• No results found

Aqua­bis­­[2 (2 pyridyl) 1H benzimidazolato]­zinc(II)

N/A
N/A
Protected

Academic year: 2020

Share "Aqua­bis­­[2 (2 pyridyl) 1H benzimidazolato]­zinc(II)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m992

Yang, Zeng and Ng [Zn(C

12H8N3)2(H2O)] doi:10.1107/S1600536805012614 Acta Cryst.(2005). E61, m992–m993 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Aquabis[2-(2-pyridyl)-1

H

-benzimidazolato]zinc(II)

Jian-Kui Yang,a,bMing-Hua Zenga* and Seik Weng Ngc

a

Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People’s Republic of China,bDepartment of Applied Chemistry, Hunan Agricultural University, Changsha 410128, Hunan, People’s Republic of China, andcDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.048

wRfactor = 0.131

Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Zn(C12H8N3)2(H2O)], the Zn atom is

chelated by two heterocycles, and the coordinating N atoms comprise the basal plane of the square-pyramidal environ-ment. The apical position is occupied by an aqua ligand. The complexes are linked by O—H O hydrogen bonds into a ribbon structure along theaaxis.

Comment

2-(2-Pyridyl)-1H-benzimidazole (Hpybim) is an organic heterocycle that possesses luminescence properties, and the present study was initiated in an investigation of this property in the zinc complex. The crystal structure of [Zn(pybim)2] as

well as its electronic structure have been studied (Yueet al., 2002); it is a planar compound. A search through the Cambridge Structural Database (Version 5.26; Allen, 2002) found only two metal complexes containing this ligand,viz.a copper(II) isothiocyanate adduct of the neutral Hpybim molecule (Battagliaet al., 1976) and an yttrium(III) complex (Mu¨ller-Buschbaum & Quitmann, 2003).

The Zn atom in the present complex, (I), is chelated by the two pybimligands. The four coordinating N atoms comprise a square plane; the coordinated water molecule occupies the apical position of the square-pyramidal geometry. The aqua ligands link adjacent complexes into a ribbon structure along theaaxis (Fig. 2).

Experimental

Zinc nitrate hexahydrate (0.149 g, 0.5 mmol) and 2-carboxy-phenoxyacetic acid (0.196 g, 1 mmol) were dissolved in ethanol (3 ml) and water (15 ml). The solution was placed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 120 h. The cool mixture yielded colourless crystals of (I); these were washed with water and then dried in air (yieldca70%).

(2)

Crystal data

[Zn(C12H8N3)2(H2O)]

Mr= 471.81

Monoclinic,P21=c

a= 12.5448 (8) A˚

b= 13.0525 (8) A˚

c= 13.3493 (9) A˚

= 102.731 (1)

V= 2132.1 (2) A˚3

Z= 4

Dx= 1.470 Mg m

3 MoKradiation Cell parameters from 3351

reflections

= 3.0–25.4

= 1.18 mm1

T= 295 (2) K Block, colourless 0.360.180.11 mm

Data collection

Bruker SMART APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

Tmin= 0.676,Tmax= 0.881 12 542 measured reflections

4812 independent reflections 3727 reflections withI> 2(I)

Rint= 0.025

max= 27.5

h=16!16

k=10!16

l=16!17

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.048

wR(F2) = 0.131

S= 1.01 4812 reflections 297 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0743P)2

+ 0.521P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.58 e A˚

3

min=0.21 e A˚

[image:2.610.50.555.75.501.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Zn1—O1w 2.001 (2)

Zn1—N1 1.989 (2)

Zn1—N3 2.239 (2)

Zn1—N4 2.002 (2)

Zn1—N6 2.245 (2)

O1w—Zn1—N1 117.5 (1) O1w—Zn1—N3 89.1 (1) O1w—Zn1—N4 115.5 (1) O1w—Zn1—N6 85.8 (1)

N1—Zn1—N3 78.7 (1)

N1—Zn1—N4 126.9 (1)

N1—Zn1—N6 108.3 (1)

N3—Zn1—N4 99.1 (1)

N3—Zn1—N6 172.7 (1)

N4—Zn1—N6 78.5 (1)

N1—C7—C8—N3 3.1 (4) N4—C19—C20—N6 3.2 (3)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 N2i

0.85 (1) 1.90 (2) 2.713 (3) 160 (3) O1w—H1w2 N5ii

0.84 (1) 1.88 (1) 2.713 (3) 170 (3)

Symmetry codes: (i) 2x;1y;1z; (ii) 1x;1y;1z.

The carbon-bound H atoms were positioned geometrically (C—H = 0.93 A˚ ) and were included in the refinement in the riding-model approximation, withUiso(H) values set at 1.2 timesUeq(C). The water

H atoms were located in difference Fourier maps and refined isotropically with O—H distances restrained to 0.85 (1) A˚ .

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the Guangxi Normal University and the Univer-sity of Malaya for supporting this study.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Battaglia, L. P., Ferrari, M. B., Corradi, A. B., Fava, G. G., Pelizzi, C. & Tani, M. E. V. (1976).J. Chem. Soc. Dalton Trans.pp. 2197–2202.

Bruker (2001).SADABS(Version 6.45),SAINT(Version 6.45) andSMART

(Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mu¨ller-Buschbaum, K. & Quitmann, C. C. (2003).Inorg. Chem.42, 2742–2750. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Yue, S.-M., Su, Z.-M., Ma, J.-F., Liao, Y., Kan, Y.-H. & Zhang, H.-J. (2002).

Chin. J. Struct. Chem.22, 174–178.

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

[image:2.610.317.564.368.530.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m992–m993

supporting information

Acta Cryst. (2005). E61, m992–m993 [https://doi.org/10.1107/S1600536805012614]

Aquabis[2-(2-pyridyl)-1

H

-benzimidazolato]zinc(II)

Jian-Kui Yang, Ming-Hua Zeng and Seik Weng Ng

Aquabis[2-(2-pyridyl)-1H-benzimidazolato]zinc(II)

Crystal data

[Zn(C12H8N3)2(H2O)]

Mr = 471.81 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 12.5448 (8) Å

b = 13.0525 (8) Å

c = 13.3493 (9) Å

β = 102.731 (1)°

V = 2132.1 (2) Å3

Z = 4

F(000) = 968

Dx = 1.470 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3351 reflections

θ = 3.0–25.4°

µ = 1.18 mm−1

T = 295 K Block, colorless 0.36 × 0.18 × 0.11 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.676, Tmax = 0.881

12542 measured reflections 4812 independent reflections 3727 reflections with I > 2σ(I)

Rint = 0.025

θmax = 27.5°, θmin = 2.2°

h = −16→16

k = −10→16

l = −16→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.048

wR(F2) = 0.131

S = 1.01 4812 reflections 297 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent

and constrained refinement

w = 1/[σ2(F

o2) + (0.0743P)2 + 0.521P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.58 e Å−3

Δρmin = −0.21 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

H1w2 0.6750 (13) 0.399 (2) 0.441 (2) 0.068 (10)* N1 0.92465 (17) 0.55839 (17) 0.63461 (18) 0.0435 (5) N2 1.09546 (17) 0.61715 (19) 0.6356 (2) 0.0521 (6) N3 0.84516 (18) 0.62390 (18) 0.44168 (19) 0.0495 (6) N4 0.64527 (16) 0.63475 (16) 0.55799 (17) 0.0410 (5) N5 0.47012 (17) 0.64655 (17) 0.57787 (17) 0.0426 (5) N6 0.67943 (19) 0.45294 (17) 0.65498 (19) 0.0455 (5) C1 0.9918 (2) 0.5314 (2) 0.7278 (2) 0.0481 (7) C2 0.9705 (3) 0.4805 (3) 0.8120 (3) 0.0639 (9)

H2 0.9007 0.4573 0.8132 0.077*

C3 1.0581 (4) 0.4655 (3) 0.8948 (3) 0.0815 (12)

H3 1.0472 0.4296 0.9519 0.098*

C4 1.1617 (3) 0.5033 (4) 0.8941 (3) 0.0867 (12)

H4 1.2182 0.4935 0.9514 0.104*

C5 1.1822 (3) 0.5543 (3) 0.8112 (3) 0.0750 (11)

H5 1.2518 0.5789 0.8113 0.090*

C6 1.0967 (2) 0.5686 (2) 0.7270 (3) 0.0543 (7) C7 0.9922 (2) 0.60767 (19) 0.5855 (2) 0.0424 (6) C8 0.9496 (2) 0.6464 (2) 0.4811 (2) 0.0456 (6) C9 1.0120 (3) 0.7003 (2) 0.4242 (3) 0.0644 (9)

H9 1.0848 0.7158 0.4521 0.077*

C10 0.9632 (3) 0.7301 (3) 0.3256 (3) 0.0733 (10)

H10 1.0032 0.7658 0.2861 0.088*

C11 0.8567 (3) 0.7072 (3) 0.2865 (3) 0.0718 (10)

H11 0.8225 0.7274 0.2204 0.086*

C12 0.8009 (3) 0.6538 (3) 0.3467 (3) 0.0607 (8)

H12 0.7280 0.6375 0.3195 0.073*

C13 0.6018 (2) 0.7241 (2) 0.5122 (2) 0.0408 (6) C14 0.6474 (2) 0.8013 (2) 0.4628 (2) 0.0533 (7)

H14 0.7197 0.7981 0.4565 0.064*

C15 0.5811 (3) 0.8824 (2) 0.4237 (3) 0.0602 (8)

H15 0.6088 0.9343 0.3891 0.072*

C16 0.4734 (3) 0.8886 (2) 0.4347 (3) 0.0601 (8)

H16 0.4313 0.9448 0.4075 0.072*

C17 0.4282 (2) 0.8149 (2) 0.4841 (2) 0.0529 (7)

H17 0.3563 0.8201 0.4912 0.063*

C18 0.4931 (2) 0.7312 (2) 0.52396 (19) 0.0416 (6) C19 0.56288 (19) 0.5934 (2) 0.59504 (18) 0.0375 (5) C20 0.5814 (2) 0.4952 (2) 0.65080 (19) 0.0393 (5) C21 0.5037 (2) 0.4494 (2) 0.6954 (2) 0.0504 (7)

H21 0.4359 0.4801 0.6910 0.061*

C22 0.5281 (3) 0.3581 (3) 0.7462 (2) 0.0599 (8)

H22 0.4773 0.3262 0.7770 0.072*

C23 0.6281 (3) 0.3148 (2) 0.7509 (2) 0.0596 (8)

H23 0.6468 0.2533 0.7855 0.072*

C24 0.7009 (3) 0.3635 (2) 0.7036 (2) 0.0575 (8)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m992–m993

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.02878 (18) 0.0487 (2) 0.0573 (2) −0.00007 (12) 0.01280 (14) 0.00078 (14) O1w 0.0341 (11) 0.0767 (15) 0.0863 (16) −0.0156 (10) 0.0281 (11) −0.0329 (12) N1 0.0319 (11) 0.0458 (13) 0.0540 (13) 0.0021 (9) 0.0121 (10) −0.0006 (10) N2 0.0316 (12) 0.0559 (15) 0.0706 (17) −0.0001 (10) 0.0150 (11) −0.0044 (12) N3 0.0399 (12) 0.0536 (15) 0.0572 (14) 0.0018 (10) 0.0155 (11) 0.0057 (11) N4 0.0321 (11) 0.0406 (12) 0.0515 (13) −0.0010 (9) 0.0120 (9) 0.0015 (9) N5 0.0331 (11) 0.0502 (13) 0.0459 (12) −0.0006 (9) 0.0119 (9) −0.0080 (10) N6 0.0393 (12) 0.0449 (13) 0.0531 (14) −0.0005 (9) 0.0117 (10) 0.0037 (10) C1 0.0426 (15) 0.0495 (17) 0.0512 (16) 0.0086 (12) 0.0082 (13) −0.0055 (12) C2 0.061 (2) 0.071 (2) 0.060 (2) 0.0024 (16) 0.0132 (16) 0.0000 (16) C3 0.094 (3) 0.090 (3) 0.056 (2) 0.014 (2) 0.006 (2) 0.0064 (18) C4 0.065 (2) 0.109 (3) 0.073 (3) 0.013 (2) −0.015 (2) −0.004 (2) C5 0.0451 (19) 0.090 (3) 0.083 (3) 0.0081 (17) −0.0020 (18) −0.006 (2) C6 0.0358 (14) 0.0576 (18) 0.068 (2) 0.0066 (12) 0.0086 (13) −0.0121 (15) C7 0.0315 (13) 0.0376 (14) 0.0614 (17) 0.0013 (10) 0.0175 (12) −0.0056 (12) C8 0.0397 (14) 0.0345 (14) 0.0676 (18) 0.0037 (11) 0.0230 (13) 0.0020 (12) C9 0.0495 (18) 0.0541 (19) 0.095 (3) −0.0024 (14) 0.0272 (17) 0.0137 (17) C10 0.077 (2) 0.057 (2) 0.095 (3) 0.0049 (17) 0.040 (2) 0.0304 (19) C11 0.081 (3) 0.065 (2) 0.073 (2) 0.0146 (18) 0.0258 (19) 0.0233 (18) C12 0.0540 (18) 0.064 (2) 0.064 (2) 0.0040 (15) 0.0120 (15) 0.0121 (16) C13 0.0340 (12) 0.0411 (14) 0.0459 (14) −0.0011 (10) 0.0054 (10) −0.0043 (11) C14 0.0425 (15) 0.0461 (17) 0.0704 (19) −0.0042 (12) 0.0106 (13) 0.0059 (14) C15 0.0625 (19) 0.0402 (16) 0.073 (2) −0.0057 (14) 0.0034 (16) 0.0069 (14) C16 0.0585 (19) 0.0424 (17) 0.070 (2) 0.0067 (14) −0.0063 (16) −0.0028 (14) C17 0.0430 (15) 0.0536 (18) 0.0581 (17) 0.0105 (13) 0.0027 (13) −0.0068 (14) C18 0.0376 (13) 0.0443 (15) 0.0417 (14) −0.0008 (11) 0.0063 (11) −0.0102 (11) C19 0.0297 (12) 0.0447 (15) 0.0384 (13) −0.0034 (10) 0.0082 (10) −0.0074 (11) C20 0.0394 (14) 0.0429 (14) 0.0360 (13) −0.0071 (11) 0.0090 (10) −0.0057 (11) C21 0.0435 (16) 0.065 (2) 0.0441 (15) −0.0072 (13) 0.0133 (12) 0.0017 (13) C22 0.0596 (19) 0.073 (2) 0.0477 (16) −0.0175 (16) 0.0128 (14) 0.0112 (15) C23 0.073 (2) 0.0514 (19) 0.0517 (17) −0.0072 (15) 0.0067 (15) 0.0115 (14) C24 0.0568 (18) 0.0515 (18) 0.0632 (19) 0.0039 (14) 0.0108 (15) 0.0056 (14)

Geometric parameters (Å, º)

Zn1—O1w 2.001 (2) C7—C8 1.467 (4)

Zn1—N1 1.989 (2) C8—C9 1.395 (4)

Zn1—N3 2.239 (2) C9—C10 1.379 (5)

Zn1—N4 2.002 (2) C9—H9 0.9300

Zn1—N6 2.245 (2) C10—C11 1.356 (5)

O1w—H1w1 0.85 (1) C10—H10 0.9300

O1w—H1w2 0.84 (1) C11—C12 1.368 (4)

N1—C7 1.345 (3) C11—H11 0.9300

N1—C1 1.385 (4) C12—H12 0.9300

(6)

N2—C6 1.372 (4) C13—C18 1.410 (3)

N3—C12 1.326 (4) C14—C15 1.377 (4)

N3—C8 1.333 (3) C14—H14 0.9300

N4—C19 1.353 (3) C15—C16 1.392 (4)

N4—C13 1.373 (3) C15—H15 0.9300

N5—C19 1.331 (3) C16—C17 1.360 (4)

N5—C18 1.383 (3) C16—H16 0.9300

N6—C24 1.334 (4) C17—C18 1.396 (4)

N6—C20 1.338 (3) C17—H17 0.9300

C1—C2 1.382 (5) C19—C20 1.474 (4)

C1—C6 1.404 (4) C20—C21 1.385 (4)

C2—C3 1.390 (5) C21—C22 1.372 (4)

C2—H2 0.9300 C21—H21 0.9300

C3—C4 1.393 (6) C22—C23 1.365 (4)

C3—H3 0.9300 C22—H22 0.9300

C4—C5 1.362 (6) C23—C24 1.375 (4)

C4—H4 0.9300 C23—H23 0.9300

C5—C6 1.386 (5) C24—H24 0.9300

C5—H5 0.9300

O1w—Zn1—N1 117.5 (1) C9—C8—C7 124.1 (3)

O1w—Zn1—N3 89.1 (1) C10—C9—C8 118.5 (3)

O1w—Zn1—N4 115.5 (1) C10—C9—H9 120.7

O1w—Zn1—N6 85.8 (1) C8—C9—H9 120.7

N1—Zn1—N3 78.7 (1) C11—C10—C9 119.9 (3)

N1—Zn1—N4 126.9 (1) C11—C10—H10 120.1

N1—Zn1—N6 108.3 (1) C9—C10—H10 120.1

N3—Zn1—N4 99.1 (1) C10—C11—C12 118.3 (3)

N3—Zn1—N6 172.7 (1) C10—C11—H11 120.8

N4—Zn1—N6 78.5 (1) C12—C11—H11 120.8

Zn1—O1w—H1w1 126 (2) N3—C12—C11 123.4 (3)

Zn1—O1w—H1w2 121 (2) N3—C12—H12 118.3

H1w1—O1w—H1w2 112 (3) C11—C12—H12 118.3

C7—N1—C1 103.6 (2) N4—C13—C14 131.3 (2)

C7—N1—Zn1 116.13 (19) N4—C13—C18 107.8 (2)

C1—N1—Zn1 140.2 (2) C14—C13—C18 120.9 (2)

C7—N2—C6 102.9 (2) C15—C14—C13 117.3 (3)

C12—N3—C8 118.8 (3) C15—C14—H14 121.4

C12—N3—Zn1 130.4 (2) C13—C14—H14 121.4

C8—N3—Zn1 110.84 (18) C14—C15—C16 121.6 (3)

C19—N4—C13 104.0 (2) C14—C15—H15 119.2

C19—N4—Zn1 115.32 (17) C16—C15—H15 119.2

C13—N4—Zn1 138.76 (17) C17—C16—C15 121.9 (3)

C19—N5—C18 103.4 (2) C17—C16—H16 119.1

C24—N6—C20 117.8 (2) C15—C16—H16 119.1

C24—N6—Zn1 131.1 (2) C16—C17—C18 117.9 (3)

C20—N6—Zn1 110.47 (17) C16—C17—H17 121.0

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m992–m993

C2—C1—C6 121.5 (3) N5—C18—C17 130.8 (2)

N1—C1—C6 106.9 (3) N5—C18—C13 108.9 (2)

C1—C2—C3 117.0 (3) C17—C18—C13 120.4 (3)

C1—C2—H2 121.5 N5—C19—N4 116.0 (2)

C3—C2—H2 121.5 N5—C19—C20 125.1 (2)

C2—C3—C4 121.4 (4) N4—C19—C20 118.9 (2)

C2—C3—H3 119.3 N6—C20—C21 122.1 (3)

C4—C3—H3 119.3 N6—C20—C19 114.9 (2)

C5—C4—C3 121.5 (4) C21—C20—C19 123.0 (2)

C5—C4—H4 119.3 C22—C21—C20 119.1 (3)

C3—C4—H4 119.3 C22—C21—H21 120.5

C4—C5—C6 118.3 (4) C20—C21—H21 120.5

C4—C5—H5 120.9 C23—C22—C21 119.0 (3)

C6—C5—H5 120.9 C23—C22—H22 120.5

N2—C6—C5 129.7 (3) C21—C22—H22 120.5

N2—C6—C1 109.9 (3) C22—C23—C24 119.0 (3)

C5—C6—C1 120.4 (3) C22—C23—H23 120.5

N2—C7—N1 116.7 (3) C24—C23—H23 120.5

N2—C7—C8 123.9 (2) N6—C24—C23 123.0 (3)

N1—C7—C8 119.4 (2) N6—C24—H24 118.5

N3—C8—C9 121.1 (3) C23—C24—H24 118.5

N3—C8—C7 114.8 (2)

(8)

N1—Zn1—N6—C20 135.97 (18) C16—C17—C18—N5 179.3 (3) O1w—Zn1—N6—C20 −106.39 (19) C16—C17—C18—C13 −0.3 (4) N4—Zn1—N6—C20 10.70 (18) N4—C13—C18—N5 0.5 (3) C7—N1—C1—C2 179.1 (3) C14—C13—C18—N5 −178.2 (2) Zn1—N1—C1—C2 −4.4 (5) N4—C13—C18—C17 −179.8 (2) C7—N1—C1—C6 0.5 (3) C14—C13—C18—C17 1.5 (4) Zn1—N1—C1—C6 177.0 (2) C18—N5—C19—N4 0.2 (3) N1—C1—C2—C3 180.0 (3) C18—N5—C19—C20 179.9 (2) C6—C1—C2—C3 −1.5 (5) C13—N4—C19—N5 0.1 (3) C1—C2—C3—C4 2.1 (6) Zn1—N4—C19—N5 −167.05 (17) C2—C3—C4—C5 −1.6 (7) C13—N4—C19—C20 −179.6 (2) C3—C4—C5—C6 0.4 (7) Zn1—N4—C19—C20 13.3 (3) C7—N2—C6—C5 −179.5 (3) C24—N6—C20—C21 0.4 (4) C7—N2—C6—C1 −0.1 (3) Zn1—N6—C20—C21 172.7 (2) C4—C5—C6—N2 179.5 (4) C24—N6—C20—C19 −179.4 (2) C4—C5—C6—C1 0.2 (5) Zn1—N6—C20—C19 −7.1 (3) C2—C1—C6—N2 −179.1 (3) N5—C19—C20—N6 177.1 (2) N1—C1—C6—N2 −0.2 (3) N4—C19—C20—N6 −3.2 (3) C2—C1—C6—C5 0.4 (5) N5—C19—C20—C21 −2.7 (4) N1—C1—C6—C5 179.2 (3) N4—C19—C20—C21 177.0 (2) C6—N2—C7—N1 0.5 (3) N6—C20—C21—C22 0.5 (4) C6—N2—C7—C8 −178.8 (3) C19—C20—C21—C22 −179.7 (3) C1—N1—C7—N2 −0.6 (3) C20—C21—C22—C23 −0.3 (5) Zn1—N1—C7—N2 −178.13 (18) C21—C22—C23—C24 −0.6 (5) C1—N1—C7—C8 178.7 (2) C20—N6—C24—C23 −1.4 (4) Zn1—N1—C7—C8 1.2 (3) Zn1—N6—C24—C23 −171.9 (2) C12—N3—C8—C9 0.0 (4) C22—C23—C24—N6 1.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···N2i 0.85 (1) 1.90 (2) 2.713 (3) 160 (3)

O1w—H1w2···N5ii 0.84 (1) 1.88 (1) 2.713 (3) 170 (3)

Figure

Table 1Selected geometric parameters (A˚ , �).

References

Related documents

Under Regulation 26 (1) (b) you are required to: Ensure that the risk management policy includes the measures and actions in place to control the risks identified. Please state

Figure 13: Additional qualitative results on diagram-type question with visual context. For both examples, pipelines from visual context and question diagram to visual context graph

I also define the weaker notion of neutral stability, which requires, in addition to internal stability (in case of heterogeneous population), that whenever an individual (in case of

In short, our contributions are two-fold: (i) an effective syntax- based evaluator is built as a post-hoc checker, yielding compression with better quality based upon the

Thus, this paper employs the ARDL cointegration technique to test the long-run the relationship between future spot and forward rates in the South African foreign exchange market

Different from previous work using manually compiled document- independent features, we develop a novel summary system called PriorSum, which applies the enhanced convolutional neu-

The lagged independent variables are the growth rate of real GDP, GDP per capita, inflation, domestic credit extended to the private sector/GDP, the exchange rate regime, the

Best results were obtained from the joint n-gram model that does syllabification, stress assignment and g2p conversion all in a single step and inte- grates phonological constraints