• No results found

Hydro­gen bonding in m carb­oxy­phenyl­ammonium bi­sulfate

N/A
N/A
Protected

Academic year: 2020

Share "Hydro­gen bonding in m carb­oxy­phenyl­ammonium bi­sulfate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1790

Aouatef Cherouanaet al. C7H8NO2+HSO4ÿ DOI: 10.1107/S1600536803023134 Acta Cryst.(2003). E59, o1790±o1792 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hydrogen bonding in

m

-carboxyphenyl-ammonium bisulfate

Aouatef Cherouana,aLamia

Bendjeddouaand Nourredine

Benali-Cherifb*

aLaboratoire de Chimie MoleÂculaire, du

ControÃle de l'Environnement et des Mesures Physico-Chimiques, Faculte des Sciences, DeÂpartement de Chimie, Universite Mentouri de Constantine, 25000 Constantine, Algeria, and

bInstitut des Sciences Exactes, Technologie et

Informatique, Centre Universitaire de Khenchela, 40000, Khenchela, Algeria

Correspondence e-mail: benalicherif@hotmail.com

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.035

wRfactor = 0.115

Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C7H8NO2+HSO4ÿ, there is an intricate

cation±cation, cation±anion and anion±anion three-dimen-sional hydrogen-bond network. Cations are linked

two-dimensionally by CÐH O hydrogen bonds, and anions are

linked two-dimensionally by OÐH O hydrogen bonds;

however, interactions between cations and anions involve a

three-dimensional network of NÐH O and OÐH O

hydrogen bonds. The strongest hydrogen bond is observed between anions.

Comment

Crystal engineering of organic±inorganic hybrid materials is currently of great interest and these materials have received increasing attention during the past few decades (Mazeaudet al., 2000; Shogomonianet al., 1998) owing to their interesting structural topologies and potential application in materials science, such as ion-exchange, adsorption, molecular

recog-nition, catalysis and magnetism (Aakeroy et al., 1999;

Hagrman et al., 1999). In our systematic investigation of

organic±inorganic hybrid materials, including aminobenzoic acid and various inorganic acids, three structures have been

already reported: m-carboxyphenylammonium nitrate

(Benali-Cherif, Cherouana et al., 2002), p

-carboxyphenyl-ammonium dihydrogenmonophosphate monohydrate

(Benali-Cherif, Abouimrane et al., 2002) and m

-carboxy-phenylammonium perchlorate (Bendjeddou et al., 2003). In

this paper, we describe our fourth crystal structure with

aminobenzoic acid and a bisulfate ion, m

-carboxyphenyl-ammonium bisulfate, (I).

The carboxy moiety of the m-carboxyphenylammonium

cation makes an angle of 11.4 (2)with the benzene ring. The weighted average of the ring CÐC bond lengths, 1.387 AÊ, is about 0.006 AÊ shorter than the value found in the crystalline form of benzene (Coxet al., 1958).

The anion in compound (I) is monoprotonated and adopts a tetrahedral geometry; the bond distance between S and O5 con®rms the presence of the H atom in the bisulfate [HSO4ÿ]

(Fig. 1). The crystal structure of (I) is built up from intricate cation±cation, anion±anion and anion±cation hydrogen-bond interactions in a three-dimensional network: (i) cation±cation

(2)

interactions through N1ÐH11 O2i form zigzag chains,

which extend along the baxis; (ii) anion±anion interactions through O5ÐH5 O6iiilead to the formation of dimers; and

(iii) anion±cation interactions through NÐH13 O6, O1Ð

H1 O3iv and NÐH12 O4ii assure the cohesion of the

crystal trough the formation of a three-dimensional hydrogen-bond network. All these hydrogen-hydrogen-bonds interactions build a supramolecular structure, as shown in Fig. 2; geometrical details of hydrogen bonds and symmetry codes are given in Table 2.

Experimental

Brown single crystals ofm-carboxyphenylammonium bisulfate were obtained after a few days by slow evaporation, at room temperature, of an equimolar aqueous solution of m-aminobenzoic and sulfuric acid.

Crystal data

C7H8NO2+HSO4ÿ Mr= 235.21

Monoclinic,P21=c a= 11.4160 (3) AÊ

b= 10.5090 (3) AÊ

c= 7.6810 (2) AÊ

= 92.562 (2)

V= 920.57 (4) AÊ3 Z= 4

Dx= 1.697 Mg mÿ3

MoKradiation

Cell parameters from 12041 re¯ections

= 1.8±30.0 = 0.36 mmÿ1

T= 293 K Prism, brown 0.400.300.25 mm

Data collection

Nonius KappaCCD diffractometer

'scans

Absorption correction: none 12041 measured re¯ections 2694 independent re¯ections 2331 re¯ections withI> 2(I)

Rint= 0.034

max= 30.0 h=ÿ10!12

k= 15!15

l=ÿ18!13

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.035 wR(F2) = 0.115 S= 1.17 2654 re¯ections 137 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0573P)2

+ 0.3395P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.44 e AÊÿ3

min=ÿ0.48 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

SÐO4 1.4343 (12)

SÐO3 1.4554 (12) SÐO6SÐO5 1.4589 (12)1.5574 (12) O4ÐSÐO3 114.11 (8)

O4ÐSÐO6 113.31 (8) O3ÐSÐO6 111.34 (8)

O4ÐSÐO5 103.51 (8) O3ÐSÐO5 106.72 (7) O6ÐSÐO5 107.06 (7)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

NÐH11 O2i 0.89 2.03 2.9101 (18) 169

NÐH12 O4ii 0.89 1.98 2.8010 (18) 153

NÐH13 O6 0.89 2.02 2.8757 (18) 162 O5ÐH5 O6iii 0.82 1.87 2.6776 (17) 166

O1ÐH1 O3iv 0.82 1.87 2.6843 (16) 173

Symmetry codes: (i) 1ÿx;1

2‡y;32ÿz; (ii) 2ÿx;1ÿy;1ÿz; (iii) 2ÿx;1ÿy;2ÿz;

(iv)xÿ1;y;z.

All H atoms were placed geoetrically and treated as riding, with CÐH distances of 0.93 AÊ, OÐH distances of 0.82 AÊ and NÐH distances of 0.89 AÊ, andUiso(H) values of 1.2 timesUeqof the carrier atom.

Data collection:KappaCCD Reference Manual(Nonius, 1998); cell re®nement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction:DENZOandSCALEPACK; program(s) used to solve structure:SIR2002 (Burlaet al., 2003); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996),ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors thank Drs M. Pierrot and M. Giorgi from LBS± UMR 6517, Faculte des Sciences et Techniques de Saint JeÂroÃme, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France, for providing diffraction facilities.

Acta Cryst.(2003). E59, o1790±o1792 Aouatef Cherouanaet al. C7H8NO2+HSO4ÿ

o1791

organic papers

Figure 1

ORTEPIII (Burnett & Johnson, 1996) view of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

organic papers

o1792

Aouatef Cherouanaet al. C7H8NO2+HSO4ÿ Acta Cryst.(2003). E59, o1790±o1792 References

Aakeroy, C. B., Beatty, A. M. & Leinen, D. S. (1999).Angew. Chem. Int. Ed.38, 1815±1819.

Benali-Cherif, N., Abouimrane, A., Sebai, K., Merazig, H., Cherouana, A. & Bendjeddou, L. (2002).Acta Cryst.E58, o160±o161.

Benali-Cherif, N., Cherouana, A., Bendjeddou, L., Merazig, H., Bendheif, L. & Bouchouit K. (2002).Acta Cryst.E58, o156±o157.

Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003).Acta Cryst.E59, o574±o576.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003).J. Appl. Cryst.36, 1103.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Cox, E. C., Cruickshank, D. W. J. & Smith, J. A. S. (1958).Proc. R. Soc. London Ser. A,247, 1±21.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Hagrman, J. P., Hagrman, D. & Zubieta, J. (1999).Angew. Chem. Int. Ed.38, 2638±2684.

Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000).Inorg. Chem.39, 4735± 4740.

Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997).SHELXL97. University of Gottingen, Germany. Shogomonian , V., Chen, Q. & Haushalter, R. C. (1995).Angew. Chem. Int. Ed.

Engl.34, 223±232.

(4)

supporting information

sup-1 Acta Cryst. (2003). E59, o1790–o1792

supporting information

Acta Cryst. (2003). E59, o1790–o1792 [https://doi.org/10.1107/S1600536803023134]

Hydrogen bonding in

m

-carboxyphenylammonium bisulfate

Aouatef Cherouana, Lamia Bendjeddou and Nourredine Benali-Cherif

(I)

Crystal data

C7H8NO2+·HSO4− Mr = 235.21 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 11.4160 (3) Å

b = 10.5090 (3) Å

c = 7.6810 (2) Å

β = 92.562 (2)°

V = 920.57 (4) Å3 Z = 4

F(000) = 488

Dx = 1.697 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 12041 reflections

θ = 1.8–30.0°

µ = 0.36 mm−1 T = 293 K Prism, brown 0.4 × 0.3 × 0.25 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

12041 measured reflections 2694 independent reflections

2331 reflections with I > 2σ(I)

Rint = 0.034

θmax = 30.0°, θmin = 1.8°

h = 0→16

k = −14→0

l = −10→10

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.115 S = 1.17 2654 reflections 137 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0573P)2 + 0.3395P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3

Δρmin = −0.48 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2003). E59, o1790–o1792

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S 1.08057 (3) 0.41668 (3) 0.81551 (4) 0.02310 (13)

O6 1.03192 (11) 0.54457 (11) 0.79674 (16) 0.0321 (3)

C2 0.55502 (12) 0.37274 (14) 0.65857 (19) 0.0238 (3)

O3 1.18335 (10) 0.41531 (13) 0.93462 (16) 0.0351 (3)

N 0.79902 (11) 0.60929 (12) 0.66838 (17) 0.0251 (3)

H11 0.7559 0.6645 0.7257 0.038*

H12 0.8174 0.6428 0.5667 0.038*

H13 0.8644 0.5920 0.7314 0.038*

C4 0.73202 (12) 0.49166 (14) 0.63767 (18) 0.0221 (3)

O2 0.36894 (10) 0.27236 (12) 0.6651 (2) 0.0408 (3)

O5 0.98590 (11) 0.33295 (12) 0.89992 (16) 0.0340 (3)

H5 0.9711 0.3624 0.9953 0.051*

O4 1.09769 (13) 0.35504 (14) 0.65199 (16) 0.0414 (3)

C5 0.78403 (13) 0.39216 (16) 0.5513 (2) 0.0285 (3)

H51 0.8606 0.3992 0.5157 0.034*

C6 0.71984 (14) 0.28176 (16) 0.5188 (2) 0.0330 (3)

H6 0.7537 0.2139 0.4617 0.040*

O1 0.40013 (10) 0.44931 (13) 0.82109 (19) 0.0395 (3)

H1 0.3322 0.4370 0.8472 0.059*

C7 0.60533 (14) 0.27223 (15) 0.5710 (2) 0.0291 (3)

H7 0.5623 0.1986 0.5475 0.035*

C3 0.61902 (12) 0.48396 (14) 0.69359 (19) 0.0232 (3)

H3 0.5862 0.5512 0.7532 0.028*

C1 0.43239 (13) 0.35927 (14) 0.7140 (2) 0.0266 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S 0.02055 (19) 0.0274 (2) 0.02172 (19) 0.00378 (12) 0.00483 (12) −0.00036 (12)

O6 0.0343 (6) 0.0289 (6) 0.0335 (6) 0.0066 (5) 0.0055 (5) 0.0050 (5)

C2 0.0179 (6) 0.0261 (7) 0.0275 (7) −0.0009 (5) 0.0029 (5) 0.0019 (5)

O3 0.0196 (5) 0.0535 (8) 0.0322 (6) 0.0049 (5) 0.0016 (4) 0.0019 (5)

N 0.0199 (5) 0.0275 (6) 0.0281 (6) −0.0027 (4) 0.0031 (4) −0.0004 (5)

C4 0.0183 (6) 0.0244 (6) 0.0236 (6) −0.0009 (5) 0.0010 (5) 0.0016 (5)

O2 0.0274 (6) 0.0327 (6) 0.0635 (9) −0.0095 (5) 0.0128 (6) −0.0083 (6)

O5 0.0341 (6) 0.0346 (6) 0.0338 (6) −0.0090 (5) 0.0064 (5) −0.0001 (5)

O4 0.0483 (8) 0.0485 (7) 0.0282 (6) 0.0056 (6) 0.0110 (5) −0.0099 (5)

C5 0.0206 (6) 0.0341 (8) 0.0313 (7) 0.0010 (6) 0.0066 (5) −0.0032 (6)

C6 0.0278 (7) 0.0315 (8) 0.0402 (8) 0.0026 (6) 0.0072 (6) −0.0097 (7)

(6)

supporting information

sup-3 Acta Cryst. (2003). E59, o1790–o1792

C7 0.0267 (7) 0.0259 (7) 0.0349 (8) −0.0019 (5) 0.0025 (6) −0.0044 (6)

C3 0.0204 (6) 0.0230 (6) 0.0264 (7) 0.0006 (5) 0.0035 (5) −0.0006 (5)

C1 0.0209 (6) 0.0251 (7) 0.0340 (7) −0.0004 (5) 0.0046 (5) 0.0030 (6)

Geometric parameters (Å, º)

S—O4 1.4343 (12) C4—C5 1.386 (2)

S—O3 1.4554 (12) O2—C1 1.2149 (19)

S—O6 1.4589 (12) O5—H5 0.8200

S—O5 1.5574 (12) C5—C6 1.389 (2)

C2—C7 1.390 (2) C5—H51 0.9300

C2—C3 1.398 (2) C6—C7 1.388 (2)

C2—C1 1.4881 (19) C6—H6 0.9300

N—C4 1.4672 (18) O1—C1 1.317 (2)

N—H11 0.8900 O1—H1 0.8200

N—H12 0.8900 C7—H7 0.9300

N—H13 0.8900 C3—H3 0.9300

C4—C3 1.3801 (19)

O4—S—O3 114.11 (8) S—O5—H5 109.5

O4—S—O6 113.31 (8) C4—C5—C6 118.84 (14)

O3—S—O6 111.34 (8) C4—C5—H51 120.6

O4—S—O5 103.51 (8) C6—C5—H51 120.6

O3—S—O5 106.72 (7) C7—C6—C5 120.29 (14)

O6—S—O5 107.06 (7) C7—C6—H6 119.9

C7—C2—C3 120.31 (13) C5—C6—H6 119.9

C7—C2—C1 118.71 (14) C1—O1—H1 109.5

C3—C2—C1 120.98 (13) C6—C7—C2 119.99 (14)

C4—N—H11 109.5 C6—C7—H7 120.0

C4—N—H12 109.5 C2—C7—H7 120.0

H11—N—H12 109.5 C4—C3—C2 118.48 (13)

C4—N—H13 109.5 C4—C3—H3 120.8

H11—N—H13 109.5 C2—C3—H3 120.8

H12—N—H13 109.5 O2—C1—O1 123.63 (14)

C3—C4—C5 122.08 (13) O2—C1—C2 122.59 (14)

C3—C4—N 119.15 (13) O1—C1—C2 113.78 (13)

C5—C4—N 118.76 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N—H11···O2i 0.89 2.03 2.9101 (18) 169

N—H12···O4ii 0.89 1.98 2.8010 (18) 153

N—H13···O6 0.89 2.02 2.8757 (18) 162

O5—H5···O6iii 0.82 1.87 2.6776 (17) 166

O1—H1···O3iv 0.82 1.87 2.6843 (16) 173

References

Related documents

similar levels of mycorrhizal infection, but freeze dried spores infected fewer seedlings which also showed decreased numbers of mycorrhizal short roots. Doubling

The prevalence of plaque features (LRNC, IPH, calcification) and fibrous cap status was determined at the artery level and for 3 segments: 1) the common carotid artery: ⬎ 6 mm

25 Despite the difference that cor- onary artery occlusions are usually caused by local thrombosis of atherosclerotic vessels and cerebral vessel occlusions are most often caused

Identification of each pyrethroid investigated in breast and fat tissue adjacent to normal breast (Control group) and of mammary carcinomas (groups Luminal A, Luminal B,

The research has significant impact on the theoretical side as it contributes to the literature on how organisational culture impacts the job satisfaction levels of the Indian as

In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 93–98, San Diego,

employing the mobile phone as the innovative policy variable because of its penetration potential in SSA. The present inquiry contributes to the extant literature

Scaderea valorii de piata pentru institutiile financiar bancare reflecta insa si viziunea investitorilor privind magnitudinea eforturilor ce trebuie facute pe