4 Chloro­phenyl 4 toluene­sulfonate: supramolecular aggregation through C—H⋯O, C–H⋯Cl and C—H⋯π interactions

13 

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

organic papers

o936

Nagarajan Vembuet al. C13H11ClO3S DOI: 10.1107/S1600536803012066 Acta Cryst.(2003). E59, o936±o938 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-Chlorophenyl 4-toluenesulfonate:

supramolecular aggregation through

CÐH O, C±H Cl and CÐH

p

interactions

Nagarajan Vembu,aMaruthai

Nallu,a* Jered Garrisonband

Wiley J. Youngsb

aDepartment of Chemistry, Bharathidasan

University, Tiruchirappalli 620 024, India, and

bDepartment of Chemistry, University of Akron,

190, East Buchtel Commons, Akron, Ohio 44325-3601, USA

Correspondence e-mail: mnalv2003@yahoo.com

Key indicators Single-crystal X-ray study

T= 100 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.039

wRfactor = 0.094

Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title molecule, C13H11ClO3S, the dihedral angle between the mean planes of the tolyl and 4-chlorophenyl rings is 64.95 (6). There are weak CÐH O

hydrogen bonds which generate rings of motifs S(5), S(6), R1

2(9), R21(4), R12(6) andR22(8). The supramolecular aggrega-tion is completed by the presence of CÐH Cl and CÐH

interactions.

Comment

p-Toluenesulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immuno-af®nity chromatography for the puri®cation of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alfordet al., 1991), development of tech-nology for linking photosensitizer to model monoclonal anti-bodies (Jianget al., 1990) and chemical modi®cation of sigma sub-units of the E. coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogs.

The dihedral angle between the mean planes of the 4-tolyl and 4-chlorophenyl rings is 64.95 (6). This shows their

non-coplanar orientation, similar to that found in 2-chlorophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003b) and 8-tosyloxyquinoline (Vembu, Nallu, Garrison & Youngs, 2003c), and in contrast to the near coplanar orienta-tion observed in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003a) and 4-methoxyphenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003).

The crystal structure of (I) is stabilized by weak CÐH O interactions. The range for the H O distances (Table 2) agrees with those found for weak CÐH O bonds (Desiraju & Steiner, 1999). The C4ÐH4 O1 and C4ÐH4 O3 inter-actions constitute a pair of bifurcated donor bonds, each of them generating aS(5) graph set (Etter, 1990; Bernsteinet al., 1995) motif which are fused to each other. The C6ÐH6 O2 and C13ÐH13 O2 interactions constitute a pair of bifur-cated acceptor bonds. They generate rings of graph-set motifs S(5) andS(6), respectively, which are fused to each other. The C9ÐH9 O2vand C4ÐH4 O2v(Table 2 and Fig. 4)

(2)

actions form a pair of bifurcated acceptor bonds, generating a ring of graph set R1

2(9). The C7ÐH7 O3iii and C7Ð H7 O1iii(Fig. 3) interactions form a pair of bifurcated donor bonds generating a ring of graph setR2

1(4). The H7 O3iiiand H7 O1iii distances differ by 0.18 (3) AÊ. The resulting con®guration can be regarded as a three-centered hydrogen-bonded chelate (Desiraju, 1989) and is observed in similar structures (Vembu, Nallu, Garrison & Youngs, 2003b,c; Vembu, Nallu, Garrison, Hindi & Youngs, 2003). The C7Ð H7 O3iii(Fig. 3) and C1ÐH1C O3iii(Fig. 2) interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graph set R1

2(6). The C1ÐH1C O3iii (Fig. 2) and C7ÐH7 O1iii (Fig. 3) interactions generate a R2

2(8) motif which consists ofR2

1(4) chelate andR12(6) ring motifs. There are several other CÐH O interactions (Figs. 3 and 4) and a CÐH Cl (Fig. 2) interaction, which contribute to the supramolecular aggregation (Table 2). The supramolecular aggregation is completed by the presence of two CÐH

interactions (Table 2). The geometry of the CÐH inter-action was obtained from PLATON (Spek, 1998); Cg1 and Cg2 are the centroids of the 4-tolyl and 4-chlorophenyl rings, respectively. The molecular packing in the unit cell is shown in Fig. 5.

Figure 3

Diagram showing hydrogen bonds 1, 4, 6 and 7 (the numbering relates to the sequence of entries in Table 2).

Figure 2

Diagram showing hydrogen bonds 3 and 9 (the numbering relates to the sequence of entries in Table 2).

Figure 1

The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Figure 4

Diagram showing hydrogen bonds 4 and 5 (the numbering relates to the sequence of entries in Table 2).

Figure 5

(3)

organic papers

o938

Nagarajan Vembuet al. C13H11ClO3S Acta Cryst.(2003). E59, o936±o938

Crystal data

C13H11ClO3S

Mr= 282.73 Orthorhombic,Pna21

a= 5.8937 (6) AÊ

b= 27.647 (3) AÊ

c= 7.9171 (8) AÊ

V= 1290.1 (2) AÊ3

Z= 4

Dx= 1.456 Mg mÿ3

MoKradiation Cell parameters from 8098

re¯ections = 2.6±28.3 = 0.45 mmÿ1

T= 100 (2) K Plate, colorless 0.500.300.10 mm

Data collection

Bruker CCD area-detector diffractometer 'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.805,Tmax= 0.956

10721 measured re¯ections

3099 independent re¯ections 2964 re¯ections withI> 2(I)

Rint= 0.034

max= 28.3

h=ÿ7!7

k=ÿ35!36

l=ÿ10!10

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.094

S= 1.12 3099 re¯ections 207 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0579P)2 + 0.1095P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.77 e AÊÿ3

min=ÿ0.26 e AÊÿ3

Absolute structure: Flack (1983), 1384 Friedel pairs

Flack parameter = 0.00 (7)

Table 1

Selected geometric parameters (AÊ,).

SÐO1 1.4216 (18)

SÐO2 1.4227 (17)

SÐO3 1.6071 (16)

SÐC5 1.743 (2)

ClÐC11 1.745 (2)

O3ÐC8 1.410 (3)

C1ÐC2 1.508 (3)

O1ÐSÐO2 120.66 (11)

O1ÐSÐO3 102.58 (10)

O2ÐSÐO3 108.58 (9)

O1ÐSÐC5 110.11 (10)

O2ÐSÐC5 109.40 (10)

O3ÐSÐC5 104.06 (9)

C8ÐO3ÐS 119.71 (13)

C5ÐSÐO3ÐC8 73.30 (17)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C1ÐH1A O1i 0.89 (5) 2.56 (5) 3.380 (3) 154 (4)

C1ÐH1B O1ii 0.96 (3) 2.83 (3) 3.471 (3) 125 (2)

C1ÐH1C O3iii 0.92 (4) 2.87 (4) 3.697 (3) 151 (3)

C4ÐH4 O1iv 0.96 (3) 3.05 (3) 3.713 (3) 127.7 (19)

C4ÐH4 O2v 0.96 (3) 2.91 (3) 3.269 (3) 103.2 (18)

C7ÐH7 O1iii 0.98 (3) 2.75 (3) 3.537 (3) 138 (2)

C7ÐH7 O3iii 0.98 (3) 2.57 (3) 3.500 (3) 160 (2)

C9ÐH9 O2v 0.82 (4) 2.46 (4) 3.228 (3) 156 (4)

C13ÐH13 Clvi 1.00 (3) 2.77 (3) 3.709 (3) 158 (2)

C4ÐH4 O1 0.96 (3) 2.80 (3) 3.054 (3) 96.2 (18) C4ÐH4 O3 0.96 (3) 2.98 (3) 3.210 (3) 94.8 (17) C6ÐH6 O2 0.97 (5) 2.37 (5) 2.905 (3) 114 (4) C13ÐH13 O2 1.00 (3) 2.79 (3) 3.108 (3) 99.0 (19) C3ÐH3 Cg1iv 0.91 (3) 2.87 3.574 135

C10ÐH10 Cg2vii 0.83 (4) 3.17 3.845 141

Symmetry codes: (i) xÿ12;1

2ÿy;1‡z; (ii) xÿ1;y;1‡z; (iii) x;y;1‡z; (iv)

xÿ12;1

2ÿy;z; (v)xÿ1;y;z; (vi) 2ÿx;1ÿy;zÿ12; (vii)ÿx;ÿy;12‡z.

All H atoms were located in a difference Fourier map and their positional coordinates and isotropic displacement parameters were re®ned. The CÐH bond lengths are in the range 0.82 (4)±1.00 (3) AÊ, the HÐCÐH angles for the methyl group are in the range 101 (3)± 108 (3) and the CÐCÐH angles for the aromatic rings are in the

range 115 (2)±130 (3).

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

NV thanks the University Grants Commission±SERO, Government of India, for the award of a Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99].

References

Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991).Virology,

183, 611±619.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995).Angew. Chem. Int. Ed. Engl.34, 1555±1573.

Bruker (1998).SMART-NTandSAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. (1989).Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.

Etter, M. C. (1990).Acc. Chem. Res.23, 120±126. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990).J. Immunol. Methods,134, 139±149.

Narayanan, C. S. & Krakow, J. S. (1983).Nucleic Acids Res.11, 2701±2716. Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1998).SHELXTL, University of GoÈttingen, Germany. Spek, A. L. (1998).PLATON.Utrecht University, The Netherlands. Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992).FEBS Lett.

311, 155±160.

Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992).J. Chromatogr.595, 103±111.

Vembu, N., Nallu, M., Garrison, J., Hindi, K. & Youngs, W. J. (2003).Acta Cryst.E59, o830±o832.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378±o380.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503±o505.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776±o779.

(4)

supporting information

Acta Cryst. (2003). E59, o936–o938 [doi:10.1107/S1600536803012066]

4-Chlorophenyl 4-toluenesulfonate: supramolecular aggregation through C

H

···

O, C

H

···

Cl and C

H

···

π

interactions

Nagarajan Vembu, Maruthai Nallu, Jered Garrison and Wiley J. Youngs

S1. Comment

p-Toluene sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during

acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human

coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology

for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of sigma sub

units of the E-coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was

undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues.

The dihedral angle between the mean planes of the 4-tolyl and 4-chlorophenyl rings is 64.95 (6)°. This shows their

non-coplanar orientation similar to that found in 2-chlorophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs,

2003b), 8-tosyloxyquinoline (Vembu, Nallu, Garrison & Youngs, 2003c) and in contrast to the near coplanar orientation

observed in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a) and methoxyphenyl

4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003).

The crystal structure of (I) is stabilized by weak C—H···O interactions. The range for the H···O distances (Table 2) agree

with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C4—H4···O1 and C4—H4···O3 interactions

constitute a pair of bifurcated donor bonds, each of them generating a S(5) graph set (Etter, 1990; Bernstein et al., 1995)

motif which are fused to each other. The C6—H6···O2 and C13—H13···O2 interactions constitute a pair of bifurcated

acceptor bonds. They generate rings of graph-set motifs S(5) and S(6), respectively, which are fused to each other. The

C9—H9···O2v and C4—H4···O2v (Table 2 and Fig. 4) interactions form a pair of bifurcated acceptor bonds, generating a

ring of graph set R1

2(9). The C7—H7···O3iii and C7—H7···O1iii(Fig. 3) interactions form a pair of bifurcated donor bonds

generating a ring of graph set R2

1(4). The H7···O3iii and H7···O1iii distances differ by 0.18 (3) Å. The resulting

configuration can be regarded as a three-centered hygrogen-bonded chelate (Desiraju, 1989) and observed in similar

structures (Vembu, Nallu, Garrison & Youngs, 2003b and 2003c; Vembu, Nallu, Garrison, Hindi & Youngs, 2003). The

C7—H7···O3iii (Fig. 3) and C1—H1C···O3iii (Fig. 2) interactions constitute a pair of bifurcated acceptor bonds, generating

a ring of graph set R1

2(6). The C1—H1C···O3iii (Fig. 2) and C7—H7···O1iii (Fig. 3) interactions generate a R22(8) motif

which consists of R2

1(4) chelate and R12(6) ring motifs.

There are several other C—H···O (Figs. 3 and 4) and a C—H···Cl (Fig. 2) interactions which contribute for the

supramolecular aggregation (Table 2). The supramolecular aggregation is completed by the presence of two C—H···π

interactions (Table 2). The geometry of the C—H···π interaction was obtained from PLATON (Spek, 1998); Cg1 and Cg2

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o936–o938

S2. Experimental

4-Toluenesulfonyl chloride (4.7 mmol), dissolved in actone (4 ml), was added dropwise to 4-chlorophenol (5 mmol) in

aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated title compound (3.5 mmol, yield 74%) was filtered

off and recrystallized from a 1:1 mixture of petroleum ether and acetone.

S3. Refinement

All hydrogen atoms were located from a difference Fourier map and their positional coordinates and isotropic

displacement paramaters were refined. The C—H bond lengths are in the range 0.82 (4)–1.00 (3) Å, the H—C—H angles

for the methyl group are in the range 101 (3)–108 (3)° and the C—C—H angles for the aromatic rings are in the range

115 (2)–130 (3)°.

Figure 1

(6)

Figure 2

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o936–o938

Figure 3

(8)

Figure 4

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, o936–o938

Figure 5

Packing of the molecule in the unit cell.

4-chlorophenyl 4-toluenesulfonate

Crystal data

C13H11ClO3S Mr = 282.73

Orthorhombic, Pna21 a = 5.8937 (6) Å b = 27.647 (3) Å c = 7.9171 (8) Å V = 1290.1 (2) Å3 Z = 4

F(000) = 584

Dx = 1.456 Mg m−3

Melting point = 343–344 K Mo radiation, λ = 0.71073 Å Cell parameters from 8098 reflections θ = 2.6–28.3°

µ = 0.45 mm−1 T = 100 K Plate, colorless 0.50 × 0.30 × 0.10 mm

Data collection

CCD area detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.805, Tmax = 0.956

10721 measured reflections 3099 independent reflections 2964 reflections with I > 2σ(I) Rint = 0.034

θmax = 28.3°, θmin = 1.5° h = −7→7

k = −35→36 l = −10→10

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.094 S = 1.12 3099 reflections 207 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

w = 1/[σ2(Fo2) + (0.0579P)2 + 0.1095P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.77 e Å−3 Δρmin = −0.26 e Å−3

Absolute structure: Flack(1983), 1384 Friedel pairs

(10)

Experimental. The Tmin and Tmax values obtained from the SIZE instruction are listed above. The absorption correction was applied using SADABS and it gives 0.741957 ratio of min/max transmission"

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S 0.95291 (9) 0.341051 (17) 0.34256 (7) 0.01823 (13) Cl 0.66184 (12) 0.58207 (2) 0.42087 (9) 0.03484 (17) O1 0.9539 (3) 0.29973 (6) 0.2359 (2) 0.0283 (4) O2 1.1589 (3) 0.36511 (6) 0.3842 (2) 0.0253 (4) O3 0.7930 (3) 0.37809 (6) 0.24118 (19) 0.0208 (3) C1 0.4324 (5) 0.29812 (10) 0.9804 (3) 0.0248 (5) C2 0.5629 (4) 0.30854 (7) 0.8206 (3) 0.0179 (4) C3 0.4808 (4) 0.29391 (8) 0.6642 (3) 0.0192 (4) C4 0.5981 (4) 0.30353 (7) 0.5161 (3) 0.0175 (4) C5 0.8018 (4) 0.32878 (7) 0.5269 (3) 0.0156 (4) C6 0.8879 (4) 0.34391 (8) 0.6817 (3) 0.0188 (4) C7 0.7687 (4) 0.33351 (7) 0.8276 (3) 0.0205 (4) C8 0.7729 (4) 0.42636 (8) 0.2969 (3) 0.0182 (4) C9 0.5813 (4) 0.43951 (9) 0.3845 (3) 0.0251 (5) C10 0.5498 (4) 0.48784 (9) 0.4244 (3) 0.0263 (5) C11 0.7085 (4) 0.52104 (8) 0.3763 (3) 0.0225 (5) C12 0.9036 (4) 0.50791 (9) 0.2922 (3) 0.0263 (5) C13 0.9367 (4) 0.45969 (9) 0.2512 (3) 0.0250 (5) H1A 0.452 (7) 0.2673 (16) 1.014 (6) 0.066 (12)* H1B 0.269 (5) 0.2998 (10) 0.969 (4) 0.025 (7)* H1C 0.473 (6) 0.3176 (13) 1.070 (5) 0.046 (10)* H3 0.343 (5) 0.2793 (10) 0.656 (4) 0.022 (7)* H4 0.537 (5) 0.2974 (9) 0.406 (4) 0.019 (7)* H6 1.029 (7) 0.3621 (14) 0.669 (6) 0.066 (12)* H7 0.815 (4) 0.3432 (9) 0.940 (4) 0.016 (6)* H9 0.489 (6) 0.4189 (12) 0.411 (5) 0.040 (9)* H10 0.431 (6) 0.4953 (12) 0.476 (5) 0.044 (10)* H12 1.014 (6) 0.5315 (13) 0.256 (5) 0.040 (9)* H13 1.072 (5) 0.4479 (10) 0.191 (4) 0.023 (7)*

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, o936–o938

Cl 0.0418 (4) 0.0205 (3) 0.0423 (4) 0.0069 (2) 0.0021 (3) 0.0025 (2) O1 0.0384 (10) 0.0253 (8) 0.0213 (8) 0.0038 (7) 0.0102 (8) −0.0023 (7) O2 0.0196 (8) 0.0326 (9) 0.0236 (9) −0.0036 (6) 0.0032 (6) 0.0062 (7) O3 0.0245 (8) 0.0225 (8) 0.0155 (7) −0.0005 (6) −0.0036 (6) 0.0003 (6) C1 0.0281 (14) 0.0265 (12) 0.0200 (12) 0.0034 (10) 0.0081 (9) 0.0027 (9) C2 0.0200 (10) 0.0162 (9) 0.0176 (11) 0.0056 (7) 0.0057 (8) 0.0028 (8) C3 0.0150 (11) 0.0186 (10) 0.0240 (11) −0.0008 (8) 0.0009 (9) 0.0016 (8) C4 0.0161 (10) 0.0201 (9) 0.0164 (10) 0.0004 (8) −0.0017 (8) 0.0000 (9) C5 0.0165 (10) 0.0182 (9) 0.0122 (9) 0.0023 (7) 0.0016 (7) 0.0018 (7) C6 0.0165 (10) 0.0231 (10) 0.0169 (11) −0.0025 (8) 0.0000 (8) −0.0022 (8) C7 0.0225 (10) 0.0235 (10) 0.0156 (11) −0.0009 (8) −0.0020 (9) −0.0032 (8) C8 0.0184 (10) 0.0203 (9) 0.0158 (10) 0.0008 (8) −0.0030 (7) 0.0030 (8) C9 0.0182 (10) 0.0272 (11) 0.0299 (14) −0.0055 (9) 0.0028 (8) 0.0036 (9) C10 0.0212 (12) 0.0281 (11) 0.0295 (13) 0.0040 (8) 0.0061 (10) 0.0015 (10) C11 0.0249 (11) 0.0222 (10) 0.0203 (12) 0.0035 (8) −0.0033 (8) 0.0013 (8) C12 0.0234 (12) 0.0235 (11) 0.0320 (13) −0.0019 (9) 0.0028 (9) 0.0073 (9) C13 0.0218 (11) 0.0277 (12) 0.0254 (12) 0.0010 (9) 0.0072 (9) 0.0069 (9)

