• No results found

Di­chloro­bis­[2 chloro 5 (chloro­meth­yl)pyridine]copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "Di­chloro­bis­[2 chloro 5 (chloro­meth­yl)pyridine]copper(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m2388

Jianet al. [CuCl

2(C12H10N2)2] doi:10.1107/S1600536805033660 Acta Cryst.(2005). E61, m2388–m2389

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorobis[2-chloro-5-(chloromethyl)-pyridine]copper(II)

Fangfang Jian,a* Lan Zhang,a Hailian Xiaoaand Liyun Zhangb

a

New Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People’s Republic of China, andbCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.007 A˚

Rfactor = 0.053

wRfactor = 0.169

Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [CuCl2(C6H5Cl2N)2], each Cu atom has

a distorted tetrahedral coordination involving two Clanions

and two 2-chloro-5-(chloromethyl)pyridine ligands. The mol-ecular structure and packing are stabilized by intra- and

intermolecular C—H Cl hydrogen-bonding interactions.

Comment

The structural and magnetic properties of copper(II)

complexes of the type CuL2X2 have been the subjects of

numerous recent publications. This is particularly true for the cases whereLis pyridine or a substituted pyridine (Swank & Willett, 1980; Marsh et al., 1981; Crawford & Hatfield, 1977). Much of this work has been concerned with the correlation of the structural properties of these complexes with their magnetic properties. In order to search for new complexes of this type, we synthesized the title compound and report here its crystal structure.

The title structure contains one copper(II), two 2-chloro-5-(chloromethyl)pyridine ligands and two chloro ligands. The coordination of the copper(II) ion is best described as distorted tetrahedral. The Cu—Cl and Cu—N bond distances are in agreement with those reported recently for dichloro-bis[2-(chloromethyl)pyridine]copper(II) (Zhang et al., 2004). The dihedral angle formed by the pyridine rings is 18.2 (2).

The crystal packing is stabilized by C—H Cl intra- and

intermolecular hydrogen-bond interactions (Table 2).

Experimental

The title compound was prepared by the reaction of CuCl2(0.01 mol)

and 2-chloro-5-(chloromethyl)pyridine (0.02 mol) in ethanol solution (50 ml) under reflux for 4 h. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from an ethanol solution at room temperature.

(2)

Crystal data

[CuCl2(C12H10N2)2] Mr= 458.47 Monoclinic,C2=c a= 16.699 (4) A˚

b= 14.981 (5) A˚

c= 15.205 (3) A˚

= 115.74 (3)

V= 3426.4 (18) A˚3

Z= 8

Dx= 1.778 Mg m3 MoKradiation Cell parameters from 25

reflections

= 4–14

= 2.20 mm1 T= 293 (2) K Block, green

0.250.200.18 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!scans

Absorption correction:’scan (Northet al., 1968)

Tmin= 0.595,Tmax= 0.673

7596 measured reflections 3689 independent reflections 2778 reflections withI> 2(I)

Rint= 0.044

max= 27.0 h=21!13

k=13!19

l=18!18 3 standard reflections

every 100 reflections intensity decay: none

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.053

wR(F2) = 0.169 S= 1.05 3689 reflections 190 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0948P)2

+ 8.8566P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 1.53 e A˚

3 min=0.97 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—N2 2.048 (4) Cu1—N1 2.071 (4)

Cu1—Cl4 2.2548 (14) Cu1—Cl3 2.2965 (13)

N2—Cu1—N1 169.17 (14) N2—Cu1—Cl4 86.58 (11) N1—Cu1—Cl4 89.26 (11)

N2—Cu1—Cl3 89.53 (11) N1—Cu1—Cl3 94.26 (10) Cl4—Cu1—Cl3 175.71 (5)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C5—H5A Cl3i

0.93 2.70 3.390 (5) 131 C6—H6B Cl4ii

0.97 2.79 3.636 (6) 146 C9—H9A Cl4iii 0.93 2.62 3.444 (5) 149 C11—H11A Cl5 0.93 2.83 3.140 (5) 101

Symmetry codes: (i) xþ1;y;zþ1

2; (ii) xþ1;y;zþ1; (iii)

xþ1 2;yþ

1 2;zþ

1 2.

H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 A˚ andUiso=

1.2Ueq(C). The highest peak is located 1.53 A˚ from atom Cl5.

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement:CAD-4 Software; data reduction:NRCVAX(Gabeet al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:SHELXTL/PC(Sheldrick, 1990); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No.Y2002B06).

References

Crawford, V. H. & Hatfield, W. E. (1977).Inorg. Chem.16, 1336–1341. Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The

Netherlands.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989).J. Appl. Cryst.22, 384–387.

Marsh, W. E., Valente, E. J., Hodgson, D. J. (1981).Inorg. Chim. Acta,51, 49– 53.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst. A24, 351– 359

Sheldrick, G. M. (1990).SHELXTL/PC. Siemens Analytical X-ray Instru-ments Inc. Madison Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Swank, D. D. & Willett, R. D. (1980).Inorg. Chem.19, 2321–2323.

[image:2.610.313.569.72.192.2]

Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004).Acta Cryst.E60, m599–m600.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m2388–m2389

supporting information

Acta Cryst. (2005). E61, m2388–m2389 [https://doi.org/10.1107/S1600536805033660]

Dichlorobis[2-chloro-5-(chloromethyl)pyridine]copper(II)

Fangfang Jian, Lan Zhang, Hailian Xiao and Liyun Zhang

Dichlorobis[2-chloro-5-(chloromethyl)pyridine]copper(II)

Crystal data

[CuCl2(C12H10N2)2] Mr = 916.94 Monoclinic, C2/c

Hall symbol: -C 2yc

a = 16.699 (4) Å

b = 14.981 (5) Å

c = 15.205 (3) Å

β = 115.74 (3)°

V = 3426.4 (18) Å3 Z = 4

F(000) = 1816

Dx = 1.778 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 4–14°

µ = 2.20 mm−1 T = 293 K Block, green

0.25 × 0.20 × 0.18 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.595, Tmax = 0.673

7596 measured reflections

3689 independent reflections 2778 reflections with I > 2σ(I)

Rint = 0.044

θmax = 27.0°, θmin = 1.9°

h = −21→13

k = −13→19

l = −18→18

3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.053 wR(F2) = 0.169 S = 1.05 3689 reflections 190 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0948P)2 + 8.8566P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 1.53 e Å−3

Δρmin = −0.97 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.38296 (3) 0.10515 (3) 0.23934 (4) 0.0404 (2)

Cl1 0.55341 (15) −0.30657 (13) 0.42789 (16) 0.1049 (7)

Cl2 0.25520 (9) −0.03386 (9) 0.06419 (10) 0.0686 (4)

Cl3 0.43767 (7) 0.11627 (7) 0.12487 (8) 0.0433 (3)

Cl4 0.32302 (9) 0.10336 (8) 0.34666 (11) 0.0617 (4)

Cl5 0.55431 (12) 0.43986 (18) 0.40611 (18) 0.1259 (10)

Cl6 0.20978 (8) 0.19182 (9) 0.07463 (11) 0.0679 (4)

N1 0.3851 (2) −0.0331 (2) 0.2412 (3) 0.0413 (8)

N2 0.3553 (2) 0.2391 (2) 0.2249 (3) 0.0431 (8)

C1 0.3289 (3) −0.0850 (3) 0.1691 (3) 0.0454 (10)

C2 0.3265 (4) −0.1774 (3) 0.1766 (4) 0.0575 (12)

H2A 0.2864 −0.2114 0.1252 0.069*

C3 0.3846 (4) −0.2171 (3) 0.2616 (4) 0.0573 (12)

H3A 0.3846 −0.2788 0.2680 0.069*

C4 0.4427 (3) −0.1659 (3) 0.3372 (4) 0.0494 (10)

C5 0.4410 (3) −0.0743 (3) 0.3239 (3) 0.0464 (10)

H5A 0.4806 −0.0394 0.3748 0.056*

C6 0.5037 (4) −0.2032 (4) 0.4361 (4) 0.0681 (15)

H6A 0.4699 −0.2124 0.4735 0.082*

H6B 0.5501 −0.1601 0.4709 0.082*

C7 0.2811 (3) 0.2702 (3) 0.1533 (3) 0.0476 (10)

C8 0.2571 (3) 0.3595 (3) 0.1412 (4) 0.0554 (12)

H8A 0.2061 0.3792 0.0882 0.067*

C9 0.3116 (3) 0.4176 (3) 0.2099 (4) 0.0585 (13)

H9A 0.2980 0.4781 0.2043 0.070*

C10 0.3876 (3) 0.3870 (3) 0.2887 (4) 0.0503 (11)

C11 0.4075 (3) 0.2981 (3) 0.2910 (3) 0.0475 (10)

H11A 0.4603 0.2778 0.3410 0.057*

C12 0.4431 (4) 0.4509 (4) 0.3678 (5) 0.0734 (16)

H12A 0.4298 0.4429 0.4234 0.088*

H12B 0.4262 0.5113 0.3440 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0404 (3) 0.0287 (3) 0.0509 (3) −0.00185 (18) 0.0186 (2) −0.00168 (19)

Cl1 0.1303 (16) 0.0797 (11) 0.1183 (15) 0.0502 (11) 0.0666 (13) 0.0447 (10)

Cl2 0.0612 (8) 0.0547 (7) 0.0636 (8) −0.0074 (6) 0.0025 (6) −0.0001 (6)

Cl3 0.0402 (5) 0.0397 (5) 0.0465 (6) 0.0033 (4) 0.0156 (4) 0.0023 (4)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m2388–m2389

Cl5 0.0596 (9) 0.155 (2) 0.1358 (18) −0.0020 (11) 0.0169 (10) −0.0823 (16)

Cl6 0.0492 (7) 0.0629 (8) 0.0739 (9) −0.0002 (6) 0.0102 (6) −0.0095 (6)

N1 0.0399 (18) 0.0327 (17) 0.050 (2) −0.0033 (13) 0.0183 (16) −0.0018 (14)

N2 0.0426 (18) 0.0350 (17) 0.050 (2) 0.0036 (14) 0.0184 (16) −0.0002 (15)

C1 0.045 (2) 0.037 (2) 0.052 (3) −0.0040 (18) 0.020 (2) −0.0033 (18)

C2 0.068 (3) 0.036 (2) 0.066 (3) −0.012 (2) 0.028 (3) −0.014 (2)

C3 0.078 (3) 0.028 (2) 0.066 (3) −0.003 (2) 0.031 (3) −0.003 (2)

C4 0.050 (2) 0.040 (2) 0.062 (3) 0.0026 (19) 0.028 (2) 0.006 (2)

C5 0.044 (2) 0.041 (2) 0.051 (2) −0.0066 (18) 0.018 (2) −0.0039 (19)

C6 0.075 (4) 0.055 (3) 0.071 (4) 0.013 (3) 0.028 (3) 0.016 (3)

C7 0.043 (2) 0.046 (2) 0.052 (2) 0.0059 (18) 0.019 (2) 0.0005 (19)

C8 0.048 (2) 0.047 (2) 0.070 (3) 0.013 (2) 0.024 (2) 0.009 (2)

C9 0.062 (3) 0.036 (2) 0.086 (4) 0.016 (2) 0.040 (3) 0.009 (2)

C10 0.055 (3) 0.038 (2) 0.062 (3) 0.0012 (19) 0.029 (2) −0.004 (2)

C11 0.048 (2) 0.038 (2) 0.051 (3) 0.0026 (18) 0.016 (2) −0.0019 (18)

C12 0.074 (4) 0.048 (3) 0.094 (4) −0.003 (3) 0.033 (3) −0.022 (3)

Geometric parameters (Å, º)

Cu1—N2 2.048 (4) C3—H3A 0.9300

Cu1—N1 2.071 (4) C4—C5 1.386 (6)

Cu1—Cl4 2.2548 (14) C4—C6 1.510 (7)

Cu1—Cl3 2.2965 (13) C5—H5A 0.9300

Cl1—C6 1.786 (6) C6—H6A 0.9699

Cl2—C1 1.715 (5) C6—H6B 0.9700

Cl5—C12 1.695 (6) C7—C8 1.386 (6)

Cl6—C7 1.729 (5) C8—C9 1.360 (8)

N1—C1 1.339 (5) C8—H8A 0.9299

N1—C5 1.347 (6) C9—C10 1.390 (7)

N2—C7 1.330 (6) C9—H9A 0.9300

N2—C11 1.338 (6) C10—C11 1.369 (6)

C1—C2 1.391 (6) C10—C12 1.502 (7)

C2—C3 1.369 (7) C11—H11A 0.9300

C2—H2A 0.9300 C12—H12A 0.9699

C3—C4 1.373 (7) C12—H12B 0.9701

N2—Cu1—N1 169.17 (14) C4—C6—Cl1 112.6 (4)

N2—Cu1—Cl4 86.58 (11) C4—C6—H6A 108.9

N1—Cu1—Cl4 89.26 (11) Cl1—C6—H6A 108.8

N2—Cu1—Cl3 89.53 (11) C4—C6—H6B 109.3

N1—Cu1—Cl3 94.26 (10) Cl1—C6—H6B 109.3

Cl4—Cu1—Cl3 175.71 (5) H6A—C6—H6B 107.8

C1—N1—C5 116.9 (4) N2—C7—C8 124.0 (4)

C1—N1—Cu1 124.6 (3) N2—C7—Cl6 116.5 (3)

C5—N1—Cu1 118.2 (3) C8—C7—Cl6 119.5 (4)

C7—N2—C11 117.1 (4) C9—C8—C7 117.2 (5)

C7—N2—Cu1 121.2 (3) C9—C8—H8A 121.3

(6)

N1—C1—C2 123.0 (4) C8—C9—C10 120.5 (4)

N1—C1—Cl2 117.8 (3) C8—C9—H9A 119.9

C2—C1—Cl2 119.1 (4) C10—C9—H9A 119.7

C3—C2—C1 118.5 (4) C11—C10—C9 117.6 (5)

C3—C2—H2A 120.8 C11—C10—C12 122.7 (5)

C1—C2—H2A 120.8 C9—C10—C12 119.7 (4)

C2—C3—C4 120.0 (4) N2—C11—C10 123.5 (4)

C2—C3—H3A 120.0 N2—C11—H11A 118.3

C4—C3—H3A 120.0 C10—C11—H11A 118.2

C3—C4—C5 117.9 (4) C10—C12—Cl5 114.7 (4)

C3—C4—C6 123.6 (4) C10—C12—H12A 108.8

C5—C4—C6 118.3 (4) Cl5—C12—H12A 108.6

N1—C5—C4 123.6 (4) C10—C12—H12B 108.5

N1—C5—H5A 118.2 Cl5—C12—H12B 108.5

C4—C5—H5A 118.2 H12A—C12—H12B 107.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C5—H5A···Cl3i 0.93 2.70 3.390 (5) 131

C6—H6B···Cl4ii 0.97 2.79 3.636 (6) 146

C9—H9A···Cl4iii 0.93 2.62 3.444 (5) 149

C11—H11A···Cl5 0.93 2.83 3.140 (5) 101

Figure

Figure 1

References

Related documents

Lorsque nous portons sur un graphique le revenu par habitant et l’indice de la démocratie, nous confirmons que les économies du deuxième groupe (Régime

However, the Bank of Israel has faced tradeoff between easing monetary policy stance to arrest the exchange rate appreciation due to capital inflows or maintaining

Features and Pivots The input features of all models are word unigrams and bigrams. The di- vision of the feature set into pivots and non-pivots is based on Blitzer et al.. ichart

In the pre-commitment case, the government is assumed to stick to its green electricity policy (in terms of subsidy) even under innovation.. Possible reasons for pre-commitment

We use the MedSentE- val 1 toolkit, a python-based toolkit that supports different embedding techniques including tradi- tional word embeddings like GloVe and FastText,

Keywords: Police Militarization, Excessive Force, Law Enforcement Management and Administrative Statistics (LEMAS), 1033 Program, Treatment

We have performed four different experiments to analyse the performance of the previously ex- plained architecture when classifying manually annotated tweets: 1) Only the tweet to

The Sememe Attention over Context Model can flexibly select appropriate senses and sememes for context words according to the target word.. The process can also be applied to