12 0.9300 C3—H3 0.9300 C13—C14 1.383 (4) C4—C5 1.387 (4) C13—H13 0.9300 C4—H4 0.9300

(6)

C5—C6—C1 115.7 (2) C12—C13—H13 120.3 C5—C6—C7 124.7 (2) C14—C13—H13 120.3 C1—C6—C7 119.6 (2) C13—C14—C9 122.6 (3) N1—C7—C6 123.0 (3) C13—C14—Cl4 118.1 (2) N1—C7—H7 118.5 C9—C14—Cl4 119.4 (2)

C7—N1—N2—C8 −166.3 (3) N1—N2—C8—C9 178.1 (3) C6—C1—C2—C3 −0.3 (4) N2—C8—C9—C10 −50.5 (4) Cl1—C1—C2—C3 178.0 (2) N2—C8—C9—C14 131.7 (3) C1—C2—C3—C4 0.1 (5) C14—C9—C10—C11 1.0 (4) C2—C3—C4—C5 0.1 (5) C8—C9—C10—C11 −177.0 (3) C3—C4—C5—C6 −0.2 (5) C14—C9—C10—Cl3 179.0 (2) C3—C4—C5—Cl2 178.5 (2) C8—C9—C10—Cl3 1.1 (4) C4—C5—C6—C1 0.1 (4) C9—C10—C11—C12 −0.8 (5) Cl2—C5—C6—C1 −178.6 (2) Cl3—C10—C11—C12 −178.9 (2) C4—C5—C6—C7 177.8 (3) C10—C11—C12—C13 0.3 (5) Cl2—C5—C6—C7 −0.8 (4) C11—C12—C13—C14 0.0 (5) C2—C1—C6—C5 0.2 (4) C12—C13—C14—C9 0.3 (5) Cl1—C1—C6—C5 −178.0 (2) C12—C13—C14—Cl4 −178.8 (2) C2—C1—C6—C7 −177.7 (3) C10—C9—C14—C13 −0.7 (4) Cl1—C1—C6—C7 4.1 (4) C8—C9—C14—C13 177.3 (3) N2—N1—C7—C6 179.6 (3) C10—C9—C14—Cl4 178.40 (19) C5—C6—C7—N1 39.9 (5) C8—C9—C14—Cl4 −3.6 (4) C1—C6—C7—N1 −142.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C8—H8···N2i 0.93 2.58 3.487 (3) 166

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical