• No results found

A mononuclear RhIII tetraphosphine complex, [RhCl2(C25H40P4)]BF4·C3D6O, crystallized as a perdeuteroacetone solvate

N/A
N/A
Protected

Academic year: 2020

Share "A mononuclear RhIII tetraphosphine complex, [RhCl2(C25H40P4)]BF4·C3D6O, crystallized as a perdeuteroacetone solvate"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1043±m1045 DOI: 10.1107/S1600536804015533 P. G. Gueorguievaet al. [RhCl2(C25H40P4)]BF4C3D6O

m1043

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

A mononuclear Rh

III

tetraphosphine complex,

[RhCl

2

(C

25

H

40

P

4

)]BF

4

C

3

D

6

O, crystallized as a

perdeuteroacetone solvate

Petia G. Gueorguieva, George G. Stanley and Frank R. Fronczek*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study T= 105 K

Mean(C±C) = 0.004 AÊ Rfactor = 0.031 wRfactor = 0.071

Data-to-parameter ratio = 23.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title mononuclear RhIII complex, (bis{[2-(diethyl

phosphino- P)ethyl]phenylphosphino}methane)dichlororho-dium(III) tetra¯uoroborate perdeuteroacetone solvate, [RhCl2(C25H40P4)]BF4C3D6O, is based on the racemic 4

-coordinated tetraphosphine ligand (Et2PCH2CH2

)(Ph)-PCH2P(Ph)(CH2CH2PEt2). The RhÐCl distances are

2.4164 (7) and 2.4282 (7) AÊ, and the RhÐP bond distances are in the range 2.2501 (7)±2.3649 (7) AÊ, with distorted octahedral coordination geometry for the Rh atom.

Comment

Hydroformylation is the most widely used homogeneous catalytic process for aldehyde synthesis (Parshall & Ittel, 1992). The dinuclear Rh complex [Rh2(nbd)2(et,ph-P4)](BF4)2

[nbd = norbornadiene; et,ph-P4 = (Et2PCH2CH2

)(Ph)-PCH2P(Ph)(CH2CH2PEt2) or

bis{[2-(diethylphosphino)-ethyl]phenylphosphino}methane], developed in our research group, is the catalyst precursor for the hydroformylation reaction of alkenes and is one of the best examples of bi-metallic cooperativity (Broussardet al., 1993). The main goals of our research are to explain in detail the high activity and regioselectivity of this dinuclear catalyst and to identify fully the catalytically inactive by-products formed upon fragmen-tation of the catalyst under hydroformylation conditions. For this purpose, [RhCl2(4-et,ph-P4)]BF4, a possible by-product,

was synthesized and crystallographically and spectroscopically studied. The crystal structures of the dichloromethane, methanol and toluene solvates of [RhCl2(4-et,ph-P4)]BF4

were determined (Huntet al., 2001), and it was found that the complex typically cocrystallizes with 15±20% of the chloro-methyl complex [RhCl(CH2Cl)(4-et,ph-P4)]BF4 in a

substi-tutional disorder. We report here the structure of the title compound, [RhCl2(4-et,ph-P4)]BF4C3D6O, (I), as the

perdeuteroacetone solvate, with no detectable chloromethyl compound present.

(2)

The structure of (I) (Fig. 1) contains the 4-rac-et,ph-P4

ligand and twocis-chloro ligands coordinated to the central Rh atom. The geometry around the Rh atom is distorted octahedral. These distortions arise from the presence of the four-membered bis(phosphino)methane chelate ring (P2Ð RhÐP3) and two ®ve-membered chelate rings (P1ÐRhÐP2 and P3ÐRhÐP4). The four-membered ring contributes to the 73.75 (2) P2ÐRhÐP3 angle and the 94.38 (2) ClÐRhÐCl

angletransto it. Chloro ligands lie on opposite sides of the central P2ÐRhÐP3 plane by 0.4286 (6) (for Cl1) and 0.3921 (6) AÊ (for Cl2).31P{1H} NMR spectroscopic data of the

reported compound show a symmetrical set of doublets of triplets at 12.1 (Pinternal) and 59.7 p.p.m. (Pexternal). The

perdeuteroacetone molecule exhibits large displacement parameters, even at 105 K, likely indicative of unresolved disorder. A number of CÐH X(X= F, Cl, O) interactions exist in (I), the most signi®cant of which are listed in Table 2.

Experimental

Synthetic procedures were performed under an inert atmosphere using dry-box and Schlenk-line techniques. The anhydrous solvents [dichloromethane (DCM) and d6-acetone] packed under nitrogen

were purchased from Aldrich. Complex (I) was synthesized by adding dropwise one equivalent of mixed et,ph-P4 ligand (0.633 g, 0.0013 mol) dissolved in 10 ml DCM to 1.5 equivalents of [Rh(nbd)2]BF4 (0.73 g, 0.00195 mol) in 20 ml DCM at room

temperature. After 4 h of stirring under nitrogen, the solvent was removed under vacuum. The resulting yellow±orange powder was dissolved in a minimum amount of d6-acetone and crystals of

[RhCl2(4-et,ph-P4)]BF4C3D6O were obtained in 47% yield after

2 d. X-ray quality pale-yellow crystals were obtained by recrystalli-zation fromd6-acetone.

Crystal data

[RhCl2(C25H40P4)]BF4C3D6O

Mr= 789.15 Monoclinic, P21=n

a= 10.595 (2) AÊ b= 14.750 (3) AÊ c= 22.285 (5) AÊ

= 96.186 (9) V= 3462.3 (12) AÊ3

Dx= 1.514 Mg mÿ3 MoKradiation Cell parameters from 7957

re¯ections

= 2.5±28.7

= 0.88 mmÿ1

T= 105 K Tablet, pale yellow

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

!scans withoffsets

Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) Tmin= 0.806,Tmax= 0.900

29 400 measured re¯ections 8837 independent re¯ections 7230 re¯ections withI> 2(I) Rint= 0.027

max= 28.7

h=ÿ14!14 k=ÿ19!14 l=ÿ30!30

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.031

wR(F2) = 0.071

S= 1.01 8837 re¯ections 377 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0196P)2 + 3.8331P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.55 e AÊÿ3 min=ÿ0.85 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0003 (1)

Table 1

Selected geometric parameters (AÊ,).

Rh1ÐP3 2.2501 (7)

Rh1ÐP2 2.2574 (7)

Rh1ÐP1 2.3563 (7)

Rh1ÐP4 2.3649 (7)

Rh1ÐCl1 2.4164 (7)

Rh1ÐCl2 2.4282 (7)

P3ÐRh1ÐP2 73.75 (2) P3ÐRh1ÐP1 97.29 (2) P2ÐRh1ÐP1 83.30 (3) P3ÐRh1ÐP4 84.47 (2) P2ÐRh1ÐP4 96.21 (3) P1ÐRh1ÐP4 177.94 (2) P3ÐRh1ÐCl1 165.72 (2) P2ÐRh1ÐCl1 96.36 (2)

P1ÐRh1ÐCl1 91.61 (2) P4ÐRh1ÐCl1 86.45 (2) P3ÐRh1ÐCl2 96.91 (2) P2ÐRh1ÐCl2 166.92 (2) P1ÐRh1ÐCl2 88.96 (3) P4ÐRh1ÐCl2 91.89 (3) Cl1ÐRh1ÐCl2 94.38 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C2ÐH2A F4i 0.99 2.37 3.349 (3) 171 C3ÐH3B F1ii 0.99 2.32 3.302 (3) 171 C17ÐH17 F1ii 0.95 2.41 3.240 (3) 146

Symmetry codes: (i)1

2ÿx;12‡y;12ÿz; (ii)xÿ1;y;z.

H atoms were treated as riding in idealized positions, with CÐH = 0.95±0.99 AÊ, depending on atom hybridization type. A torsional parameter was re®ned for each rigid methyl group. Displacement parameters for H atoms were assigned asUiso= 1.2Ueqof the attached

atom (1.5Ueqfor methyl).

Data collection:COLLECT(Nonius, 2000); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction:HKL

SCALEPACK and DENZO (Otwinowski & Minor, 1997);

program(s) used to solve structure:SIR97 (Altomare et al., 1999); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997); soft-ware used to prepare material for publication:SHELXL97.

The purchase of the diffractometer was made possible by Figure 1

(3)

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115±119.

Broussard, M. E., Juma, B., Train, S. G., Peng, W.-J., Laneman, S. A. & Stanley, G. G. (1993).Science,260, 1784±1788.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Hunt, C. Jr, Fronczek, F. R., Billodeaux, D. R. & Stanley, G. G. (2001).Inorg. Chem.40, 5192±5198.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press.

Parshall, G. W. & Ittel, S. D. (1992).Homogeneous Catalysis. New York: Wiley & Sons.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany.

metal-organic papers

(4)

supporting information

Acta Cryst. (2004). E60, m1043–m1045 [https://doi.org/10.1107/S1600536804015533]

A mononuclear Rh

III

tetraphosphine complex, [RhCl

2

(C

25

H

40

P

4

)]BF

4

·

C

3

D

6

O,

crystallized as a perdeuteroacetone solvate

Petia G. Gueorguieva, George G. Stanley and Frank R. Fronczek

(bis{[2-(diethylphosphino- κP)ethyl]phenylphosphino}methane)dichloro[]rhodium(III) tetrafluoroborate acetone

solvate

Crystal data

[RhCl2(C25H40P4)]BF4·C3H6O

Mr = 783.15 Monoclinic, P21/n

Hall symbol: -P 2yn a = 10.595 (2) Å b = 14.750 (3) Å c = 22.285 (5) Å β = 96.186 (9)° V = 3462.3 (12) Å3

Z = 4

F(000) = 1608 Dx = 1.502 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7957 reflections θ = 2.5–28.7°

µ = 0.88 mm−1

T = 105 K

Tablet, pale yellow 0.28 × 0.23 × 0.12 mm

Data collection

Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans with κ offsets

Absorption correction: multi-scan

(HKL SCALEPACK; Otwinowski & Minor, 1997)

Tmin = 0.806, Tmax = 0.900

29400 measured reflections 8837 independent reflections 7230 reflections with I > 2σ(I) Rint = 0.027

θmax = 28.7°, θmin = 2.7°

h = −14→14 k = −19→14 l = −30→30

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.071

S = 1.01 8837 reflections 377 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0196P)2 + 3.8331P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.55 e Å−3

Δρmin = −0.85 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1043–m1045

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Rh1 0.240170 (16) 0.276057 (10) 0.328026 (7) 0.01309 (5) Cl1 0.23936 (6) 0.42713 (3) 0.28604 (3) 0.02114 (12) Cl2 0.37178 (6) 0.31683 (4) 0.42006 (3) 0.02430 (13) P1 0.05890 (6) 0.30764 (4) 0.37706 (3) 0.01593 (12) P2 0.09665 (5) 0.21664 (4) 0.25654 (2) 0.01393 (11) P3 0.24355 (6) 0.12520 (4) 0.34310 (3) 0.01533 (12) P4 0.42017 (5) 0.24879 (4) 0.27644 (3) 0.01605 (12) C1 −0.0752 (2) 0.24567 (15) 0.33734 (10) 0.0206 (5)

H1A −0.0743 0.1820 0.3515 0.025*

H1B −0.1561 0.2738 0.3461 0.025*

C2 −0.0656 (2) 0.24792 (15) 0.26921 (10) 0.0197 (5)

H2A −0.0857 0.3094 0.2532 0.024*

H2B −0.1269 0.2047 0.2483 0.024*

C3 0.1180 (2) 0.09891 (14) 0.28204 (10) 0.0162 (4)

H3A 0.1476 0.0587 0.2508 0.019*

H3B 0.0409 0.0734 0.2971 0.019*

C4 0.3914 (2) 0.07802 (15) 0.32167 (10) 0.0203 (5)

H4A 0.4595 0.0856 0.3553 0.024*

H4B 0.3805 0.0124 0.3134 0.024*

C5 0.4291 (2) 0.12591 (15) 0.26539 (10) 0.0190 (5)

H5A 0.3711 0.1077 0.2296 0.023*

H5B 0.5166 0.1085 0.2584 0.023*

C6 0.0082 (2) 0.42587 (15) 0.37108 (11) 0.0232 (5)

H6A 0.0041 0.4450 0.3283 0.028*

H6B −0.0783 0.4309 0.3837 0.028*

C7 0.0971 (3) 0.49007 (17) 0.40978 (12) 0.0330 (6)

H7A 0.0901 0.4784 0.4526 0.049*

H7B 0.0731 0.5530 0.4002 0.049*

H7C 0.1848 0.4798 0.4013 0.049*

C8 0.0593 (2) 0.27648 (17) 0.45602 (10) 0.0257 (5)

H8A 0.0761 0.2106 0.4601 0.031*

H8B 0.1300 0.3086 0.4798 0.031*

C9 −0.0640 (3) 0.29797 (18) 0.48304 (12) 0.0316 (6)

H9A −0.0806 0.3633 0.4802 0.047*

(6)

H9C −0.1344 0.2650 0.4607 0.047* C10 0.1082 (2) 0.22870 (14) 0.17672 (10) 0.0169 (4) C11 0.1516 (2) 0.15987 (16) 0.14130 (10) 0.0210 (5)

H11 0.1716 0.1019 0.1582 0.025*

C12 0.1652 (2) 0.17682 (18) 0.08114 (11) 0.0264 (5)

H12 0.1943 0.1300 0.0568 0.032*

C13 0.1370 (3) 0.26139 (19) 0.05619 (11) 0.0306 (6)

H13 0.1473 0.2724 0.0150 0.037*

C14 0.0938 (3) 0.32980 (17) 0.09130 (11) 0.0276 (5)

H14 0.0746 0.3878 0.0741 0.033*

C15 0.0785 (2) 0.31410 (15) 0.15130 (10) 0.0217 (5)

H15 0.0480 0.3610 0.1752 0.026*

C16 0.2169 (2) 0.06644 (15) 0.41155 (10) 0.0188 (5) C17 0.1281 (2) −0.00322 (15) 0.41166 (11) 0.0231 (5)

H17 0.0752 −0.0178 0.3758 0.028*

C18 0.1172 (3) −0.05121 (17) 0.46453 (12) 0.0304 (6)

H18 0.0573 −0.0991 0.4645 0.036*

C19 0.1926 (3) −0.02993 (18) 0.51694 (12) 0.0329 (6)

H19 0.1843 −0.0629 0.5529 0.040*

C20 0.2807 (3) 0.03973 (19) 0.51705 (12) 0.0349 (6)

H20 0.3326 0.0543 0.5532 0.042*

C21 0.2935 (3) 0.08803 (17) 0.46478 (11) 0.0285 (6)

H21 0.3539 0.1356 0.4650 0.034*

C22 0.5723 (2) 0.27816 (16) 0.31822 (11) 0.0230 (5)

H22A 0.5743 0.2547 0.3599 0.028*

H22B 0.6411 0.2479 0.2991 0.028*

C23 0.5980 (3) 0.38048 (17) 0.32073 (13) 0.0310 (6)

H23A 0.6087 0.4027 0.2801 0.047*

H23B 0.6754 0.3925 0.3477 0.047*

H23C 0.5262 0.4117 0.3359 0.047*

C24 0.4268 (2) 0.30015 (16) 0.20244 (10) 0.0220 (5)

H24A 0.3477 0.2849 0.1766 0.026*

H24B 0.4295 0.3669 0.2072 0.026*

C25 0.5403 (3) 0.27054 (18) 0.17007 (12) 0.0304 (6)

H25A 0.6193 0.2874 0.1945 0.046*

H25B 0.5365 0.3006 0.1307 0.046*

H25C 0.5379 0.2047 0.1643 0.046*

B1 0.7420 (3) 0.01968 (19) 0.30275 (13) 0.0247 (6) F1 0.86574 (15) −0.00685 (11) 0.32240 (8) 0.0402 (4) F2 0.69748 (16) 0.07493 (12) 0.34659 (7) 0.0410 (4) F3 0.74176 (17) 0.06957 (12) 0.25002 (7) 0.0437 (4) F4 0.66369 (17) −0.05409 (11) 0.29292 (9) 0.0515 (5) O1S 0.6663 (3) 0.0553 (3) 0.06315 (14) 0.1278 (18) C1S 0.7760 (4) 0.0822 (3) 0.06820 (15) 0.0664 (13) C2S 0.8077 (4) 0.1746 (3) 0.09012 (17) 0.0735 (13)

H21S 0.7293 0.2089 0.0928 0.110*

H22S 0.8588 0.2051 0.0620 0.110*

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1043–m1045

C3S 0.8818 (5) 0.0261 (2) 0.04886 (16) 0.0765 (15)

H31S 0.8526 −0.0364 0.0417 0.115*

H32S 0.9534 0.0267 0.0806 0.115*

H33S 0.9089 0.0512 0.0116 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

C3S 0.146 (5) 0.041 (2) 0.038 (2) −0.029 (2) −0.009 (2) 0.0116 (15)

Geometric parameters (Å, º)

Rh1—P3 2.2501 (7) C11—H11 0.9500

Rh1—P2 2.2574 (7) C12—C13 1.385 (4)

Rh1—P1 2.3563 (7) C12—H12 0.9500

Rh1—P4 2.3649 (7) C13—C14 1.385 (4)

Rh1—Cl1 2.4164 (7) C13—H13 0.9500

Rh1—Cl2 2.4282 (7) C14—C15 1.384 (3)

P1—C8 1.818 (2) C14—H14 0.9500

P1—C6 1.825 (2) C15—H15 0.9500

P1—C1 1.835 (2) C16—C17 1.394 (3)

P2—C10 1.805 (2) C16—C21 1.400 (3)

P2—C2 1.831 (2) C17—C18 1.390 (3)

P2—C3 1.834 (2) C17—H17 0.9500

P3—C16 1.803 (2) C18—C19 1.378 (4)

P3—C4 1.824 (2) C18—H18 0.9500

P3—C3 1.839 (2) C19—C20 1.388 (4)

P4—C24 1.823 (2) C19—H19 0.9500

P4—C22 1.825 (2) C20—C21 1.384 (3)

P4—C5 1.833 (2) C20—H20 0.9500

C1—C2 1.533 (3) C21—H21 0.9500

C1—H1A 0.9900 C22—C23 1.534 (3)

C1—H1B 0.9900 C22—H22A 0.9900

C2—H2A 0.9900 C22—H22B 0.9900

C2—H2B 0.9900 C23—H23A 0.9800

C3—H3A 0.9900 C23—H23B 0.9800

C3—H3B 0.9900 C23—H23C 0.9800

C4—C5 1.529 (3) C24—C25 1.532 (3)

C4—H4A 0.9900 C24—H24A 0.9900

C4—H4B 0.9900 C24—H24B 0.9900

C5—H5A 0.9900 C25—H25A 0.9800

C5—H5B 0.9900 C25—H25B 0.9800

C6—C7 1.534 (3) C25—H25C 0.9800

C6—H6A 0.9900 B1—F4 1.372 (3)

C6—H6B 0.9900 B1—F3 1.386 (3)

C7—H7A 0.9800 B1—F1 1.392 (3)

C7—H7B 0.9800 B1—F2 1.393 (3)

C7—H7C 0.9800 O1S—C1S 1.221 (4)

C8—C9 1.529 (3) C1S—C2S 1.475 (6)

C8—H8A 0.9900 C1S—C3S 1.494 (6)

C8—H8B 0.9900 C2S—H21S 0.9800

C9—H9A 0.9800 C2S—H22S 0.9800

C9—H9B 0.9800 C2S—H23S 0.9800

C9—H9C 0.9800 C3S—H31S 0.9800

C10—C11 1.394 (3) C3S—H32S 0.9800

(9)

supporting information

sup-6 Acta Cryst. (2004). E60, m1043–m1045

C11—C12 1.387 (3)

P3—Rh1—P2 73.75 (2) C8—C9—H9A 109.5

P3—Rh1—P1 97.29 (2) C8—C9—H9B 109.5

P2—Rh1—P1 83.30 (3) H9A—C9—H9B 109.5

P3—Rh1—P4 84.47 (2) C8—C9—H9C 109.5

P2—Rh1—P4 96.21 (3) H9A—C9—H9C 109.5

P1—Rh1—P4 177.94 (2) H9B—C9—H9C 109.5

P3—Rh1—Cl1 165.72 (2) C11—C10—C15 119.9 (2)

P2—Rh1—Cl1 96.36 (2) C11—C10—P2 123.21 (17)

P1—Rh1—Cl1 91.61 (2) C15—C10—P2 116.77 (17)

P4—Rh1—Cl1 86.45 (2) C12—C11—C10 119.4 (2)

P3—Rh1—Cl2 96.91 (2) C12—C11—H11 120.3

P2—Rh1—Cl2 166.92 (2) C10—C11—H11 120.3

P1—Rh1—Cl2 88.96 (3) C13—C12—C11 120.7 (2)

P4—Rh1—Cl2 91.89 (3) C13—C12—H12 119.7

Cl1—Rh1—Cl2 94.38 (2) C11—C12—H12 119.7

C8—P1—C6 106.39 (11) C14—C13—C12 120.0 (2)

C8—P1—C1 105.19 (11) C14—C13—H13 120.0

C6—P1—C1 103.54 (11) C12—C13—H13 120.0

C8—P1—Rh1 118.80 (8) C15—C14—C13 120.3 (2)

C6—P1—Rh1 113.78 (8) C15—C14—H14 119.9

C1—P1—Rh1 107.77 (7) C13—C14—H14 119.9

C10—P2—C2 106.94 (11) C14—C15—C10 119.7 (2)

C10—P2—C3 112.31 (10) C14—C15—H15 120.1

C2—P2—C3 106.08 (10) C10—C15—H15 120.1

C10—P2—Rh1 123.05 (7) C17—C16—C21 119.7 (2)

C2—P2—Rh1 111.45 (8) C17—C16—P3 121.55 (18)

C3—P2—Rh1 95.62 (7) C21—C16—P3 118.58 (18)

C16—P3—C4 104.79 (11) C18—C17—C16 119.7 (2)

C16—P3—C3 110.97 (11) C18—C17—H17 120.2

C4—P3—C3 107.39 (11) C16—C17—H17 120.2

C16—P3—Rh1 126.89 (7) C19—C18—C17 120.6 (2)

C4—P3—Rh1 109.79 (8) C19—C18—H18 119.7

C3—P3—Rh1 95.71 (7) C17—C18—H18 119.7

C24—P4—C22 104.18 (11) C18—C19—C20 119.9 (2)

C24—P4—C5 106.38 (11) C18—C19—H19 120.0

C22—P4—C5 104.34 (11) C20—C19—H19 120.0

C24—P4—Rh1 118.73 (8) C21—C20—C19 120.4 (3)

C22—P4—Rh1 115.21 (8) C21—C20—H20 119.8

C5—P4—Rh1 106.82 (7) C19—C20—H20 119.8

C2—C1—P1 109.66 (15) C20—C21—C16 119.7 (2)

C2—C1—H1A 109.7 C20—C21—H21 120.1

P1—C1—H1A 109.7 C16—C21—H21 120.1

C2—C1—H1B 109.7 C23—C22—P4 113.30 (18)

P1—C1—H1B 109.7 C23—C22—H22A 108.9

H1A—C1—H1B 108.2 P4—C22—H22A 108.9

(10)

C1—C2—H2A 110.1 P4—C22—H22B 108.9

P2—C2—H2A 110.1 H22A—C22—H22B 107.7

C1—C2—H2B 110.1 C22—C23—H23A 109.5

P2—C2—H2B 110.1 C22—C23—H23B 109.5

H2A—C2—H2B 108.4 H23A—C23—H23B 109.5

P2—C3—P3 94.86 (10) C22—C23—H23C 109.5

P2—C3—H3A 112.8 H23A—C23—H23C 109.5

P3—C3—H3A 112.8 H23B—C23—H23C 109.5

P2—C3—H3B 112.8 C25—C24—P4 114.60 (18)

P3—C3—H3B 112.8 C25—C24—H24A 108.6

H3A—C3—H3B 110.2 P4—C24—H24A 108.6

C5—C4—P3 110.26 (15) C25—C24—H24B 108.6

C5—C4—H4A 109.6 P4—C24—H24B 108.6

P3—C4—H4A 109.6 H24A—C24—H24B 107.6

C5—C4—H4B 109.6 C24—C25—H25A 109.5

P3—C4—H4B 109.6 C24—C25—H25B 109.5

H4A—C4—H4B 108.1 H25A—C25—H25B 109.5

C4—C5—P4 108.95 (15) C24—C25—H25C 109.5

C4—C5—H5A 109.9 H25A—C25—H25C 109.5

P4—C5—H5A 109.9 H25B—C25—H25C 109.5

C4—C5—H5B 109.9 F4—B1—F3 109.9 (2)

P4—C5—H5B 109.9 F4—B1—F1 111.1 (2)

H5A—C5—H5B 108.3 F3—B1—F1 109.4 (2)

C7—C6—P1 113.00 (18) F4—B1—F2 109.3 (2)

C7—C6—H6A 109.0 F3—B1—F2 108.3 (2)

P1—C6—H6A 109.0 F1—B1—F2 108.8 (2)

C7—C6—H6B 109.0 O1S—C1S—C2S 120.7 (5)

P1—C6—H6B 109.0 O1S—C1S—C3S 122.0 (5)

H6A—C6—H6B 107.8 C2S—C1S—C3S 117.1 (3)

C6—C7—H7A 109.5 C1S—C2S—H21S 109.5

C6—C7—H7B 109.5 C1S—C2S—H22S 109.5

H7A—C7—H7B 109.5 H21S—C2S—H22S 109.5

C6—C7—H7C 109.5 C1S—C2S—H23S 109.5

H7A—C7—H7C 109.5 H21S—C2S—H23S 109.5

H7B—C7—H7C 109.5 H22S—C2S—H23S 109.5

C9—C8—P1 114.55 (18) C1S—C3S—H31S 109.5

C9—C8—H8A 108.6 C1S—C3S—H32S 109.5

P1—C8—H8A 108.6 H31S—C3S—H32S 109.5

C9—C8—H8B 108.6 C1S—C3S—H33S 109.5

P1—C8—H8B 108.6 H31S—C3S—H33S 109.5

H8A—C8—H8B 107.6 H32S—C3S—H33S 109.5

P3—Rh1—P1—C8 58.51 (10) P1—C1—C2—P2 48.26 (18)

P2—Rh1—P1—C8 131.11 (10) C10—P2—C2—C1 −175.54 (15)

Cl1—Rh1—P1—C8 −132.68 (10) C3—P2—C2—C1 64.41 (17)

Cl2—Rh1—P1—C8 −38.32 (10) Rh1—P2—C2—C1 −38.46 (16)

P3—Rh1—P1—C6 −175.03 (9) C10—P2—C3—P3 127.09 (10)

(11)

supporting information

sup-8 Acta Cryst. (2004). E60, m1043–m1045

Cl1—Rh1—P1—C6 −6.22 (9) Rh1—P2—C3—P3 −2.15 (8)

Cl2—Rh1—P1—C6 88.13 (9) C16—P3—C3—P2 135.35 (10)

P3—Rh1—P1—C1 −60.84 (8) C4—P3—C3—P2 −110.66 (10)

P2—Rh1—P1—C1 11.76 (8) Rh1—P3—C3—P2 2.16 (8)

Cl1—Rh1—P1—C1 107.97 (8) C16—P3—C4—C5 −177.08 (16)

Cl2—Rh1—P1—C1 −157.67 (8) C3—P3—C4—C5 64.84 (18)

P3—Rh1—P2—C10 −119.44 (9) Rh1—P3—C4—C5 −38.07 (17)

P1—Rh1—P2—C10 140.92 (9) P3—C4—C5—P4 48.92 (19)

P4—Rh1—P2—C10 −37.06 (9) C24—P4—C5—C4 −166.13 (16)

Cl1—Rh1—P2—C10 50.04 (9) C22—P4—C5—C4 84.08 (18)

Cl2—Rh1—P2—C10 −164.96 (11) Rh1—P4—C5—C4 −38.38 (17)

P3—Rh1—P2—C2 111.57 (8) C8—P1—C6—C7 60.4 (2)

P1—Rh1—P2—C2 11.93 (8) C1—P1—C6—C7 171.04 (17)

P4—Rh1—P2—C2 −166.05 (8) Rh1—P1—C6—C7 −72.27 (18)

Cl1—Rh1—P2—C2 −78.95 (8) C6—P1—C8—C9 51.5 (2)

Cl2—Rh1—P2—C2 66.05 (13) C1—P1—C8—C9 −58.0 (2)

P3—Rh1—P2—C3 1.83 (7) Rh1—P1—C8—C9 −178.65 (15)

P1—Rh1—P2—C3 −97.81 (7) C2—P2—C10—C11 −127.2 (2)

P4—Rh1—P2—C3 84.21 (7) C3—P2—C10—C11 −11.2 (2)

Cl1—Rh1—P2—C3 171.31 (7) Rh1—P2—C10—C11 101.96 (19)

Cl2—Rh1—P2—C3 −43.69 (12) C2—P2—C10—C15 56.7 (2)

P2—Rh1—P3—C16 −123.47 (10) C3—P2—C10—C15 172.72 (17)

P1—Rh1—P3—C16 −42.67 (10) Rh1—P2—C10—C15 −74.13 (19)

P4—Rh1—P3—C16 138.40 (10) C15—C10—C11—C12 0.2 (3)

Cl1—Rh1—P3—C16 −170.83 (12) P2—C10—C11—C12 −175.81 (18)

Cl2—Rh1—P3—C16 47.16 (10) C10—C11—C12—C13 0.4 (4)

P2—Rh1—P3—C4 108.99 (9) C11—C12—C13—C14 −0.5 (4)

P1—Rh1—P3—C4 −170.21 (8) C12—C13—C14—C15 −0.1 (4)

P4—Rh1—P3—C4 10.86 (8) C13—C14—C15—C10 0.7 (4)

Cl1—Rh1—P3—C4 61.63 (13) C11—C10—C15—C14 −0.7 (4)

Cl2—Rh1—P3—C4 −80.38 (9) P2—C10—C15—C14 175.52 (19)

P2—Rh1—P3—C3 −1.82 (7) C4—P3—C16—C17 −103.0 (2)

P1—Rh1—P3—C3 78.98 (7) C3—P3—C16—C17 12.7 (2)

P4—Rh1—P3—C3 −99.95 (7) Rh1—P3—C16—C17 127.55 (17)

Cl1—Rh1—P3—C3 −49.17 (12) C4—P3—C16—C21 72.9 (2)

Cl2—Rh1—P3—C3 168.81 (7) C3—P3—C16—C21 −171.43 (18)

P3—Rh1—P4—C24 132.60 (9) Rh1—P3—C16—C21 −56.5 (2)

P2—Rh1—P4—C24 59.66 (9) C21—C16—C17—C18 −0.6 (4)

Cl1—Rh1—P4—C24 −36.36 (9) P3—C16—C17—C18 175.23 (19)

Cl2—Rh1—P4—C24 −130.64 (9) C16—C17—C18—C19 0.6 (4)

P3—Rh1—P4—C22 −102.87 (9) C17—C18—C19—C20 −0.3 (4)

P2—Rh1—P4—C22 −175.81 (9) C18—C19—C20—C21 0.0 (4)

Cl1—Rh1—P4—C22 88.17 (9) C19—C20—C21—C16 0.0 (4)

Cl2—Rh1—P4—C22 −6.11 (9) C17—C16—C21—C20 0.3 (4)

P3—Rh1—P4—C5 12.49 (8) P3—C16—C21—C20 −175.7 (2)

P2—Rh1—P4—C5 −60.45 (8) C24—P4—C22—C23 56.1 (2)

Cl1—Rh1—P4—C5 −156.47 (8) C5—P4—C22—C23 167.48 (17)

(12)

C8—P1—C1—C2 −166.14 (16) C22—P4—C24—C25 56.3 (2)

C6—P1—C1—C2 82.38 (17) C5—P4—C24—C25 −53.6 (2)

Rh1—P1—C1—C2 −38.47 (17) Rh1—P4—C24—C25 −173.98 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2A···F4i 0.99 2.37 3.349 (3) 171

C3—H3B···F1ii 0.99 2.32 3.302 (3) 171

C17—H17···F1ii 0.95 2.41 3.240 (3) 146

References

Related documents

Several factors were mentioned for the gradual decrease of female labor participation rates such as urbanization (World Bank, 2009), increased attendance in education

We find that firms exporting to high income countries pay higher average wages, hire more skilled.. workers, defined by education level, and pay higher skill premium as compared

In particular, high coherency in Argentina, Australia, Canada, Finland, Italy, and the UK can be ex- plained by the global common factor.. Third, among six countries with

Kouni (2016 b) showed that the MBD has a positive and significant effect on both human capital and GDP per capita for the countries of the Arab Maghreb, but it remains small in

In accordance with the literature review presented below, the paper explains such dynamics of evolution by process of rational mimetic contagion in actors’

For both examples, we consider four estimators: (1) Horowitz’s (2014) adaptive nonparametric IV estimation (Horowitz), (2) the nonparametric IV estimator with Sueishi’s (2012)

The main finding of this study was that CAIx decreased 20%-25% at two levels of aerobic exercise, following a dietary BJ, nitrate- rich treatment which increased the blood

Column 2 in Table 5 shows that following the passage of CHIPRA, probability of having a public health insurance coverage for the low-income immigrant children in policy