• No results found

An associative analysis of object memory

N/A
N/A
Protected

Academic year: 2020

Share "An associative analysis of object memory"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

An

associative

analysis

of

object

memory

Jasper

Robinson

,

Charlotte

Bonardi

SchoolofPsychology,TheUniversityofNottingham,NG72RD,England,UK

h

i

g

h

l

i

g

h

t

s

•SynopsisgivenofmodelofassociativememorywhoseoriginisasatheoryofPavlovianconditioning.

•Objectrecognitiontasksareexplicableintermsoftheassociativememorymodel.

•Experimentalpredictionsfromtheassociativemodelarefoundtobesupported.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30June2014

Receivedinrevisedform27October2014 Accepted29October2014

Availableonline13November2014

Keywords:

Associativelearning Discrimination Objectrecognition Pavlovianconditioning Priming

Recognitionmemory

a

b

s

t

r

a

c

t

Differentaspectsofrecognitionmemoryinrodentsarecommonlyassessedusingvariantsofthe sponta-neousobjectrecognitionprocedureinwhichanimalsexploreobjectsthatdifferintermsoftheirnovelty, recency,orwheretheyhavepreviouslybeenpresented.Thepresentarticledescribesthreestandard variantsofthisprocedure,andoutlinesatheoryofassociativelearning,SOP[1]whichcanofferan expla-nationofperformanceonallthreetypesoftask.Theimplicationsofthisfortheoreticalinterpretations ofrecognitionmemoryandtheproceduresusedtoexploreitarediscussed.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Wemaytakerecognitionmemoryasbeingthediscrimination betweennovelandfamiliarevents[2–4].Ithasbeenpopularto examinerecognitionmemoryinrodentsbycapitalisingontheir tendencytoapproachandexplorenovelorunexpectedobjectsin preferencetofamiliarorexpectedobjects[5,6].Systematic varia-tionsinthisprocedurehaveencouragedparticularaccountsofthe psychologicalprocessesunderlyingobjectrecognition:Ennaceur &Delacour[7](seealso[8,9])parsimoniouslydescribememoryas thehabituationofanapproachresponsetowardsanobjectwith increasedexposure;AggletonandBrown[10]maintainthatitis

Abbreviations:A1,primarystateofstimuluselementactivityinSOP;A2,primed orsecondarystateofactivityinSOP;CS,conditionedstimulusorsignal;US, uncon-ditionedstimulusoroutcome.

Correspondingauthor.Tel.:+441159515322;fax:+441159515324. E-mailaddress:jasper.robinson@nottingham.ac.uk(J.Robinson).

URL:http://www.jasperrobinson.wordpress.com/(J.Robinson).

basedonasenseoffamiliaritytowardsanobjectthatisbuiltup throughexposuretoit(seealso[2,11]);Cowell,Bussey,and Sak-sida[12]describeamulti-layerconnectionistnetworkthatallows recognitiontooccurasin thenatural courseofthebuildingof stimulusrepresentationsandseveralauthorshavesuggestedthat rodents’recognitionmemoryrepresentsarelativelysophisticated formofmnemonicprocess[13,14].

Inthisreportwedescribeanalternativepsychologicalaccount ofrecognitionmemory,whichisbasedonBrandon,Vogel,& Wag-ner’smodel[15],SOP(StandardOperatingProcedures;[16–18]). SOPisprimarilyamodelofassociativelearning,butunlikesome others[19]incorporatesaconceptualisationofmemory.Weargue herethatthisfeatureofSOPallowsittoaccommodatemuchofwhat isknownaboutrodents’objectrecognitionandshowthatithas generatedpredictionsthathavebeenexperimentallysupported. SOPhasproducedsuccessfulaccountsofmanyphenomena(e.g., habituation[3,20,21],associativelearning,discriminationlearning) andifitsaccountofobject recognitionwereaccepted,itwould strengthen its positionasa general-purposemodel of adaptive behaviour.

http://dx.doi.org/10.1016/j.bbr.2014.10.046

(2)

Fig.1. Objectrecognitionexperimentaldesigns.Experimentaldesignsforthree, keytypesofobjectrecognitionprocedure:spontaneousobjectrecognition,relative recencyandobject-in-context.PandQrefertodistinctlydifferentobjects;xand yrefertodistinctlydifferentcontexts.Theinequalitysignsindicatetheobjectthat elicitsthemostapproachbehaviour.

2. Objectrecognitioninnon-humananimals

2.1. Generalproceduralfeaturesandexperimentalconsiderations

Spontaneous object recognition [7,22–25], relative recency

[13,26–31]andobject-in-context[32–38]aretermsgiventothree ofthemostpopularproceduresforlookingatobjectmemoryin rodents(seeFig.1).Wedescribeeachinturn,beforediscussingan associativemodelofmemory,SOP,[15]thatcanprovidea satis-factoryexplanationofperformanceonthesethreetasks,andalso generatenovel,testablepredictions.

Allthreeproceduresinvolvetheplacementofarodentinoneor moreexperimentalcontextsalongwithoneormoreobjects;unlike matching-andnon-matching-to-sampleproceduresforstudying memory[39–41],foodreinforcementisnotusedinthesetasks. Experimental contexts vary in complexity, from being a single undecoratedwoodenboxtopairsofcontextsdifferentiatedintheir floors and/orwalls. Theexperimentalobjects areoften domes-ticitems(bottles,vases,etc.)thatareselectedtobedifficultfor rodentstoknock over, chewor situpon,behaviours thatcould easilycontaminatethemeasuredbehaviour.Thethreetasksdiffer principallyinthepreexposurethatrodentsreceive(whichisfully describedbelow).Forexample,inspontaneousobjectrecognition oneobject,P,ispreexposed.Inallthreetasks,testperformance involvesthesimultaneouspresentationofapairofdifferentobjects (PandQ),whichhavebeentreateddifferentlyearlierinthe pro-cedure(butsee[42]).Theexperimenterwillmeasuredifferences intheamounts ofbehaviourdirected towardsobjectsPand Q. Thismayeitherbespecificexploratoryresponses[32,33]orentry intonotionalzonesthatsurroundeachobject[31,43,44].In spon-taneousobjectrecognition,approachtoPisdepressedrelativeto Qontest[26,33]anddecreasesoverthecourseofpre-exposure

[20,45].

InterpretationofadifferenceinbehaviourtowardsobjectsPand Qrequiresappropriateexperimentalmanagement.Forexample,it isessentialtocounterbalancetheobjectsservingasPandQ(e.g., halfoftherodentshaveabottleasPandavaseasQ;theremaining rodentsreceivethereversearrangement)aswellastheirpositions withinthecontext(e.g.,halfoftherodentsreceiveobjectPonthe leftofobjectQ;theremainingrodentsreceivethereverse arrange-ment).Itisalsonecessarytoensurethatthetwoobjectsdonot differintheirmarking(e.g.,byodourcues),whichmaybeachieved eitherbycleaningorreplacingthemafteruse.

2.2. Threetypesofobjectrecognitiontask

In a spontaneous object recognition experiment [7,22–25], rodentsreceiveapre-exposuretrialwithobjectPbeforetesting withPandanovelobject,Q.QisapproachedinpreferencetoPon

testing.Typicallytwoversionsofasingleobject(here,P)are pre-exposedsothatthearrangementofobjectsinthecontextduring preexposurematchesthatduringtesting.Justasindelayed non-matchingtosample [46–49],in spontaneousobject recognition theintervalbetweenpre-exposureandtestingcanbeextendedto reducetestdiscrimination[50–52].

Thistemporal dynamic ofthe intervalbetween preexposure andtestisexplicitlymanipulatedintherelativerecencyprocedure

[13,26–31].Heretwopre-exposuretrialsprecedetesting:thefirst iswithP; thesecondwithQ.Ontest,rodentsapproachPmore thanQ,demonstratingbettermemoryofthemorerecently pre-sentedQ.Theinterval betweenthetwopre-exposuretrialsand theintervalbetweenthesecondpre-exposuretrialandtestwill emergelaterasimportantconsiderationsintheevaluationofthe associativeanalysisofobjectmemory.

Liketherelativerecencyprocedure,theobject-in-context pro-cedureinvolvestheseparatepre-exposureofbothobjectsPandQ beforethetest.Thedifferenceisthatpre-exposuretoeachobject occursinadistinctlydifferentcontext:ObjectPincontextxand objectQincontexty.GreaterapproachtowardsQthanPisfound whentestingoccursincontextx[32–38];and,ofcourse,testing maybegivenincontextyinwhichapproach isbiasedtowards P.Theparticularsequenceofpre-exposuretrials(xPbeforeyQor thereverse)mayconstitutearelativerecencymanipulationand itsimplicationsfor ourevaluation ofSOP areconsideredbelow (Section3.4.3).

2.3. Brainareasassociatedwiththesethreetypesofobject recognition

Althoughourreportis intendedtoconsidera psychological-levelofanalysisofrecognitionmemoryitisworthwhiletoconsider brain areas that are associated with the three forms of object recognition.Evidenceoftheimportanceoftheperirhinalcortex inspontaneous objectrecognitionis excellentin thatthere are manyexamplesofitsinvolvement(primarilyfromlesionstudies inrats)fromavarietyoflabs(e.g.,[22,23,28,37,45,49,53,54])and, asfarasweareaware,therearenoclaimsofnullfindings.There isalsosomeevidenceofinvolvementofprefrontalcorticalregions

[28]butmixedfindingsofinvolvementofthehippocampus(e.g., withdeficitsreportedinsomelabs,e.g.,[23,50],butnotinothers, e.g.,[35,38,55]).Fewerbrainregionshavebeenexaminedin rel-ativerecencyproceduresbutthereisabundantevidenceforthe involvementofspecificregionsoftheprefrontalcortexinrats(e.g.,

[27,28,56,13,57])and,againoftheperirhinalcortexandits connec-tionswiththeprefrontalcortex(e.g.,[28,13]).Object-in-context learninghasbeendemonstratedtobeaffectedbymanipulations ofthehippocampus(e.g.,[35,38,55],seealso[58]forevidenceof hippocampalinvolvementinanaudio-visualanalogueof object-in-contextlearning)andtheprefrontalcortex(e.g.,[28,36]).

3. TheSOPmodelofassociativememory

3.1. Stimulusrepresentation

(3)

Fig.2. Activitytransitionsofstimuluselements.

ThisfigureisastillfromamoviethatisembeddedinthePDFversionofthis manuscript(seeAppendixA).Themovierepresentsthesequenceofactivity tran-sitionstatesinBrandonetal.’sSOPmodel.Threestimuluselementsareinitiallyin aninactivestate.Clickingthe“Activate”buttonisanalogoustothepresentationof astimulustoanorganism,suchasthepresentationofatonetoarat.Theratwill typicallyshowastrongorientingresponsetothesourceofthetone(representedas, “?!”),correspondingtothestimuluselements’promotiontotheirA1statesof activ-ity.Theelementsarenext“primed”(i.e.,theyenteraninferiorA2stateofactivity) wheretheyprovokeweakerorientingresponses.Finally,theelementsre-entertheir inactivestateswheretheydonotprovokestimulus-specificbehaviour.For compu-tationalreasons,Brandonetal.conceiveofstimulusrepresentationsascomprising muchlargerpopulationsofelementsthanthis;nonethelessthesequenceinwhich thestimuluselementspassthroughthevariousactivationstatesisidentical,and ele-mentscannotpassdirectlyfromA2backtoA1.Thuspresentationofthetone(i.e., clicking“Activate”)whenitselementsareintheirA2statedoesnotpromotethem intotheirA1state:EntryintoA1statemustcomedirectlyfromtheinactivestate.

tonerepresentationwouldbecomeassociatedwiththe represen-tationalelementsthatcodeforthefood(withtheirowndistinctive codingpropertiesrelatingtoitssmell,texture,etc.)Presentation ofthetonecouldproducefood-relatedrespondingbyactivationof thefoodstimuluselementsviatheseinter-elementassociations. Moreover,presentationofaphysicallysimilar,butdiscriminably different,tone(e.g.,onehavinga1.8Hzpitchwithanamplitude, again,of 65dB SPL) couldalso produceresponding, albeit at a reducedlevel,totheextentthatitsharedoneormorestimulus elementswiththetoneusedintraining[59–61].

3.2. Activitystates,theirtransitionsandbehaviour

Hebb[62]describedlearningprinciplesinwhichcellassemblies (whicharenotionallyidenticaltostimuluselementsinSOP)are ineitheractiveorinactivestates.Coincidentperiodsofactivityin cellassemblieswouldpromotetheformationofexcitatory associa-tions.However,Hebb’ssystemfailstopredicthallmarkassociative learningphenomenasuchasblockingandrelativevalidity[63,64]. LikeHebb’smodel,SOPsupposesthatconcurrentlyactivestimulus elementswillsupportassociationformation(thiswillbeoutlined belowinSection3.3)butsupposestheexistenceoftwoqualitatively differentformsofactivity.

Arepresentationofabrief,2.0-kHztone’sstimuluselements andtheirtransitionthroughSOP’sactivitystatesissummarisedin theHTMLmovieinFig.2.Thetone’selementsbegininthe inac-tivestateandtheywillnotelicitanybehaviour.ClickingtheAction buttoncorrespondstothepresentationofthetoneandthiswill promotethetone’selementsintotheirprimaryformofactivity(A1 state)inwhichtheywillelicitbehaviour.Oninitialpresentationof atone,theratwillelicitastrongorientingresponse[9],forexample towardstheloudspeakerandthisisrepresentedbythelargehazard sign,markedwith“?!”.Withsustainedorrepeatedpresentation, thetone’selementswillfadeintotheirsecondarystateofactivity (A2state)wheretheywillelicitweakerorienting,whichis repre-sentedbyasmallerhazardsignmarkedwith“?”.Elementsintheir A2statesarereferredtoasprimed.AftertheirperiodofA2activity, orpriming,theelementsdecaytotheirinactivestatesandnolonger elicitorienting.Threepointsarenotablehere:1.Themomentary

probabilityofeachelement’stransitionfromonestatetothenext neednotbeuniform.Thisallowselementsofasinglestimulusto inhabitdifferentactivitystatesatthesametime;2.Astimulus ele-mentisassumedtobeindivisible–itcannotinhabitmorethanone activitystatesimultaneously;3.ElementsmustpassintotheirA1 statesviatheirinactivestates,aswesawinthemovie:Theycannot movedirectlyfromA2toA1.Thus,forexample,asecond presenta-tionofthetonewhiletheelementsareintheirA2statesdoesnot returnthemtotheirA1states.

Brandonetal.describeasecond,associativerouteofprimingin SOP.Followingsuccessfulassociativelearning,forexampleinan appetitiveconditioningprocedure,atonesignalwillgenerateA2 activityinthefoodoutcome.Thatis,thepresentationofthetone generatesA1activityinitscentralrepresentation,whichprimesthe food’srepresentationdirectlyintotheA2stateviatheexcitatory associationbetweenthem.Onceprimed,thefoodrepresentation provokesconditionedresponding.SOP’sassociativeprimingallows ittoaccommodatemanylong-standingphenomenainanimal dis-criminationlearning,suchasblocking[64,65]andrelativevalidity

[63]–inkeepingwithothermodels[19,60,66].Associativepriming alsoallowsSOPtocorrectlyanticipatethatassociativelearningwill reachanasymptote,afeaturelackinginHebb’s[62]model.

3.3. SOP’srulesforassociationformation

Having outlined SOP’s transition characteristics for stimulus elementswe arein thepositiontounderstanditsfourrulesfor associativelearning.Therulesarestraightforwardandrepresented inFig.3:Excitatoryassociationswillbeformedbetween stimu-luselementswhoseelementsaresimultaneouslyintheirA1states (firstrule);inhibitoryassociationswillbeformedfromA1-state

(4)

elementstoA2-stateelements(secondrule)butnoassociations willbereciprocated(thirdrule).Noassociativechangeswilloccur amongA2-stateelements(fourthrule).Futurepresentationsofa stimuluswillactivatetherepresentationofassociatedelements viaexcitatoryassociationsintotheirA2state;butinhibitory asso-ciationswillpreventthis,leavingtheelementsinactive.Wenext outlinecircumstancesinPavlovianconditionedexperimentswhere SOPassumestheseassociativechangestakeplace.

In standard Pavlovian conditioning in which, for example, rodentsreceiveabrieftonewhoseterminationiscoincidentalwith deliveryofafoodpellet(Tone→Food;e.g.,[67,68]),thepairingof thetoneandfoodwilltendtopromotetheirstimuluselementsinto theirA1statesandthiswillsupportexcitatoryconditioning.SOP predictsthatthebestconditionforsupportingassociativechange iswhenstimuluselementsarepairedsimultaneouslybutPavlovian conditioningprocedurestypicallyinvolvestheserialpairingofthe signal(orconditionedstimulus–CS)andoutcome(or uncondi-tionedstimulus–US).Thereasonsforthisaremerelypractical: Withserialsignal→outcome pairings,measurement of respon-dingtotheCSisfree ofcontaminationfromtheunconditioned responsestotheoutcome.However,speciallydesignedanalytical experimentshavefoundlearningaboutsimultaneouslypresented stimulitobesuperiortolearningaboutseriallypresentedstimuli

[69],thefindinganticipatedbySOP.

Aninhibitorysignalforanoutcome(aninhibitor)willnot pro-ducedistinctbehaviourwhentesteddirectlyinthewaythatan excitatorysignalwill.Instead,inhibitionisinferredfromtheresults ofapairofindirecttestsforinhibition[70].In“retardationtests”, theinhibitor servesas a standard Pavloviansignal forthe out-comefollowinginhibitiontraining.Theacquisitionof(excitatory) conditioned responding to the inhibitor is slow relative to an appropriatecontrolcondition.The“summationtest”involvesthe superimpositionoftheinhibitoronapreviouslyestablished exci-torforthesameoutcome.Theinhibitorreducestheconditioned responsethatisotherwiseelicitedbytheexcitor.Retardationand summationtestscomplementeachotherandmanyarguethatboth mustbepassedtoclaimthatastimulusisatrueinhibitor[71].

“Backwardconditioning”and“featurenegativetraining” proce-dureshavebothbeenfoundtoproduceinhibitionbyretardation andsummationtesting.A1-signalactivitycanbepairedwith A2-outcomeactivityinPavlovianconditioningwhenthe“outcome” precedes,ratherthanfollows,the“signal”(i.e.,outcome→signal pairings,or “backward conditioning”). Whentested after train-ingthesignal mayproducenegligible performance [72], which SOPwouldassumetobetheresultofamixtureofexcitatoryand inhibitorysignal-outcomelearningcausedbytheA1-signal activ-ity’sco-occurrencewiththeoutcome’selementsastheydecayfrom A1toA2activitystates.Withalterationsinexperimental param-eters,itispossibleforoutcome→signalpairingstoproducefull inhibitorylearninginwhichthesignalisfoundontesttosuppress activityintheoutcomerepresentation[72].HereSOPwillassume thatthereisgreaterco-occurrenceoftheoutcome’sA2stateand thesignal’sA1statethantheoutcome’sA1stateandthesignal’sA1 state.AcommonermethodforarrangingthepairingofA1-signal andA2-outcomeactivityisfeature-negativediscrimination train-ing[70,71,73].Heresomethirdstimulus,e.g.,alight,isestablished asasignalforfoodandthetoneandlightarepresentedasa com-pound,whichisnotreinforcedbyfooddelivery(i.e.Light→Food, [Tone+Light]→nothing).

There are important parallels between SOP and its better-knownrelative,theRescorlaandWagnermodel[19].TheRescorla and Wagner model describes the notional changes in associa-tive strength between the representations of a pair of events on any particular trial, by the expression, V=˛ˇ(V). In particular,thechangeinassociativestrength(V)isproportional tothedifference in themaximum level of associative strength

(asymptote, ) and the sum total of each previous associative change(V)multipliedbytheproductofapairoflearning-rate parameters(˛andˇ)thatareassociatedwiththetwoeventsand where1≥˛>0and1≥ˇ>0.DuringPavlovianconditioning,each signalled outcomepresentationwill beless surprisingthanthe last;thisiscapturedbyincreasesinV,producingadeclineinthe term(−V),whichresultsinincreasinglysmallincrementsin V,yieldinganegativelyacceleratinglearningcurve.SOPshares this property,which is achieveddifferently through associative priming(Section3.3).Onthefirsttrialthesignalandoutcome’s conjointA1activitywillbegoodandthiswillincreaseexcitatory strengthbetweenthem.On thenexttrialthesignal’sexcitatory strengthwillprimetheoutcome.Theassociativeprimingwillbe weakonthesecondtrialbutitwillallowsomeoverlapofthe sig-nal’sA1elementsandtheoutcome’sA2elements(Fig.3).Outcome elementsthatarenotprimedwillbefreetoentertheirA1stateson thesecondtrialandthiswillproducesomeexcitation.Theratioof excitationtoinhibitionwilldecreaseasVincreasesoneachtrial andVwillreachasymptote()andatthispointchangesin exci-tationandinhibitionareequaloneachtrial.ThustheRescorlaand WagnermodelandSOPaccountforcompetitionforafixedquota ofassociativestrengthinthesamewayandthisprincipleextends tootherkeyassociativephenomenasuchasblocking[64,65],super conditioning[74]andrelativelyvalidity[63].SOPmaybeseenas a morecomplete modelthan Rescorlaand Wagner’sbecauseit operatesinrealtime[75,76]andanticipateslatentinhibitionand itscontextspecificity[77],someperceptuallearningphenomena

[78],andmodulationofUCSprocessing[76,79].

3.4. Decayprimingandobjectrecognition

Theconclusionsofthisandthefollowingsectionare summari-sedinFig.4.

Itmayalreadybeobviousthatthelearningprocessdescribed by SOP for Pavlovian conditioning (Sections 3.2 and 3.3) may applytootherstimuli,includingthoseusedinobjectrecognition experimentswithrodents.Althoughwemightconceiveofthe rep-resentationsofobjectsasbeingmorecomplexthanthoseofapure

(5)

tone,andcomposedofelementscorrespondingtomultiplesensory domains,thesameprocessescanbeapplied.

3.4.1. Spontaneousobjectrecognition

Therodent’sinitialencounterwithobjectPduringspontaneous objectrecognitionwillgenerateA1activityintherepresentational elementsthatprovokestrongapproachbehaviour.Aftersometime this behaviour willweaken, correspondingto theobject-P ele-ments’entryintotheirA2state.Testpresentationduringthistime wouldresultinthestandardbiastowardsexplorationofthenovel object,Qbecauseitsrepresentationalelementscanpassfreelyfrom theirinactivestatestotheirA1stateswhereastheelementsofPthat arestillintheA2-statecannot.

3.4.2. Relativerecency

Wenotedabove(Section2.2)thatspontaneousobject recogni-tionperformanceworsenswhenaretentionintervalisinterpolated betweenthepre-exposureandtesting[50–52].OneofSOP’s expla-nationsof thisisthat longerretentionintervalsallowagreater proportionofP’selementstoreturnfromtheirA2totheir inac-tivestates.Thus,ontest,bothP’sandQ’sinactiveelementscan passdirectlytotheirA1stateswheretheycanelicitsimilar,strong levelsofapproach.Demonstrationsofrelativerecency[13,26–31]

receiveanidenticalexplanationfromSOP:Thepre-exposureofP andthenofQwillelicitA1activityintheirelementsthatwill,over time,decaytoA2andtheninactivestates.BecausePispre-exposed beforeQitispossibletoarrangefortestingwithPandQatatime whenP’selementstendtobeinactivebutQ’selementsremainin theirA2states.HereP’selementsarefreetoentertheirA1states wheretheyelicitstrongapproach;butmanyofQ’selementsmay remainintheirA2statesandonlyweakapproachiselicited.

3.4.3. Object-in-context

ThemostnaturalSOPaccountofobject-in-contextlearningis describedfullybelow(Section3.5.1)andreliesontheoperation ofassociationsbetweeneachcontextandtheobjectthathasbeen pre-exposedinit(i.e.,x→Pandy→Q).Testingincontextxwill primeobjectP’selementsbutnotobjectQ’s.Thusthepresenceof PandQontestinxwillallowQ’selementstoentertheirA1states fromtheirinactivestates,wheretheycanelicitrelativelystrong approach;butP’sprimedelementswillremainintheirA2state, unabletoelicitsuchresponding.

Althoughsuchassociative-primingprocessesseemplausible,it isimportantalsotoconsiderpossibledecay-primingprocessesin object-in-contextlearning.Thetemporalasymmetriesdescribed forrelativerecencyarealsopossibleinobject-in-contextlearning whenasingletrialofeachtypeisused:Heretherearetwo possi-blesequencesfortheobjectandcontextpre-exposures(i.e.,either xP,yQoryQ,xP).Ofcourse,thisispreciselythearrangementof objectpre-exposureinarelativerecencyexperiment,andsoSOP anticipatesthatthefirst-pre-exposedobjectwillprovokestrongest approach,basedondecaypriming.Theassociative-priming mech-anismpredictsgreaterapproachofQthanofPontestincontext x,inwhichitisunexpected.Thus,decay-andassociative-priming willopposeoneanother(i.e.,weakeningdiscrimination)butpullin thesamedirection(i.e.,enhancingdiscrimination)withtheyQ,xP pre-exposuresequence.Wehaverecentlyfoundevidenceofsuch interactionsbetweenassociativeanddecaypriming(Tam,Bonardi, &Robinson,reportunderreview).

Althoughdecayprimingappearstoinfluenceperformance in object-in-context learning, it cannot adequately account for it. Therearetwo reasonsfor this statement: First,in experiments inwhich onlya singlexPandyQtrialisgiven [33–38], object-in-contextlearning isdetectedwhen performanceoverthetwo possiblepre-exposuresequencesiscollapsed.Thatis,although dif-ferencesindecayprimingappeartooperate,theywillassistand

hinderdiscriminationperformanceinequalmeasureoverboth pre-exposuresequences.Thefactthattestdiscriminationissuccessful impliestheoperationofasecondprocessoverandabovedecay priming;second,itispossibletoarrangemultiplepre-exposure trialssothatforeachrat,onaverage,objectsPandQhavebeen presentedequallyrecentlybeforetesting.Thisisachievedby pre-sentingxPandyQpre-exposuresmultipletimes,e.g.,xP,yQ,yQ,xP forhalfofthesubjectsandyQ,xP,xP,yQfortheremainderandalso resultsinobject-in-contextlearning[32].

Thus,itappearsthatdecayprimingisrequiredtoexplain rela-tiverecencybutcannotaccommodateobject-in-contextlearning. Decayprimingcouldalsoexplainspontaneousobjectrecognition.

3.5. Associativeprimingandobjectrecognition

3.5.1. Spontaneousobjectrecognition

Brandonet al. anticipate a second, association-based source ofspontaneousobjectrecognition:Contextcuesenterinto excit-atoryassociationswithobjectP’srepresentationalelementsduring objectP’spre-exposure(see,e.g.,[18,21,43]).Thus,contextcues willgenerateA2activity(butnotA1activity)inobjectP’s repre-sentationalelementsontesting.Aswiththedecay-basedsource ofperformance,theassociativesourceisbasedontheelements forobjectAtendingtobeintheirA2states,whilethoseforobject QtendtobeintheirA1stateatthepointoftesting.Thusitseems thatbothassociativeanddecayprimingcouldsupportspontaneous objectrecognition.

3.5.2. Relativerecency

Inthecaseofrelativerecency,anysuchcontext→Passociation willbematchedbyacontext→Qassociationandsotest discrim-inationcannotobviouslybeaccountedforbyassociativepriming. However,non-reinforcementofasignalmayextinguishexcitatory learning[80,81]andfollowsSOP’srules(i.e.,thenon-reinforced signalwillelicitA2activityintheoutcome’srepresentationthat willgenerateinhibitoryassociativelearning).Thusanycontext→P associationcouldundergoextinctionduringthesubsequentpairing ofthecontext withQ,duringwhichP isabsent.Thus test per-formancecouldbebasedentirelyonassociativeprimingbecause, duringtesting,thecontextwillbebetterassociatedwithQthan withP.ThiswillproducebetterprimingofQthanofP,leadingtothe observeddifference:greaterapproachofPthanQ.However,studies showthatmultiplenon-reinforcedtrialsarenecessarytoachieve appreciableextinction[80,81]–unlikethesingletrialnecessaryfor relativerecency.Thus,althoughanassociativeprimingaccountof relativerecencyislogicallypossibleitisempiricallyimprobable, andthisindicatesdecayprimingasthesolesourceofperformance.

3.5.3. Object-in-context

Themostdirectevidencefortheoperationofcontext→object associativeprimingcomesfromobject-in-contexttasks[32–38]. Aswenotedabove(Section3.4.3),accountsofobject-in-context learningbasedondecayprimingareimplausibleandso,by elim-ination,theassociativeprimingaccountseemsthemostrealistic componentoftheSOPmodelavailabletoexplainperformance.

3.6. Conclusionsabouttherolesofdecayandassociativepriming inobjectrecognition

(6)

parameters(timing,stimulusduration,etc.),wecouldmanipulate themixofdecayandassociativepriminginspontaneousobject recognition.Buttheunavoidableconclusionisthat,accordingto SOP’sanalysis,spontaneousobjectrecognitionisanimprecisetool andisunsuitableforunderstandingseparablepsychological pro-cesses.Themixedfindingsontheeffectsofhippocampuslesions onrats’spontaneousobjectrecognition(cf.[23,40,50]and[22,39]) maybeexplicableifitisassumed,say,thatassociativepriming isdependentonthehippocampusandismoreprominentinthe proceduresofthosefindinglesioneffectsthanthosewhohavenot (cf.[18]).Thislogicappliestoothermanipulations,ofcourse:For example,extensionoftheretentionintervalbetweenpre-exposure andtestwillhaveadevastatingeffectonspontaneousobject recog-nitionthatislargelydependentondecaypriming,butonebased largelyonassociativeprimingwillbeunaffected.Butthediscussion hereimpliesthatrelativerecencyandobject-in-contextlearning arerelativelyselectivetoolsforexaminingdecayandassociative primingrespectively.

Spontaneousobjectrecognitionhasbeendescribedasaformof habituation(7],seealso,[8,9])–thatis,adeclineinthebehaviour thatiselicitedbyastimuluswhenitispresentedrepeatedlyorover alongperiodoftime.Inthecaseofspontaneousobjectrecognition thestimulusisobject,Pandthemeasuredresponseisapproach orexploratorybehaviour.Thedeclinein thisbehaviourmaybe assumedtooccurduringpreexposurebutismeasuredinthetest relativetoobjectQ.Thestimulusspecificityshownheremeetsakey featureofhabituation.Severalauthorshavenotedthathabituation canbeunderstoodastheresultofadeclineintheefficacyofthe pathwaybetweenastimulusandresponse[82].Itisquitepossible thatsimple,stimulus-responsebasedadaptiveprocessmayoccur alongsidethoseanticipatedbySOP.Oneimplicationofthisisthat neuralmanipulationsmayaffectSOP-basedprocessesandspare stimulus-responsebasedprocesses(e.g.,[8,9,58]),orviceversa.

Sokolov([83],seealso[84,85])described amodel of habitu-ationin which thepresentationof a newstimuluswill leadto thedevelopmentofarepresentationofit.Prolongedorrepeated presentationofthestimuluswillfosterincreasingdetail ofthat representationuntilitisentirelyaccurate.Theprocessof repre-sentationalmodificationisassumedtobetheresultofamismatch inmemory–thatisthestimulusiscomparedwithsetsof stimu-lusrepresentationsinmemory.Whencomparisonfindsamatch, norepresentationalmodificationis required;when comparison failstofindamatchanewrepresentationisassembled(oraclose matchisimproved).Inanhabituationprocedure,improvementsin stimulusrepresentationwillbeassociatedwithdeclinesin uncon-ditionedresponse(i.e.,habituation).LikeSokolov’smodel,theSOP model[15]allowsfortheassemblyofstimulusrepresentations– whentheirelementsareconcurrentlyintheirA1states–butno additionalprocessofcomparisontakesplace.Rather,changesin responsivenesstorepeatedlypresentedstimuliarebasedsolelyon theprimingprinciplesoutlinedabove.

4. Evidenceofassociativeprocessesinobjectrecognition

WehaveseenthatSOPcanbeappliedtostandard demonstra-tionsofobjectrecognition.Ofcourse,themerefactthatthismodel fitsthedatadoesnotdemandthatthemodelshouldbeaccepted. Wenextdescribesomeevidencefromanalyticalobjectrecognition experimentsthatmakeastrongercaseforthisposition.

4.1. Enhancedspontaneousobjectrecognitionwhenmultiple pre-exposuresarespaced

We saw that spontaneous object recognition test perfor-mancecouldbetheresultofobjectP’srepresentationalelements

Fig.5.Spacedandmassedpre-exposureillumination.SchematicofWhittand Robinson’s[44]multi-trialpre-exposureinspontaneousobjectrecognition.Rats werepresentedwithobjectPduringpre-exposure,whichwasonlyvisibleduring eight30-speriodsofilluminations–contextswereotherwisedarkened.Theperiods ofdarknessdifferedacrosstwoconditions,beingeither4-min(spacedcondition) or30-s(massedcondition).Subsequentdiscrimination(greaterapproachtoobject QthanobjectP)wassuperiorinthespacedconditionthaninthemassedcondition.

becomingprimedthroughamixofdecayandassociativepriming, whichmayvaryaccordingtothepreciseexperimental parame-ters(e.g.,thepre-exposure-testretentioninterval).Totheextent thatassociativeprimingisinvolvedintestperformance,itwillbe importanttomaximisethestrengthofthecontext→object associ-ationduringpre-exposure.Aswesawabove(Section3.3),learning aboutthecontext→objectrelationshipwilloccuronlywhenthe context’srepresentationalelementsareintheirA1states,andthe valenceofthislearning(i.e.,whetheritisexcitatoryorinhibitory) willdependontheactivitystateoftheobject’srepresentational elements:WhentheyareintheirA1statestheassociationwillbe strengthenedthroughadditionalexcitation,buttheassociationwill beweakenedbyinhibitionwhentheyareintheirA2states.

Suchweakeningofthecontext→objectassociationisexpected whentheobject,Phasbeenrecentlypresented,asaresultof decay-basedpriming.Severalauthorshavereportedthatwhenmultiple pre-exposurestoobjectParegiven,testperformanceisbetterwhen thesepre-exposures are relatively well-spaced(e.g., [20,44,86]) andwehaveunpublisheddemonstrationsofanalogouseffectsin humanparticipants’performanceonanauditoryrecognition mem-orytask.Thepre-exposurescheduleusedbyWhittandRobinsonis representedinFig.5.Toensurefullexperimentalcontrolover stim-ulusscheduling,objectsPandQwerepresentedinglasscylinders, renderingthementirelyvisualstimuli.Allratsreceivedeight,30-s periodsofilluminationduringasinglepre-exposuresession, dur-ingwhichtimetheyremainedinthecontext.ObjectPwouldonly havebeenvisibleduringtheseperiodsofillumination.Rats’test performancefollowing spacedpre-exposure,inwhich the inter-valbetweeneachilluminationperiodwas4min,wassuperiorto thatfollowingmassedpre-exposure,inwhichitwasonly30s.Our interpretationisthatanappreciableproportionoftheobjects’ rep-resentationalelementsreturnedtoinactivityduringthefour-min inter-illuminationperiodandwereavailabletoentertheirA1states onthesubsequentperiod,thussupportingtheformationofthe context→objectassociation.However,themassedpre-exposure trialsoccurredwhenP’selementsweremorelikelytobeprimed. Thiswillhaveproducedsomeinhibitoryx-Plearningthatwould acttooffsettheexcitatoryx-Plearninguponwhichperformance partlyrelies.

4.2. Decaypriminginrelativerecency

(7)

Fig.6. Temporalmanipulationsinrelativerecency.Schematicofthetemporal manipulationsinpre-exposure-trialandretention-intervalspacingintwo relative-recencyexperiments.Ratsinbothexperimentsreceivedsequentialpre-exposure trialswithobjectsPandQbeforetestingwiththetwoobjects.Tametal.used afive-minretentionintervalbetweenpre-exposuretoobjectQandtesting.The durationoftheintervalbetweenthetwopre-exposuretrialswaseither5minor 2h;discriminationwasbetterwiththelongerinterval.MitchellandLaiaconafixed thepre-exposureinter-trialinterval(at1h)andmanipulatedtheretentioninterval. Testdiscriminationwasgoodatretentionintervalsof24horless,butwasabsent at72-hintervals.Note:MitchellandLaiaconaincludedadditionalintervals,which arenotsummarisedhere.

duration of the inter-trial intervals. For example, with a suffi-cientlyshortretention interval (i.e.,thetime betweenthefinal pre-exposureandtesting),theintervalbetweenpre-exposureto PandQbecomescrucialinensuringthatP’selementsarelargely inactivebytest.Tam,Robinson,Jennings,andBonardi[87]have confirmedthispredictionofSOPinadesignthatissummarisedin

Fig.6.Theypresentedratswithpairsofobjects,PandQ,witha five-minintervalbetweenQandthetest.Inoneconditiontheinterval betweenPandQwasalso5min,andinanother2h.The2-hP-Q intervalproducedmarkedlystrongerdiscriminationthanthe five-minP-Qinterval.Tametal.demonstratedthatthistime-related reductioninperformance wasnot ageneraldeficit,byshowing avariantofobject-in-contextlearningtoremainunaffectedbya similarmanipulationoftheintervalbetweentrainingandtest.Itis alsonotablethattheanalysisofobject-in-contextlearning(Section

3.5.1)anticipatesthisinsensitivitybecausetheassociativepriming onwhichitrelieswillbeunaffectedbychangesinthepassageof time.

Arelatedpredictionisthatrelativerecencyshouldalsobe abol-ishedbyanextensionoftheretention interval(i.e.,theinterval betweenthesecondpre-exposuretrialandtest).Whensufficiently long,theretentionintervalwillallowtheelementsofbothPand Qtobecomeinactivesothat,ontest,A1activityinbothmaybe generatedandsimilarlevelsofapproachelicited.Mitchelland Laia-cona[29]reportjustsuchafinding.Ratsinthreegroupsreceived pre-exposuretoobjectPbeforeobjectQ,whichwasseparatedby a1-hinterval.TestapproachofQwasgreaterthanPwhen test-ingoccurredimmediatelyafterthepre-exposuretoP,but with theinterpolationofa72-hretentionintervaltestperformancewas attenuated.However,onefeatureofMitchellandLaiacona’sresults isproblematicforSOP:Relativerecencydiscriminationwasseen alsoinagroupwitha24-hretentioninterval.Inordertoexplain thispatternofresultstheanalysisofrelativerecencyoutlinedin Section3.4.2needstoassumethatP’selementshavedecayedto inactivityat25h,butthatat24hQ’sremainlargelyprimedintheir A2states.Whilethisisnotimpossible,itcouldbeseenasa sur-prisingcoincidence;giventheirpotentialtheoreticalsignificance, MitchellandLaiacona’sfindingswouldbenefitfromconfirmation andfurtheranalysis.

Fig.7.Schematicofprimedobject-in-context.Schematicofanobject-in-context experiment(e.g.,Whitt,Haselgrove,&Robinson)inwhichthethreestagesofthe experimentoccurfromlefttoright.Theprocedurebeganwithratsreceiving pre-exposuretoobjectPincontextxandwithpre-exposuretoobjectQincontexty, asinthestandardobject-in-contexttask.Nextratswereplacedincontextx;no objectwaspresentbutthistreatmentshouldbesufficienttoallowtheassociative primingofobjectP.Inthesubsequenttest,ratswerepresentedwithbothobjects, PandQ,butinathirdcontext,z,whichwasassociatedwithneitherobject.Ontest, ratsapproachedQinpreferencetoPdespitetestingnotoccurringinP’scontext,x. Performanceisconsistentwiththeprimingmechanisms.

4.3. Associativeprimingofobject-in-contextlearning

Thecurrentanalysisofobject-in-contextlearning(Section3.5.3; seeFig.3)reliesontheassociativeprimingofobjectPbythetest context,x.Thisprimingof Pusuallyoccurs duringtherodents’ placementincontextxattest.However,accordingtothe analy-sissuggestedhere,thisisnotnecessary:Theonlyrequirementis thatxisprimedatthetime thatxandyaretested.Inorderto examinethissuggestionWhittHaselgroveandRobinson[43]used theproceduresummarisedinFig.7.Exactlyasinastandard object-in-contextlearningtask,ratswereinitiallypresentedwithobject PincontextxandobjectQincontexty,toallowtheestablishment ofx→Pandy→Qassociations.Inasubsequentstageratswere placedincontextx,butthiscontainednoobjects.Thisstagewas intendedtoassociativelyactivateobjectP’srepresentation,andthis primingwasassumedtoremainappreciableovertheshorttime beforetesting.Unlikestandardobject-in-contextlearning,testing withobjectsPandQoccurredinathirdcontext(e.g.,z)inwhich noobjectshadbeenexperienced.Despitethischangeinprocedure, andconsistentwithSOP,ratsapproachwasbiasedtowardsobject QrelativetoobjectP.

5. Discussion

Wehaveattemptedtoapplytheassociativemodelofmemory, SOP [16–18] to three representative forms of object recogni-tion that are popular procedures in experimental psychology and behavioural neuroscience. In considering its dynamic pro-cesses(decayandassociativepriming)anditsrulesforassociation formation,SOP produced asatisfactory accountofobject mem-ory. Experimental evidence [20,43,44,88] largely, though not universally (Section 4.2) supported SOP’s account’s of object recognition.

(8)

ahigherformoftemporalmemory(e.g.,[13]).Thereisnothingin theprecedingdiscussiontoinformonthestatusoftheseintriguing andimportantpossibilitiesbuttheyareprobablymorecomplex explanationsthatarerequiredtoexplainavailablefindings.More troublingforsuchaccountsisthattheevidencedescribedhere sup-portsdirectpredictionsfromSOP.Itispossibleofcoursethatthese findingscouldalsobeinterpretedintermsofmoresophisticated memorysystems,thoughitisuncleartoushowthiscouldbedone anditis probablyunnecessarytodo so.Beingbasedonalarge bodyofexperimentalevidencefromthestudyofhabituationand Pavlovianconditioning,SOPcanbeusedtodeliverseveraltestable areasofexperimentationthatcouldfurtherevaluatethisaccount ofrecognitionmemory.

Disclosurestatement

Neitherauthorisawareofanyconflictofinterestcreated asso-ciatedwiththisreport.

Acknowledgements

TheauthorsthankDavidSandersonandEricTamforhelpful discussion.

AppendixA. Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.bbr.2014.10.046.

References

[1]BrandonSE,VogelEH,WagnerAR.StimulusrepresentationinSOP:I. The-oreticalrationalizationandsomeimplications.BehavProcess2003;62:5–25, http://dx.doi.org/10.1016/S0376-6357(03)00016-0.

