• No results found

4a Hydro­xy 2,3,8a tri­methyl 6 oxo 8 phenyl­per­hydro­isoquinolinium chloride

N/A
N/A
Protected

Academic year: 2020

Share "4a Hydro­xy 2,3,8a tri­methyl 6 oxo 8 phenyl­per­hydro­isoquinolinium chloride"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1472

Mickael L. Kostochkaet al. C18H26NO2+Clÿ DOI: 10.1107/S1600536804018999 Acta Cryst.(2004). E60, o1472±o1473 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4a-Hydroxy-2,3,8a-trimethyl-6-oxo-8-phenyl-perhydroisoquinolinium chloride

Mickael L. Kostochka,a

Valentina P. Lezina,bAdam

I. Stash,cSergey Z. Vatsadzea*

and Nikolay V. Zyka

aChemistry Department, M. V. Lomonosov

Moscow State University, 119992 Moscow, Russia,bInstitute of Pharmacology, RAMS,

125315 Moscow, Russia, andcKarpov Institute

of Physical Chemistry, 105064 Moscow, Russia

Correspondence e-mail: szv@org.chem.msu.ru

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.027

wRfactor = 0.080 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C18H26ClNO2, is one of a group of

decahydroisoquinoline derivatives that are known to exhibit a diverse range of bioactivities. The piperidine and cyclo-hexanone rings exist in chair conformations and form a cis -fused decalin-type bicyclic framework. In the crystal structure, in®nite zigzag chains oriented along thebaxis are formed by

OÐH O intermolecular hydrogen bonds.

Comment

The title compound, (I), is one of a group of decahydroiso-quinoline derivatives that are known to exibit a diverse range of bioactivities, including antibacterial and, most importantly, antimalarial activities (Nakagawa, 2000). Considerable effort has been made in these areas to design new analgetic drugs (Menardet al., 1974; Ripka, 1978, 1979, 1984). There are also studies devoted to the discovery of novel classes of NMDA

receptor antagonists (Hansen et al., 1998) and selective

iGluR5 receptor antagonists (Martinelliet al., 1998, 2001).

Compound (I) was produced in a one-pot cascade Michael addition intramolecular aldol reaction sequence and isolated in the form of the salt with hydrochloric acid. The bicyclic part of (I) takes the form of a cis-fused decalin-type framework (Fig. 1). Both six-membered rings have chair conformations. All methyl groups attached to the piperidine ring and the phenyl group attached to the cyclohexanone ring occupy equatorial positions. The chloride anion is connected to the nearest H atom at the piperidine N atomviaa hydrogen bond (Table 1). There is an intermolecular hydrogen bond between the hydroxy group and carbonyl atom O1 at (ÿx,1

2+y,12ÿz),

forming in®nite zigzag chains along thebaxis (Fig. 2).

Experimental

Sodium hydride (65% suspension in mineral oil, 0.42 g) was added in small portions, with constant stirring, to a solution of 1,2,5-tri-methylpiperidin-4-one (1.5 g, 0.01 mol) in anhydrous dimethylform-amide (30 ml). One hour later, benzalacetone (1.16 g, 0.008 mol) was added dropwise, with stirring, at room temperature and a solution of enolate was obtained. The reaction mixture was allowed to stand for 3 d. Addition of water, extraction with benzene, washing with water

(2)

and recrystallization from cyclohexane gave 0.8 g (27.8% yield) of the base compound of (I) (m.p. 439±441 K). Crystals of the chloride, (I), were obtained by the addition of diethyl ether/HCl to the solution of the base in diethyl ether (m.p. 518±520 K). Analysis calculated: C 63.17, H 7.89, N 4.09, Cl 10.38%; found: C 63.72, H 7.98, N 4.33, Cl 10.79%. IR (cmÿ1): 1705 (C O), 3300±3500 (OH). 1H NMR

(250 MHz, DMSO-d6, p.p.m.): 0.92 [s, 3H, C(8a)CH3], 1.42 [d, 3H,

C(3)CH3], 1.68 [d, 1H, He(4)], 1.93 [dd, 1H, Ha(4)], 2.09 [dd, 1H,

He(7)], 2.18 [d, 1H, He(5)], 2.62 [d, 1H, He(1)], 2.76 (d, 3H, N-CH3),

2.95 [dd, 1H, Ha(1)], 3.09 [d, 1H, Ha(5)], 3.42 [dd, 1H, Ha(7)], 3.55 [dq, 1H, Ha(3)], 3.82 [dd, 1H, Ha(8)], 5.69 (s, 1H, OH), 7.2±7.75 (m, 5H, Ar-H), 10.02 (dq, 1H, NHa).

Crystal data

C18H26NO2+Clÿ Mr= 323.85

Monoclinic,P21=c a= 15.149 (3) AÊ b= 9.339 (2) AÊ c= 12.227 (2) AÊ = 106.87 (3)

V= 1655.4 (6) AÊ3 Z= 4

Dx= 1.299 Mg mÿ3

MoKradiation Cell parameters from 24

re¯ections = 11.2±12.5 = 0.24 mmÿ1 T= 293 (2) K Prism, colorless 0.560.480.25 mm

Data collection

Enraf±Nonius CAD-4 diffractometer ±2scans

Absorption correction: none 3059 measured re¯ections 2906 independent re¯ections 2215 re¯ections withI> 2(I) Rint= 0.022

max= 25.0

h=ÿ17!17 k= 0!11 l= 0!14

3 standard re¯ections frequency: 60 min intensity decay: none

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.027 wR(F2) = 0.080 S= 1.05 2906 re¯ections 304 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0447P)2

+ 0.3033P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.26 e AÊÿ3

min=ÿ0.20 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0052 (15)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

NÐH1N Cl 0.90 (2) 2.22 (2) 3.092 (1) 163 (2)

O2ÐH2O O1i 0.82 (2) 2.09 (2) 2.906 (2) 174 (2)

Symmetry code: (i)ÿx;1 2‡y;12ÿz.

All H atoms were located in difference syntheses and re®ned isotropically. The CÐH, NÐH and OÐH bond lengths are 0.926 (17)±0.980 (19), 0.901 (18) and 0.82 (2) AÊ, respectively.

Data collection:CAD-4 Diffractometer Program(Schagenet al., 1988); cell re®nement:CAD-4 Diffractometer Program; data reduc-tion: XCAD4 (Harms, 1997); program(s) used to solve structure:

SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication:SHELXL97.

VSZ and KML are grateful to the RFBR (grant No. 03-03-32401).

References

Hansen, M. M., Bertsch, C. F., Harkness, A. R., Huff, B. E. & Hutchison, D. R. (1998).J. Org. Chem.63, 775±785.

Harms, K. (1997).XCAD4. University of Marburg, Germany.

Martinelli, M. J., Bell, M. G., Letourneau, M. E. & Winter, M. A. (2001). US Patent No. 2001 046 173.

Martinelli, M. J., Hutchinson, D. R., Khau, V. V., Nayyar, N. K., Peterson, B. C. & Sullivan, K. A. (1998).Org. Synth.75, 223±234.

Menard, M., Rivest, P., Morris, L., Meunier, J. & Perron, Y. G. (1974).Can. J. Chem.52, 2316±2326.

Nakagawa, M. (2000).J. Heterocycl. Chem.37, 576±581. Ripka, W. C. (1978). US Patent No. 4 077 954. Ripka, W. C. (1979). US Patent No. 4 150 135. Ripka, W. C. (1984). US Patent No. 4 419 517.

Schagen, J. D., Strauer, L., van Meurs, F. & Williams, G. (1988).CAD-4 Diffractometer Program. Version 5.0. Enraf±Nonius, Delft, The Nether-lands.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Figure 2

The crystal structure of (I). The broken lines indicate hydrogen bonds. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o1472–o1473

supporting information

Acta Cryst. (2004). E60, o1472–o1473 [https://doi.org/10.1107/S1600536804018999]

4a-Hydroxy-2,3,8a-trimethyl-6-oxo-8-phenylperhydroisoquinolinium chloride

Mickael L. Kostochka, Valentina P. Lezina, Adam I. Stash, Sergey Z. Vatsadze and Nikolay V. Zyk

4a-Hydroxy-2,3,8a-trimethyl-6-oxo-8-phenylperhydroisoquinolinium chloride

Crystal data

C18H26NO2+·Cl

Mr = 323.85 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 15.149 (3) Å

b = 9.339 (2) Å

c = 12.227 (2) Å

β = 106.87 (3)°

V = 1655.4 (6) Å3

Z = 4

F(000) = 696

Dx = 1.299 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 24 reflections

θ = 11.2–12.5°

µ = 0.24 mm−1

T = 293 K Prism, colorless 0.56 × 0.48 × 0.25 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Beta-filtr monochromator

θ–2θ scans

3059 measured reflections 2906 independent reflections 2215 reflections with I > 2σ(I)

Rint = 0.022

θmax = 25.0°, θmin = 2.6°

h = −17→17

k = 0→11

l = 0→14

3 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.027

wR(F2) = 0.080

S = 1.05 2906 reflections 304 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0447P)2 + 0.3033P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.26 e Å−3 Δρmin = −0.20 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl 0.21793 (3) 0.55396 (4) 0.73158 (3) 0.04566 (15)

O1 0.05574 (7) 0.09716 (12) 0.39197 (10) 0.0448 (3)

O2 0.13413 (8) 0.51566 (12) 0.21999 (8) 0.0374 (3)

N 0.22680 (8) 0.65309 (11) 0.49371 (9) 0.0281 (3)

C1 0.25988 (9) 0.32102 (13) 0.49221 (10) 0.0252 (3)

C2 0.21056 (10) 0.17613 (15) 0.46015 (13) 0.0323 (3)

C3 0.11411 (9) 0.18180 (14) 0.38285 (12) 0.0318 (3)

C4 0.09605 (11) 0.28855 (16) 0.28780 (13) 0.0364 (3)

C5 0.14031 (9) 0.43537 (14) 0.32175 (10) 0.0282 (3)

C6 0.24451 (9) 0.42393 (13) 0.38670 (10) 0.0257 (3)

C7 0.08934 (9) 0.51636 (15) 0.39385 (12) 0.0301 (3)

C8 0.12614 (9) 0.66626 (14) 0.42597 (11) 0.0303 (3)

C9 0.28006 (9) 0.57465 (14) 0.42600 (12) 0.0286 (3)

C10 0.27040 (13) 0.79530 (16) 0.52894 (14) 0.0427 (4)

C11 0.29910 (11) 0.37380 (19) 0.30560 (13) 0.0372 (3)

C12 0.07191 (12) 0.74594 (19) 0.49346 (14) 0.0424 (4)

C13 0.36135 (9) 0.29724 (14) 0.55594 (11) 0.0289 (3)

C14 0.41478 (10) 0.19452 (17) 0.52200 (14) 0.0415 (4)

C15 0.50648 (11) 0.17394 (19) 0.58294 (16) 0.0492 (4)

C16 0.54663 (11) 0.2542 (2) 0.67854 (15) 0.0480 (4)

C17 0.49528 (11) 0.3564 (2) 0.71274 (15) 0.0475 (4)

C18 0.40331 (10) 0.37718 (17) 0.65263 (12) 0.0367 (3)

H1N 0.2285 (11) 0.6063 (19) 0.5587 (15) 0.041 (4)*

H2O 0.0796 (15) 0.537 (2) 0.1930 (17) 0.053 (6)*

H1 0.2332 (9) 0.3680 (15) 0.5474 (11) 0.020 (3)*

H21 0.2407 (11) 0.1227 (19) 0.4182 (14) 0.039 (4)*

H22 0.2096 (12) 0.123 (2) 0.5290 (16) 0.049 (5)*

H41 0.0333 (12) 0.3016 (17) 0.2527 (13) 0.035 (4)*

H42 0.1199 (13) 0.252 (2) 0.2279 (17) 0.055 (5)*

H71 0.0251 (11) 0.5210 (16) 0.3494 (13) 0.033 (4)*

H72 0.0898 (10) 0.4656 (16) 0.4631 (14) 0.031 (4)*

H8 0.1277 (10) 0.7191 (16) 0.3585 (13) 0.028 (3)*

H91 0.3439 (11) 0.5705 (15) 0.4716 (13) 0.027 (3)*

H92 0.2741 (10) 0.6342 (18) 0.3619 (14) 0.036 (4)*

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o1472–o1473

H102 0.2612 (13) 0.853 (2) 0.4608 (17) 0.060 (5)*

H103 0.2436 (12) 0.837 (2) 0.5840 (16) 0.050 (5)*

H111 0.3642 (13) 0.3763 (18) 0.3423 (14) 0.042 (4)*

H112 0.2852 (12) 0.276 (2) 0.2832 (15) 0.048 (5)*

H113 0.2841 (12) 0.4311 (19) 0.2383 (16) 0.047 (5)*

H121 0.0844 (13) 0.702 (2) 0.5704 (18) 0.060 (5)*

H122 0.0052 (14) 0.736 (2) 0.4541 (17) 0.058 (5)*

H123 0.0870 (14) 0.842 (3) 0.4987 (17) 0.064 (6)*

H14 0.3863 (12) 0.139 (2) 0.4526 (16) 0.052 (5)*

H15 0.5430 (14) 0.103 (2) 0.5585 (16) 0.058 (5)*

H16 0.6078 (13) 0.2332 (19) 0.7177 (15) 0.048 (5)*

H17 0.5224 (14) 0.413 (2) 0.7775 (18) 0.062 (6)*

H18 0.3680 (12) 0.4452 (19) 0.6786 (14) 0.042 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl 0.0654 (3) 0.0434 (2) 0.0324 (2) 0.00636 (18) 0.02091 (17) 0.00811 (15)

O1 0.0366 (6) 0.0404 (6) 0.0573 (7) −0.0095 (5) 0.0137 (5) −0.0069 (5)

O2 0.0390 (6) 0.0460 (6) 0.0239 (5) 0.0070 (5) 0.0036 (4) 0.0075 (4)

N 0.0379 (6) 0.0224 (5) 0.0225 (5) −0.0016 (5) 0.0063 (5) 0.0016 (4)

C1 0.0276 (6) 0.0229 (6) 0.0236 (6) 0.0008 (5) 0.0051 (5) −0.0021 (5)

C2 0.0360 (7) 0.0247 (7) 0.0334 (7) −0.0006 (6) 0.0056 (6) −0.0018 (6)

C3 0.0338 (7) 0.0253 (7) 0.0363 (7) −0.0023 (6) 0.0101 (6) −0.0114 (6)

C4 0.0323 (8) 0.0374 (8) 0.0324 (7) −0.0023 (6) −0.0022 (6) −0.0071 (6)

C5 0.0310 (7) 0.0291 (7) 0.0214 (6) 0.0012 (5) 0.0028 (5) 0.0003 (5)

C6 0.0283 (7) 0.0259 (7) 0.0220 (6) 0.0014 (5) 0.0062 (5) −0.0003 (5)

C7 0.0261 (7) 0.0326 (7) 0.0296 (7) 0.0033 (6) 0.0049 (5) 0.0037 (6)

C8 0.0362 (7) 0.0289 (7) 0.0246 (6) 0.0072 (6) 0.0069 (6) 0.0034 (5)

C9 0.0293 (7) 0.0288 (7) 0.0272 (7) −0.0016 (5) 0.0075 (6) 0.0031 (5)

C10 0.0605 (11) 0.0265 (7) 0.0378 (8) −0.0089 (7) 0.0091 (8) −0.0032 (7)

C11 0.0398 (9) 0.0432 (9) 0.0309 (8) 0.0057 (7) 0.0139 (7) −0.0013 (7)

C12 0.0511 (10) 0.0405 (9) 0.0368 (8) 0.0142 (8) 0.0147 (7) 0.0003 (7)

C13 0.0290 (7) 0.0267 (7) 0.0288 (6) 0.0005 (5) 0.0052 (5) 0.0037 (5)

C14 0.0354 (8) 0.0388 (8) 0.0449 (9) 0.0087 (6) 0.0033 (7) −0.0058 (7)

C15 0.0374 (8) 0.0457 (9) 0.0631 (11) 0.0134 (7) 0.0123 (8) 0.0031 (8)

C16 0.0272 (7) 0.0607 (11) 0.0496 (9) 0.0029 (7) 0.0010 (7) 0.0112 (8)

C17 0.0364 (8) 0.0596 (11) 0.0387 (9) −0.0047 (8) −0.0015 (7) −0.0036 (8)

C18 0.0330 (7) 0.0400 (8) 0.0333 (7) 0.0004 (6) 0.0035 (6) −0.0027 (6)

Geometric parameters (Å, º)

O1—C3 1.2150 (17) C8—C12 1.518 (2)

O2—C5 1.4323 (16) C8—H8 0.967 (15)

O2—H2O 0.82 (2) C9—H91 0.967 (16)

N—C10 1.4902 (18) C9—H92 0.943 (17)

N—C9 1.5035 (17) C10—H101 0.982 (18)

(6)

N—H1N 0.901 (18) C10—H103 0.965 (19)

C1—C13 1.5246 (19) C11—H111 0.958 (18)

C1—C2 1.5405 (18) C11—H112 0.96 (2)

C1—C6 1.5709 (17) C11—H113 0.952 (19)

C1—H1 0.984 (14) C12—H121 0.99 (2)

C2—C3 1.493 (2) C12—H122 0.99 (2)

C2—H21 0.926 (17) C12—H123 0.93 (2)

C2—H22 0.980 (19) C13—C18 1.387 (2)

C3—C4 1.495 (2) C13—C14 1.394 (2)

C4—C5 1.530 (2) C14—C15 1.386 (2)

C4—H41 0.930 (17) C14—H14 0.979 (19)

