metal-organic papers
m2388
Jianet al. [CuCl2(C12H10N2)2] doi:10.1107/S1600536805033660 Acta Cryst.(2005). E61, m2388–m2389
Acta Crystallographica Section E Structure Reports Online
ISSN 1600-5368
Dichlorobis[2-chloro-5-(chloromethyl)-pyridine]copper(II)
Fangfang Jian,a* Lan Zhang,a Hailian Xiaoaand Liyun Zhangb
a
New Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People’s Republic of China, andbCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study
T= 293 K
Mean(C–C) = 0.007 A˚
Rfactor = 0.053
wRfactor = 0.169
Data-to-parameter ratio = 19.4
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography Printed in Great Britain – all rights reserved
In the title compound, [CuCl2(C6H5Cl2N)2], each Cu atom has
a distorted tetrahedral coordination involving two Clanions
and two 2-chloro-5-(chloromethyl)pyridine ligands. The mol-ecular structure and packing are stabilized by intra- and
intermolecular C—H Cl hydrogen-bonding interactions.
Comment
The structural and magnetic properties of copper(II)
complexes of the type CuL2X2 have been the subjects of
numerous recent publications. This is particularly true for the cases whereLis pyridine or a substituted pyridine (Swank & Willett, 1980; Marsh et al., 1981; Crawford & Hatfield, 1977). Much of this work has been concerned with the correlation of the structural properties of these complexes with their magnetic properties. In order to search for new complexes of this type, we synthesized the title compound and report here its crystal structure.
The title structure contains one copper(II), two 2-chloro-5-(chloromethyl)pyridine ligands and two chloro ligands. The coordination of the copper(II) ion is best described as distorted tetrahedral. The Cu—Cl and Cu—N bond distances are in agreement with those reported recently for dichloro-bis[2-(chloromethyl)pyridine]copper(II) (Zhang et al., 2004). The dihedral angle formed by the pyridine rings is 18.2 (2).
The crystal packing is stabilized by C—H Cl intra- and
intermolecular hydrogen-bond interactions (Table 2).
Experimental
The title compound was prepared by the reaction of CuCl2(0.01 mol)
and 2-chloro-5-(chloromethyl)pyridine (0.02 mol) in ethanol solution (50 ml) under reflux for 4 h. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from an ethanol solution at room temperature.
Crystal data
[CuCl2(C12H10N2)2] Mr= 458.47 Monoclinic,C2=c a= 16.699 (4) A˚
b= 14.981 (5) A˚
c= 15.205 (3) A˚
= 115.74 (3)
V= 3426.4 (18) A˚3
Z= 8
Dx= 1.778 Mg m3 MoKradiation Cell parameters from 25
reflections
= 4–14
= 2.20 mm1 T= 293 (2) K Block, green
0.250.200.18 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
!scans
Absorption correction:’scan (Northet al., 1968)
Tmin= 0.595,Tmax= 0.673
7596 measured reflections 3689 independent reflections 2778 reflections withI> 2(I)
Rint= 0.044
max= 27.0 h=21!13
k=13!19
l=18!18 3 standard reflections
every 100 reflections intensity decay: none
Refinement
Refinement onF2 R[F2> 2(F2)] = 0.053
wR(F2) = 0.169 S= 1.05 3689 reflections 190 parameters
H-atom parameters constrained
w= 1/[2(F
o2) + (0.0948P)2
+ 8.8566P]
whereP= (Fo2+ 2Fc2)/3
(/)max< 0.001 max= 1.53 e A˚
3 min=0.97 e A˚
3
Table 1
Selected geometric parameters (A˚ ,).
Cu1—N2 2.048 (4) Cu1—N1 2.071 (4)
Cu1—Cl4 2.2548 (14) Cu1—Cl3 2.2965 (13)
N2—Cu1—N1 169.17 (14) N2—Cu1—Cl4 86.58 (11) N1—Cu1—Cl4 89.26 (11)
N2—Cu1—Cl3 89.53 (11) N1—Cu1—Cl3 94.26 (10) Cl4—Cu1—Cl3 175.71 (5)
Table 2
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
C5—H5A Cl3i
0.93 2.70 3.390 (5) 131 C6—H6B Cl4ii
0.97 2.79 3.636 (6) 146 C9—H9A Cl4iii 0.93 2.62 3.444 (5) 149 C11—H11A Cl5 0.93 2.83 3.140 (5) 101
Symmetry codes: (i) xþ1;y;zþ1
2; (ii) xþ1;y;zþ1; (iii)
xþ1 2;yþ
1 2;zþ
1 2.
H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 A˚ andUiso=
1.2Ueq(C). The highest peak is located 1.53 A˚ from atom Cl5.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement:CAD-4 Software; data reduction:NRCVAX(Gabeet al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:SHELXTL/PC(Sheldrick, 1990); software used to prepare material for publication:WinGX(Farrugia, 1999).
The authors thank the Natural Science Foundation of Shandong Province (No.Y2002B06).
References
Crawford, V. H. & Hatfield, W. E. (1977).Inorg. Chem.16, 1336–1341. Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The
Netherlands.
Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.
Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989).J. Appl. Cryst.22, 384–387.
Marsh, W. E., Valente, E. J., Hodgson, D. J. (1981).Inorg. Chim. Acta,51, 49– 53.
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst. A24, 351– 359
Sheldrick, G. M. (1990).SHELXTL/PC. Siemens Analytical X-ray Instru-ments Inc. Madison Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.
Swank, D. D. & Willett, R. D. (1980).Inorg. Chem.19, 2321–2323.
[image:2.610.313.569.72.192.2]Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004).Acta Cryst.E60, m599–m600.
Figure 1
supporting information
sup-1
Acta Cryst. (2005). E61, m2388–m2389
supporting information
Acta Cryst. (2005). E61, m2388–m2389 [https://doi.org/10.1107/S1600536805033660]
Dichlorobis[2-chloro-5-(chloromethyl)pyridine]copper(II)
Fangfang Jian, Lan Zhang, Hailian Xiao and Liyun Zhang
Dichlorobis[2-chloro-5-(chloromethyl)pyridine]copper(II)
Crystal data
[CuCl2(C12H10N2)2] Mr = 916.94 Monoclinic, C2/c
Hall symbol: -C 2yc
a = 16.699 (4) Å
b = 14.981 (5) Å
c = 15.205 (3) Å
β = 115.74 (3)°
V = 3426.4 (18) Å3 Z = 4
F(000) = 1816
Dx = 1.778 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections
θ = 4–14°
µ = 2.20 mm−1 T = 293 K Block, green
0.25 × 0.20 × 0.18 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Tmin = 0.595, Tmax = 0.673
7596 measured reflections
3689 independent reflections 2778 reflections with I > 2σ(I)
Rint = 0.044
θmax = 27.0°, θmin = 1.9°
h = −21→13
k = −13→19
l = −18→18
3 standard reflections every 100 reflections intensity decay: none
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.053 wR(F2) = 0.169 S = 1.05 3689 reflections 190 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ2(F
o2) + (0.0948P)2 + 8.8566P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 1.53 e Å−3
Δρmin = −0.97 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Cu1 0.38296 (3) 0.10515 (3) 0.23934 (4) 0.0404 (2)
Cl1 0.55341 (15) −0.30657 (13) 0.42789 (16) 0.1049 (7)
Cl2 0.25520 (9) −0.03386 (9) 0.06419 (10) 0.0686 (4)
Cl3 0.43767 (7) 0.11627 (7) 0.12487 (8) 0.0433 (3)
Cl4 0.32302 (9) 0.10336 (8) 0.34666 (11) 0.0617 (4)
Cl5 0.55431 (12) 0.43986 (18) 0.40611 (18) 0.1259 (10)
Cl6 0.20978 (8) 0.19182 (9) 0.07463 (11) 0.0679 (4)
N1 0.3851 (2) −0.0331 (2) 0.2412 (3) 0.0413 (8)
N2 0.3553 (2) 0.2391 (2) 0.2249 (3) 0.0431 (8)
C1 0.3289 (3) −0.0850 (3) 0.1691 (3) 0.0454 (10)
C2 0.3265 (4) −0.1774 (3) 0.1766 (4) 0.0575 (12)
H2A 0.2864 −0.2114 0.1252 0.069*
C3 0.3846 (4) −0.2171 (3) 0.2616 (4) 0.0573 (12)
H3A 0.3846 −0.2788 0.2680 0.069*
C4 0.4427 (3) −0.1659 (3) 0.3372 (4) 0.0494 (10)
C5 0.4410 (3) −0.0743 (3) 0.3239 (3) 0.0464 (10)
H5A 0.4806 −0.0394 0.3748 0.056*
C6 0.5037 (4) −0.2032 (4) 0.4361 (4) 0.0681 (15)
H6A 0.4699 −0.2124 0.4735 0.082*
H6B 0.5501 −0.1601 0.4709 0.082*
C7 0.2811 (3) 0.2702 (3) 0.1533 (3) 0.0476 (10)
C8 0.2571 (3) 0.3595 (3) 0.1412 (4) 0.0554 (12)
H8A 0.2061 0.3792 0.0882 0.067*
C9 0.3116 (3) 0.4176 (3) 0.2099 (4) 0.0585 (13)
H9A 0.2980 0.4781 0.2043 0.070*
C10 0.3876 (3) 0.3870 (3) 0.2887 (4) 0.0503 (11)
C11 0.4075 (3) 0.2981 (3) 0.2910 (3) 0.0475 (10)
H11A 0.4603 0.2778 0.3410 0.057*
C12 0.4431 (4) 0.4509 (4) 0.3678 (5) 0.0734 (16)
H12A 0.4298 0.4429 0.4234 0.088*
H12B 0.4262 0.5113 0.3440 0.088*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Cu1 0.0404 (3) 0.0287 (3) 0.0509 (3) −0.00185 (18) 0.0186 (2) −0.00168 (19)
Cl1 0.1303 (16) 0.0797 (11) 0.1183 (15) 0.0502 (11) 0.0666 (13) 0.0447 (10)
Cl2 0.0612 (8) 0.0547 (7) 0.0636 (8) −0.0074 (6) 0.0025 (6) −0.0001 (6)
Cl3 0.0402 (5) 0.0397 (5) 0.0465 (6) 0.0033 (4) 0.0156 (4) 0.0023 (4)
supporting information
sup-3
Acta Cryst. (2005). E61, m2388–m2389
Cl5 0.0596 (9) 0.155 (2) 0.1358 (18) −0.0020 (11) 0.0169 (10) −0.0823 (16)
Cl6 0.0492 (7) 0.0629 (8) 0.0739 (9) −0.0002 (6) 0.0102 (6) −0.0095 (6)
N1 0.0399 (18) 0.0327 (17) 0.050 (2) −0.0033 (13) 0.0183 (16) −0.0018 (14)
N2 0.0426 (18) 0.0350 (17) 0.050 (2) 0.0036 (14) 0.0184 (16) −0.0002 (15)
C1 0.045 (2) 0.037 (2) 0.052 (3) −0.0040 (18) 0.020 (2) −0.0033 (18)
C2 0.068 (3) 0.036 (2) 0.066 (3) −0.012 (2) 0.028 (3) −0.014 (2)
C3 0.078 (3) 0.028 (2) 0.066 (3) −0.003 (2) 0.031 (3) −0.003 (2)
C4 0.050 (2) 0.040 (2) 0.062 (3) 0.0026 (19) 0.028 (2) 0.006 (2)
C5 0.044 (2) 0.041 (2) 0.051 (2) −0.0066 (18) 0.018 (2) −0.0039 (19)
C6 0.075 (4) 0.055 (3) 0.071 (4) 0.013 (3) 0.028 (3) 0.016 (3)
C7 0.043 (2) 0.046 (2) 0.052 (2) 0.0059 (18) 0.019 (2) 0.0005 (19)
C8 0.048 (2) 0.047 (2) 0.070 (3) 0.013 (2) 0.024 (2) 0.009 (2)
C9 0.062 (3) 0.036 (2) 0.086 (4) 0.016 (2) 0.040 (3) 0.009 (2)
C10 0.055 (3) 0.038 (2) 0.062 (3) 0.0012 (19) 0.029 (2) −0.004 (2)
C11 0.048 (2) 0.038 (2) 0.051 (3) 0.0026 (18) 0.016 (2) −0.0019 (18)
C12 0.074 (4) 0.048 (3) 0.094 (4) −0.003 (3) 0.033 (3) −0.022 (3)
Geometric parameters (Å, º)
Cu1—N2 2.048 (4) C3—H3A 0.9300
Cu1—N1 2.071 (4) C4—C5 1.386 (6)
Cu1—Cl4 2.2548 (14) C4—C6 1.510 (7)
Cu1—Cl3 2.2965 (13) C5—H5A 0.9300
Cl1—C6 1.786 (6) C6—H6A 0.9699
Cl2—C1 1.715 (5) C6—H6B 0.9700
Cl5—C12 1.695 (6) C7—C8 1.386 (6)
Cl6—C7 1.729 (5) C8—C9 1.360 (8)
N1—C1 1.339 (5) C8—H8A 0.9299
N1—C5 1.347 (6) C9—C10 1.390 (7)
N2—C7 1.330 (6) C9—H9A 0.9300
N2—C11 1.338 (6) C10—C11 1.369 (6)
C1—C2 1.391 (6) C10—C12 1.502 (7)
C2—C3 1.369 (7) C11—H11A 0.9300
C2—H2A 0.9300 C12—H12A 0.9699
C3—C4 1.373 (7) C12—H12B 0.9701
N2—Cu1—N1 169.17 (14) C4—C6—Cl1 112.6 (4)
N2—Cu1—Cl4 86.58 (11) C4—C6—H6A 108.9
N1—Cu1—Cl4 89.26 (11) Cl1—C6—H6A 108.8
N2—Cu1—Cl3 89.53 (11) C4—C6—H6B 109.3
N1—Cu1—Cl3 94.26 (10) Cl1—C6—H6B 109.3
Cl4—Cu1—Cl3 175.71 (5) H6A—C6—H6B 107.8
C1—N1—C5 116.9 (4) N2—C7—C8 124.0 (4)
C1—N1—Cu1 124.6 (3) N2—C7—Cl6 116.5 (3)
C5—N1—Cu1 118.2 (3) C8—C7—Cl6 119.5 (4)
C7—N2—C11 117.1 (4) C9—C8—C7 117.2 (5)
C7—N2—Cu1 121.2 (3) C9—C8—H8A 121.3
N1—C1—C2 123.0 (4) C8—C9—C10 120.5 (4)
N1—C1—Cl2 117.8 (3) C8—C9—H9A 119.9
C2—C1—Cl2 119.1 (4) C10—C9—H9A 119.7
C3—C2—C1 118.5 (4) C11—C10—C9 117.6 (5)
C3—C2—H2A 120.8 C11—C10—C12 122.7 (5)
C1—C2—H2A 120.8 C9—C10—C12 119.7 (4)
C2—C3—C4 120.0 (4) N2—C11—C10 123.5 (4)
C2—C3—H3A 120.0 N2—C11—H11A 118.3
C4—C3—H3A 120.0 C10—C11—H11A 118.2
C3—C4—C5 117.9 (4) C10—C12—Cl5 114.7 (4)
C3—C4—C6 123.6 (4) C10—C12—H12A 108.8
C5—C4—C6 118.3 (4) Cl5—C12—H12A 108.6
N1—C5—C4 123.6 (4) C10—C12—H12B 108.5
N1—C5—H5A 118.2 Cl5—C12—H12B 108.5
C4—C5—H5A 118.2 H12A—C12—H12B 107.5
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
C5—H5A···Cl3i 0.93 2.70 3.390 (5) 131
C6—H6B···Cl4ii 0.97 2.79 3.636 (6) 146
C9—H9A···Cl4iii 0.93 2.62 3.444 (5) 149
C11—H11A···Cl5 0.93 2.83 3.140 (5) 101