Geometric parameters (Å, º)

S—O1 1.4216 (18) C4—H4 0.96 (3) S—O2 1.4227 (17) C5—C6 1.390 (3) S—O3 1.6071 (16) C6—C7 1.383 (3) S—C5 1.743 (2) C6—H6 0.98 (5) Cl—C11 1.745 (2) C7—H7 0.98 (3) O3—C8 1.410 (3) C8—C9 1.375 (3) C1—C2 1.508 (3) C8—C13 1.384 (3) C1—H1A 0.89 (5) C9—C10 1.387 (4) C1—H1B 0.96 (3) C9—H9 0.82 (4) C1—H1C 0.92 (4) C10—C11 1.366 (3) C2—C3 1.390 (3) C10—H10 0.83 (4) C2—C7 1.397 (3) C11—C12 1.377 (3) C3—C4 1.387 (3) C12—C13 1.387 (4) C3—H3 0.91 (3) C12—H12 0.97 (4) C4—C5 1.393 (3) C13—H13 1.00 (3)

(12)

C3—C2—C7 118.8 (2) C11—C10—H10 123 (2) C3—C2—C1 121.0 (2) C9—C10—H10 117 (2) C7—C2—C1 120.2 (2) C10—C11—C12 122.0 (2) C4—C3—C2 121.6 (2) C10—C11—Cl 119.08 (18) C4—C3—H3 118 (2) C12—C11—Cl 118.95 (18) C2—C3—H3 120.4 (19) C11—C12—C13 119.0 (2) C3—C4—C5 118.2 (2) C11—C12—H12 122 (2) C3—C4—H4 123.6 (17) C13—C12—H12 119 (2) C5—C4—H4 117.6 (17) C8—C13—C12 118.7 (2) C6—C5—C4 121.4 (2) C8—C13—H13 117.9 (17) C6—C5—S 119.60 (16) C12—C13—H13 123.4 (17) C4—C5—S 119.04 (17)

O1—S—O3—C8 −171.93 (16) C5—C6—C7—C2 −0.6 (3) O2—S—O3—C8 −43.16 (18) C3—C2—C7—C6 0.5 (3) C5—S—O3—C8 73.30 (17) C1—C2—C7—C6 −179.0 (2) C7—C2—C3—C4 0.1 (3) S—O3—C8—C9 −102.2 (2) C1—C2—C3—C4 179.6 (2) S—O3—C8—C13 82.7 (2) C2—C3—C4—C5 −0.5 (3) C13—C8—C9—C10 1.5 (4) C3—C4—C5—C6 0.4 (3) O3—C8—C9—C10 −173.4 (2) C3—C4—C5—S 179.71 (16) C8—C9—C10—C11 −0.1 (4) O1—S—C5—C6 136.71 (18) C9—C10—C11—C12 −1.6 (4) O2—S—C5—C6 1.9 (2) C9—C10—C11—Cl 177.81 (19) O3—S—C5—C6 −113.97 (18) C10—C11—C12—C13 1.8 (4) O1—S—C5—C4 −42.6 (2) Cl—C11—C12—C13 −177.6 (2) O2—S—C5—C4 −177.40 (16) C9—C8—C13—C12 −1.4 (4) O3—S—C5—C4 66.73 (18) O3—C8—C13—C12 173.6 (2) C4—C5—C6—C7 0.1 (3) C11—C12—C13—C8 −0.3 (4) S—C5—C6—C7 −179.17 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(13)

supporting information

sup-10

Acta Cryst. (2003). E59, o936–o938

C3—H3···Cg1iv 0.91 (3) 2.87 3.574 134.7 C10—H10···Cg2vii 0.83 (4) 3.17 3.845 140.7

Figure

Figure 1
Figure 1. View in document p.5
Figure 2
Figure 2. View in document p.6
Figure 3
Figure 3. View in document p.7
Figure 4
Figure 4. View in document p.8
Figure 5
Figure 5. View in document p.9

References

Updating...