C4—H42 0.97 (2) C15—C16 1.373 (3)

C5—C7 1.5299 (19) C15—H15 0.97 (2)

C5—C6 1.5512 (19) C16—C17 1.371 (3)

C6—C9 1.5336 (18) C16—H16 0.932 (19)

C6—C11 1.5370 (19) C17—C18 1.387 (2)

C7—C8 1.516 (2) C17—H17 0.94 (2)

C7—H71 0.968 (16) C18—H18 0.943 (18)

C7—H72 0.968 (16)

C5—O2—H2O 106.4 (14) N—C8—C12 111.13 (12)

C10—N—C9 109.25 (12) C7—C8—C12 112.17 (13)

C10—N—C8 112.16 (11) N—C8—H8 103.8 (8)

C9—N—C8 110.76 (10) C7—C8—H8 110.4 (9)

C10—N—H1N 106.3 (11) C12—C8—H8 111.4 (8)

C9—N—H1N 111.5 (11) N—C9—C6 115.08 (11)

C8—N—H1N 106.7 (11) N—C9—H91 108.0 (9)

C13—C1—C2 110.17 (11) C6—C9—H91 110.2 (8)

C13—C1—C6 113.33 (11) N—C9—H92 103.5 (9)

C2—C1—C6 112.52 (11) C6—C9—H92 109.9 (10)

C13—C1—H1 105.5 (8) H91—C9—H92 109.9 (13)

C2—C1—H1 107.5 (8) N—C10—H101 105.1 (10)

C6—C1—H1 107.3 (8) N—C10—H102 107.8 (12)

C3—C2—C1 116.31 (11) H101—C10—H102 110.8 (16)

C3—C2—H21 102.6 (10) N—C10—H103 108.9 (11)

C1—C2—H21 109.5 (10) H101—C10—H103 111.0 (15)

C3—C2—H22 107.8 (11) H102—C10—H103 112.9 (16)

C1—C2—H22 110.5 (11) C6—C11—H111 111.3 (10)

H21—C2—H22 109.7 (14) C6—C11—H112 111.1 (11)

O1—C3—C2 121.56 (13) H111—C11—H112 105.6 (15)

O1—C3—C4 122.09 (13) C6—C11—H113 110.4 (11)

C2—C3—C4 116.13 (12) H111—C11—H113 110.2 (15)

C3—C4—C5 114.82 (11) H112—C11—H113 108.1 (15)

C3—C4—H41 112.2 (10) C8—C12—H121 109.1 (11)

C5—C4—H41 108.4 (10) C8—C12—H122 109.1 (11)

C3—C4—H42 109.1 (11) H121—C12—H122 108.0 (16)

C5—C4—H42 107.0 (11) C8—C12—H123 110.6 (13)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, o1472–o1473

O2—C5—C7 108.97 (11) H122—C12—H123 108.8 (17)

O2—C5—C4 108.69 (11) C18—C13—C14 117.53 (13)

C7—C5—C4 110.16 (12) C18—C13—C1 120.14 (12)

O2—C5—C6 106.32 (11) C14—C13—C1 122.32 (12)

C7—C5—C6 110.35 (10) C15—C14—C13 120.89 (15)

C4—C5—C6 112.21 (11) C15—C14—H14 120.9 (11)

C9—C6—C11 106.02 (11) C13—C14—H14 118.2 (11)

C9—C6—C5 108.05 (10) C16—C15—C14 120.63 (16)

C11—C6—C5 110.42 (11) C16—C15—H15 119.1 (12)

C9—C6—C1 110.44 (10) C14—C15—H15 120.3 (12)

C11—C6—C1 111.35 (11) C17—C16—C15 119.28 (15)

C5—C6—C1 110.42 (11) C17—C16—H16 123.8 (11)

C8—C7—C5 113.37 (11) C15—C16—H16 116.9 (11)

C8—C7—H71 109.8 (9) C16—C17—C18 120.50 (16)

C5—C7—H71 106.9 (9) C16—C17—H17 119.9 (13)

C8—C7—H72 108.5 (9) C18—C17—H17 119.6 (13)

C5—C7—H72 112.6 (9) C17—C18—C13 121.17 (15)

H71—C7—H72 105.3 (13) C17—C18—H18 119.8 (10)

N—C8—C7 107.63 (10) C13—C18—H18 119.0 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N—H1N···Cl 0.901 (18) 2.219 (18) 3.0921 (13) 162.8 (15)

O2—H2O···O1i 0.82 (2) 2.09 (2) 2.9055 (17) 173.9 (19)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical