• No results found

Ethyl 2 acetyl 3 [2 (1H indol 3 yl)­ethyl­amino]­propenoate

N/A
N/A
Protected

Academic year: 2020

Share "Ethyl 2 acetyl 3 [2 (1H indol 3 yl)­ethyl­amino]­propenoate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o373±o374 doi:10.1107/S1600536805001261 Ning-Juan Fanet al. C17H20N2O3

o373

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl 2-acetyl-3-[2-(1

H

-indol-3-yl)ethyl-amino]propenoate

Ning-Juan Fan,aDong-Hong Li,a Xiao-Ming Jiang,bYong-Bin Zhang,aWei Guoa* and Chi-Zhong Xiaa

aSchool of Chemistry and Chemical Engineering,

University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China, andbInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: guow@sxu.edu.cn

Key indicators

Single-crystal X-ray study T= 183 K

Mean(C±C) = 0.002 AÊ Rfactor = 0.043 wRfactor = 0.111

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C17H20N2O3, was synthesized by the

substituted one-carbon unit transfer reaction of tryptamine with an imidazolidine derivative. There are intramolecular and

intermolecular NÐH O hydrogen bonds in the crystal

structure.

Comment

Secondary enamines have attracted a great deal of attention in recent years because of their range of applications (Duthaler, 2003; Stanovnik & Svete, 2004; Elassar & El-Khair, 2003). Moreover, functionalized secondary enamine derivatives may enable chemical and biological studies on these derivatives, which will be used in pharmaceutical research. We were therefore interested in the synthesis of secondary enamine derivatives during our investigation of tetrahydrofolate coenzyme models (Liet al., 2004). Tetrahydrofolate is involved in the biological transfer of a carbon unit at different oxidation levels (Blakley, 1969), which can transfer ÐC CÐ or

CHÐ groupsviamechanisms analogous to those operative

in biochemical processes (Bieraugel et al., 1983; Pandit & Bieraugel, 1979).

The title compound, (I), was obtained by the substituted one-carbon unit transfer reaction of tryptamine with the imidazolidine derivative which was produced by the addition reaction of 1-tosyl-3,4-dimethylimidazolinium iodide with a carbanion of acetylacetate. This might be regarded as a

Received 7 December 2004 Accepted 13 January 2005 Online 22 January 2005

Figure 1

(2)

substituted one-carbon unit transfer reaction which mimics the function of tetrahydrofolate coenzymes.

The molecular conformation of (I) is illustrated in Fig. 1, and some features of the geometry are listed in Table 1. A number of intra- and intermolecular hydrogen bonds (Table 2) stabilize the crystal structure. Three-centered hydrogen bonds are formed between two O atoms of two carbonyl groups and atom N2 (Fig. 2).

Experimental

Sodium hydride (1.8 mmol) was added to a solution of acetyl acetate (1.5 mmol) in dry tetrahydrofuran (10 ml), which was cooled in an ice±water bath. The reaction mixture was stirred for 30 min, then 1-tosyl-3,4-dimethylimidazolinium iodide (1 mmol) was added and the mixture was allowed to warm to room temperature and stirred continuously for 3 h, then quenched with water. The solution was extracted with dichloromethane, dried over anhydrous sodium sulfate and concentrated. The residue was puri®ed by column chromato-graphy to afford a yellow oil, (II). The imidazolidine derivative, (II) (1 mmol), and tryptamine (1 mmol) in anhydrous acetonitrile (10 ml) were re¯uxed, the solution concentrated and the residue puri®ed by column chromatography to afford compound (I) (yield 85%). Crys-tals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Crystal data C17H20N2O3 Mr= 300.35

Triclinic,P1 a= 8.4342 (18) AÊ b= 9.391 (2) AÊ c= 10.360 (2) AÊ

= 79.941 (3)

= 71.597 (3)

= 89.332 (3)

V= 765.8 (3) AÊ3

Z= 2

Dx= 1.303 Mg mÿ3

MoKradiation Cell parameters from 1672

re¯ections

= 2.5±26.9

= 0.09 mmÿ1 T= 183 (2) K Block, colorless 0.400.300.30 mm Data collection

Bruker SMART 1K CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.494,Tmax= 0.973

2636 independent re¯ections 2154 re¯ections withI> 2(I) Rint= 0.015

max= 25.0 h=ÿ10!8 k=ÿ10!11

Refinement Re®nement onF2 R[F2> 2(F2)] = 0.043 wR(F2) = 0.111 S= 1.01 2636 re¯ections 201 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.0645P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.20 e AÊÿ3

min=ÿ0.18 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). O1ÐC13 1.2358 (19) O2ÐC15 1.2105 (19) O3ÐC15 1.347 (2) O3ÐC16 1.448 (2)

N1ÐC6 1.368 (2) N1ÐC8 1.369 (2) N2ÐC11 1.2998 (19) N2ÐC10 1.4556 (19)

C1ÐC7ÐC9ÐC10 171.15 (15)

C11ÐN2ÐC10ÐC9 ÿ110.86 (18) C7ÐC9ÐC10ÐN2C10ÐN2ÐC11ÐC12 ÿ168.51 (13)ÿ172.13 (15)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH2 O1 0.88 2.02 2.6518 (17) 128 N2ÐH2 O1i 0.88 2.32 3.0393 (18) 139 N1ÐH1 O2ii 0.88 2.07 2.8572 (17) 149 Symmetry codes: (i)ÿx;1ÿy;1ÿz; (ii)x;yÿ1;1‡z.

H atoms attached to C and N atoms were placed in geometrically idealized positions, and constrained to ride on their parent atoms, with CÐH = 0.93±0.96 AÊ and NÐH = 0.88 AÊ, and withUiso(H) =

1.2Ueq(parent atom).

Data collection:SMART(Bruker, 2000); cell re®nement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL/PC(Sheldrick, 1999); software used to prepare material for publication:SHELXTL/PC.

This work was supported by the National Natural Science Foundation of China (No. 20272034, to CZX), and the Natural Science Foundation of Shanxi Province, China (Nos. 20041007 and 20041006).

References

Bieraugel, H., Plemp, R., Hiemstra, H. C. & Pandit, U. K. (1983).Tetrahedron,

39, 3971±3979.

Blakley, R. L. (1969).The Biochemistry of Folic Acid and Related Pteridines. New York: American Elsevier.

Bruker (2000).SMART(Version 5.0) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Duthaler, R. O. (2003).Angew. Chem. Int. Ed.42, 975±978.

Elassar, A. Z. A. & El-Khair, A. A. (2003).Tetrahedron,59, 8463±8480. Li, D., Hao, J., Guo, W. & Xia, C. (2004).Heterocycles,63, 2515±2522. Pandit, U. K. & Bieraugel, H. (1979).J. Chem. Soc. Chem. Commun.pp. 117±

119.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1999).SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o373–o374

supporting information

Acta Cryst. (2005). E61, o373–o374 [https://doi.org/10.1107/S1600536805001261]

Ethyl 2-acetyl-3-[2-(1

H

-indol-3-yl)ethylamino]propenoate

Ning-Juan Fan, Dong-Hong Li, Xiao-Ming Jiang, Yong-Bin Zhang, Wei Guo and Chi-Zhong Xia

Ethyl 2-acetyl-3-[2-(1H-indol-3-yl)ethylamino]propenoate

Crystal data

C17H20N2O3

Mr = 300.35

Triclinic, P1

a = 8.4342 (18) Å

b = 9.391 (2) Å

c = 10.360 (2) Å

α = 79.941 (3)°

β = 71.597 (3)°

γ = 89.332 (3)°

V = 765.8 (3) Å3

Z = 2

F(000) = 320

Dx = 1.303 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1672 reflections

θ = 2.6–26.9°

µ = 0.09 mm−1

T = 183 K Block, colorless 0.40 × 0.30 × 0.30 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.494, Tmax = 0.973

3165 measured reflections 2636 independent reflections 2154 reflections with I > 2σ(I)

Rint = 0.015

θmax = 25.0°, θmin = 2.1°

h = −10→8

k = −10→11

l = −12→12

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.111

S = 1.01 2636 reflections 201 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0645P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.20 e Å−3

Δρmin = −0.18 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.06078 (13) 0.61983 (13) 0.36769 (12) 0.0367 (3) O2 0.46298 (15) 0.82821 (13) 0.03923 (12) 0.0410 (3) O3 0.60063 (15) 0.62634 (12) 0.06465 (12) 0.0412 (3) N1 0.40414 (17) −0.04562 (14) 0.78771 (13) 0.0311 (3)

H1 0.4528 −0.0584 0.8523 0.037*

N2 0.28535 (16) 0.43809 (14) 0.41933 (13) 0.0306 (3)

H2 0.1776 0.4533 0.4450 0.037*

C1 0.25980 (19) −0.08463 (17) 0.64843 (15) 0.0268 (4) C2 0.1666 (2) −0.16850 (19) 0.59696 (17) 0.0342 (4)

H2A 0.1292 −0.1273 0.5218 0.041*

C3 0.1301 (2) −0.31164 (19) 0.65694 (18) 0.0383 (4)

H3 0.0666 −0.3696 0.6227 0.046*

C4 0.1841 (2) −0.37327 (19) 0.76675 (18) 0.0378 (4)

H4 0.1562 −0.4725 0.8064 0.045*

C5 0.2772 (2) −0.29412 (18) 0.81940 (17) 0.0330 (4)

H5 0.3147 −0.3369 0.8940 0.040*

C6 0.3140 (2) −0.14922 (17) 0.75912 (16) 0.0283 (4) C7 0.31928 (19) 0.06404 (17) 0.61249 (15) 0.0266 (4) C8 0.4058 (2) 0.08124 (17) 0.69889 (16) 0.0294 (4)

H8 0.4605 0.1694 0.6981 0.035*

C9 0.2874 (2) 0.17564 (17) 0.50269 (16) 0.0296 (4)

H9A 0.1662 0.1742 0.5150 0.036*

H9B 0.3465 0.1510 0.4110 0.036*

C10 0.3451 (2) 0.32607 (17) 0.50645 (17) 0.0313 (4)

H10A 0.3046 0.3430 0.6030 0.038*

H10B 0.4689 0.3330 0.4754 0.038*

C11 0.3809 (2) 0.51711 (17) 0.30607 (16) 0.0289 (4)

H11 0.4937 0.4903 0.2744 0.035*

C12 0.3377 (2) 0.63612 (17) 0.22580 (16) 0.0272 (4) C13 0.1716 (2) 0.69010 (18) 0.26918 (17) 0.0291 (4) C14 0.1296 (2) 0.8319 (2) 0.19874 (19) 0.0457 (5)

H14A 0.0102 0.8470 0.2389 0.069*

H14B 0.1557 0.8311 0.0998 0.069*

H14C 0.1955 0.9105 0.2115 0.069*

C15 0.4675 (2) 0.70816 (18) 0.10318 (17) 0.0302 (4) C16 0.7388 (2) 0.6907 (2) −0.05471 (19) 0.0468 (5)

H16A 0.6946 0.7461 −0.1253 0.056*

H16B 0.8064 0.6132 −0.0955 0.056*

C17 0.8469 (2) 0.7888 (2) −0.0164 (2) 0.0508 (5)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o373–o374

H17B 0.9438 0.8248 −0.0974 0.076*

H17C 0.8853 0.7355 0.0575 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0294 (7) 0.0336 (7) 0.0420 (7) 0.0007 (5) −0.0084 (6) 0.0010 (6) O2 0.0388 (7) 0.0389 (8) 0.0384 (7) 0.0013 (6) −0.0135 (6) 0.0133 (6) O3 0.0342 (7) 0.0335 (7) 0.0431 (7) 0.0035 (6) 0.0022 (6) −0.0007 (6) N1 0.0376 (8) 0.0273 (8) 0.0315 (8) 0.0026 (6) −0.0172 (6) −0.0016 (6) N2 0.0270 (8) 0.0252 (8) 0.0351 (8) 0.0009 (6) −0.0080 (6) 0.0031 (6) C1 0.0251 (9) 0.0256 (9) 0.0262 (8) 0.0032 (7) −0.0037 (7) −0.0037 (7) C2 0.0339 (10) 0.0346 (10) 0.0352 (9) 0.0019 (8) −0.0127 (8) −0.0064 (8) C3 0.0365 (10) 0.0313 (10) 0.0465 (11) −0.0034 (8) −0.0097 (9) −0.0114 (8) C4 0.0368 (10) 0.0235 (10) 0.0450 (11) 0.0017 (8) −0.0039 (8) −0.0023 (8) C5 0.0352 (10) 0.0268 (10) 0.0326 (9) 0.0072 (8) −0.0072 (8) −0.0013 (7) C6 0.0269 (9) 0.0264 (9) 0.0284 (9) 0.0051 (7) −0.0044 (7) −0.0051 (7) C7 0.0272 (9) 0.0242 (9) 0.0254 (8) 0.0034 (7) −0.0051 (7) −0.0032 (7) C8 0.0333 (10) 0.0226 (9) 0.0304 (9) 0.0011 (7) −0.0084 (7) −0.0028 (7) C9 0.0325 (9) 0.0268 (9) 0.0286 (9) 0.0034 (7) −0.0105 (7) −0.0012 (7) C10 0.0338 (10) 0.0260 (9) 0.0326 (9) 0.0020 (7) −0.0126 (8) 0.0025 (7) C11 0.0275 (9) 0.0253 (9) 0.0341 (9) −0.0003 (7) −0.0095 (7) −0.0064 (7) C12 0.0287 (9) 0.0224 (9) 0.0308 (9) 0.0004 (7) −0.0116 (7) −0.0013 (7) C13 0.0323 (10) 0.0255 (9) 0.0307 (9) 0.0001 (7) −0.0132 (8) −0.0022 (7) C14 0.0404 (11) 0.0407 (12) 0.0475 (11) 0.0136 (9) −0.0092 (9) 0.0050 (9) C15 0.0321 (10) 0.0300 (10) 0.0308 (9) −0.0015 (7) −0.0146 (7) −0.0021 (8) C16 0.0393 (11) 0.0458 (12) 0.0416 (11) 0.0013 (9) 0.0039 (9) −0.0038 (9) C17 0.0430 (12) 0.0435 (12) 0.0540 (12) 0.0014 (9) −0.0018 (10) −0.0031 (10)

Geometric parameters (Å, º)

O1—C13 1.2358 (19) C7—C9 1.495 (2)

O2—C15 1.2105 (19) C8—H8 0.9500

O3—C15 1.347 (2) C9—C10 1.510 (2)

O3—C16 1.448 (2) C9—H9A 0.9900

N1—C6 1.368 (2) C9—H9B 0.9900

N1—C8 1.369 (2) C10—H10A 0.9900

N1—H1 0.8800 C10—H10B 0.9900

N2—C11 1.2998 (19) C11—C12 1.389 (2)

N2—C10 1.4556 (19) C11—H11 0.9500

N2—H2 0.8800 C12—C13 1.445 (2)

C1—C2 1.396 (2) C12—C15 1.452 (2)

C1—C6 1.405 (2) C13—C14 1.498 (2)

C1—C7 1.434 (2) C14—H14A 0.9800

C2—C3 1.373 (2) C14—H14B 0.9800

C2—H2A 0.9500 C14—H14C 0.9800

C3—C4 1.389 (3) C16—C17 1.487 (3)

(6)

C4—C5 1.375 (3) C16—H16B 0.9900

C4—H4 0.9500 C17—H17A 0.9800

C5—C6 1.389 (2) C17—H17B 0.9800

C5—H5 0.9500 C17—H17C 0.9800

C7—C8 1.351 (2)

C15—O3—C16 116.60 (13) N2—C10—C9 112.55 (13)

C6—N1—C8 108.48 (13) N2—C10—H10A 109.1

C6—N1—H1 125.8 C9—C10—H10A 109.1

C8—N1—H1 125.8 N2—C10—H10B 109.1

C11—N2—C10 124.21 (14) C9—C10—H10B 109.1

C11—N2—H2 117.9 H10A—C10—H10B 107.8

C10—N2—H2 117.9 N2—C11—C12 127.75 (15)

C2—C1—C6 119.13 (15) N2—C11—H11 116.1

C2—C1—C7 133.74 (15) C12—C11—H11 116.1

C6—C1—C7 107.13 (14) C11—C12—C13 120.30 (14)

C3—C2—C1 118.77 (16) C11—C12—C15 117.70 (15)

C3—C2—H2A 120.6 C13—C12—C15 121.88 (14)

C1—C2—H2A 120.6 O1—C13—C12 120.02 (14)

C2—C3—C4 121.22 (17) O1—C13—C14 118.46 (15)

C2—C3—H3 119.4 C12—C13—C14 121.52 (15)

C4—C3—H3 119.4 C13—C14—H14A 109.5

C5—C4—C3 121.56 (16) C13—C14—H14B 109.5

C5—C4—H4 119.2 H14A—C14—H14B 109.5

C3—C4—H4 119.2 C13—C14—H14C 109.5

C4—C5—C6 117.35 (16) H14A—C14—H14C 109.5

C4—C5—H5 121.3 H14B—C14—H14C 109.5

C6—C5—H5 121.3 O2—C15—O3 121.37 (15)

N1—C6—C5 130.51 (15) O2—C15—C12 126.07 (16)

N1—C6—C1 107.51 (14) O3—C15—C12 112.56 (14)

C5—C6—C1 121.97 (16) O3—C16—C17 111.25 (16)

C8—C7—C1 106.03 (14) O3—C16—H16A 109.4

C8—C7—C9 127.97 (15) C17—C16—H16A 109.4

C1—C7—C9 125.99 (14) O3—C16—H16B 109.4

C7—C8—N1 110.85 (15) C17—C16—H16B 109.4

C7—C8—H8 124.6 H16A—C16—H16B 108.0

N1—C8—H8 124.6 C16—C17—H17A 109.5

C7—C9—C10 112.27 (13) C16—C17—H17B 109.5

C7—C9—H9A 109.1 H17A—C17—H17B 109.5

C10—C9—H9A 109.1 C16—C17—H17C 109.5

C7—C9—H9B 109.1 H17A—C17—H17C 109.5

C10—C9—H9B 109.1 H17B—C17—H17C 109.5

H9A—C9—H9B 107.9

C6—C1—C2—C3 0.4 (2) C6—N1—C8—C7 −0.02 (19)

C7—C1—C2—C3 −179.90 (17) C8—C7—C9—C10 −7.7 (2)

C1—C2—C3—C4 −0.1 (3) C1—C7—C9—C10 171.15 (15)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o373–o374

C3—C4—C5—C6 0.5 (3) C7—C9—C10—N2 −168.51 (13)

C8—N1—C6—C5 179.64 (17) C10—N2—C11—C12 −172.13 (15)

C8—N1—C6—C1 0.56 (18) N2—C11—C12—C13 3.3 (3)

C4—C5—C6—N1 −179.16 (16) N2—C11—C12—C15 179.56 (15)

C4—C5—C6—C1 −0.2 (2) C11—C12—C13—O1 −9.6 (2)

C2—C1—C6—N1 178.92 (14) C15—C12—C13—O1 174.32 (15)

C7—C1—C6—N1 −0.87 (18) C11—C12—C13—C14 169.43 (16)

C2—C1—C6—C5 −0.3 (2) C15—C12—C13—C14 −6.7 (2)

C7—C1—C6—C5 179.95 (14) C16—O3—C15—O2 1.4 (2)

C2—C1—C7—C8 −178.90 (17) C16—O3—C15—C12 −178.38 (14)

C6—C1—C7—C8 0.85 (17) C11—C12—C15—O2 −163.19 (16)

C2—C1—C7—C9 2.1 (3) C13—C12—C15—O2 13.0 (3)

C6—C1—C7—C9 −178.20 (15) C11—C12—C15—O3 16.6 (2)

C1—C7—C8—N1 −0.52 (18) C13—C12—C15—O3 −167.24 (14)

C9—C7—C8—N1 178.50 (15) C15—O3—C16—C17 81.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2···O1 0.88 2.02 2.6518 (17) 128

N2—H2···O1i 0.88 2.32 3.0393 (18) 139

N1—H1···O2ii 0.88 2.07 2.8572 (17) 149

References

Related documents

Methods: Obese and overweight women aged 25 – 55 years with a body mass index (BMI) of 25 – 35 kg/m 2 will be recruited from the Obesity Clinic in Shahid Sadoughi University of

The scheme adopts various data mining algorithms and technologies to discover the state association rules of process object based on association chains.. From the state

prices does not Granger cause gold price volatility for spot and the futures markets at all. maturities is strongly rejected for both spot and futures

In a second evaluation, we used our Feature Extraction algorithm to extract features from the critic reviews, for each song whose summary needs to be evaluated. This is an

Our method for synonymous collocation extraction comprises of three steps: (1) extract collocations from large monolingual corpora; (2) generate can- didates of synonymous

The method of pruning bigram models using probability can be described as follows: all bigrams that change perplexity by less than a threshold are removed from the model.. In

We test this conjecture using two novel experimental designs and find evidence that subjects perceive self-serving generous actions as being less generous than

The stance of Australia’s central authorities with respect to residential mortgage innovation appears different from many of our international counterparts?. In this article we