[2]Aggleton JP, Brown MW. Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci 2006;10:455–63, http://dx.doi.org/10.1016/J.Tics.2006.08.003.

[3]MackintoshNJ.Neurobiology,psychologyandhabituation.BehavResTher 1987;2:81–97.

[4]MandlerG.Recognizingthejudgementofpreviousoccurrence.PsycholRev 1980;87:252–712.

[5]DereE,HustonJP,DeSouzaSilvaMa.Thepharmacology,neuroanatomyand neurogeneticsofone-trialobjectrecognitioninrodents.NeurosciBiobehavRev 2007;31:673–704,http://dx.doi.org/10.1016/j.neubiorev.2007.01.005. [6]EacottMJ,GaffanEa.Therolesofperirhinalcortex,postrhinalcortex,andthe

fornixinmemoryforobjects,place,andeventsintherat.QJExpPsycholB 2005;58:202–17,http://dx.doi.org/10.1080/02724990444000203.

[7]EnnaceurA,DelacourJ.Anewone-trialtestforneurobiologicalstudiesof memoryinrats.I.Behaviouraldata.BehavBrainRes1988;31:47–59. [8]JonesPM,WhittEJ,RobinsonJ. Excitotoxicperirhinalcortexlesionsleave

stimulus-specifichabituationofsuppressiontolightsintact.BehavBrainRes 2012;229:365–71,http://dx.doi.org/10.1016/j.bbr.2012.01.033.

[9]RobinsonJ,SandersonDJ,AggletonJP,JenkinsTA.Suppressiontovisual, audi-tory,andgustatorystimulihabituatesnormallyinratswithexcitotoxiclesions oftheperirhinalcortex.BehavNeurosci2009;123:1238–50.

[10]BrownMW,AggletonJP.Recognitionmemory:whataretherolesofthe perirhi-nalcortexandhippocampus?NatRevNeurosci2001;2:51–61.

[11]RobinsonJ,WhittEJ,HorsleyRR,JonesPM.Familiarity-basedstimulus general-izationofconditionedsuppressioninratsisdependentontheperirhinalcortex. BehavNeurosci2010;124:587–99,http://dx.doi.org/10.1037/a0020900. [12]Cowell Ra, Bussey TJ, Saksida LM. Why does brain damage

impair memory? A connectionist model of object recognition memory in perirhinal cortex. J Neurosci 2006;26:12186–97, http://dx.doi.org/10.1523/JNEUROSCI.2818-06.2006.

[13]Hannesson DK, Howland JG, Phillips AG. Interaction between perirhi-nal andmedial prefrontal cortexis required fortemporalorder but not recognition memory for objects in rats. J Neurosci 2004;24:4596–604, http://dx.doi.org/10.1523/JNEUROSCI.5517-03.2004.

[14]EastonA,ZinkivskayA,EacottMJ.Recollectionisimpaired,butfamiliarity remainsintactinratswithlesionsofthefornix.Hippocampus2009;19:837–43, http://dx.doi.org/10.1002/hipo.20567.

[15]BrandonSE,VogelEH,WagnerAR.Acomponentialviewofconfiguralcuesin generalizationanddiscriminationinPavlovianconditioning.BehavBrainRes 2000;110:67–72.

[16]WagnerAR.SOP:amodelofautomaticmemoryprocessinginanimalbehavior. In:SpearNE,MillerRR,editors.Inf.process.anim.mem.mech.Hillsdale,New Jersey:Erlbaum;1981.p.5–47.

[17]WagnerAR,BrandonSE.Evolutionofastructuredconnectionistmodelof Pavlovianconditioning(AESOP).In:KleinSB,MowrerRR,editors.Contemp. learn.theor.Pavlov.cond.statustradit.learn.theory.Hillsdale,NJ:Erlbaum; 1989.

[18]HoneyRC,GoodM.Associativecomponentsofrecognitionmemory.CurrOpin Neurobiol2000;10:200–4.

[19]RescorlaRA,WagnerAR.AtheoryofPavlovianconditioning:variationsinthe effectivenessofreinforcementandnonreinforcement.In:BlackAH,Prokasy WF,editors.Class.Cond.IICurr.Res.Theory.NewYork: Appleton-Century-Crofts;1972.p.64–99.

[20]SandersonDJ,BannermanDM.Competitiveshort-termandlong-term mem-ory processes inspatial habituation. J Exp Psychol AnimBehav Process 2011;37:189–99,http://dx.doi.org/10.1037/a0021461.

[21]DavisM.Effectsofinterstimulusintervallengthandvariabilityon startle-response habituationintherat.JCompPhysiolPsychol1970;72:177–92, http://dx.doi.org/10.1037/h0037208.

[22]WintersBD,ForwoodSE,CowellRA,SaksidaLM,BusseyTJ.Doubledissociation betweentheeffectsofperi-postrhinalcortexandhippocampallesionsontests ofobjectrecognitionandspatialmemory:hetrogeneityoffunctionwithinthe temporallobe.JNeurosci2004;24:5901–8.

[23]LiuP,BilkeyDK.Theeffectofexcitotoxiclesionscenteredonthe hippocam-pusorperirhinalcortexinobjectrecognitionandspatialmemorytasks.Behav Neurosci2001;115:94–111.

[24]KivyPN,EarlRW,WalkerEL.Stimuluscontextandsatiation.JCompPhysiol Psychol1956;49:90–2.

[25]EnnaceurA,NeaveN,AggletonJP.Neurotoxiclesionsoftheperirhinalcortext donotmimicthebehaviouraleffectsoffornixtransectionintherat.Behav BrainRes1996;80:9–25.

[26]Good MA, Barnes P, Staal V, McGregor A, Honey RC. Context but not familiarity-dependent formsof objectrecognition are impairedfollowing excitotoxichippocampallesionsinrats.BehavNeurosci2007;121:218–23, http://dx.doi.org/10.1037/0735-7044.121.1.218.

[27]NelsonAJD,CooperMT,ThurKE,MarsdenCA,CassadayHJ.Theeffectof cate-cholaminergicdepletionwithintheprelimbicandinfralimbicmedialprefrontal cortexonrecognitionmemoryforrecency,location,andobjects.Behav Neu-rosci2011;125:396–403,http://dx.doi.org/10.1037/a0023337.

[28]Barker GRI,BirdF, AlexanderV,WarburtonEC.Recognitionmemoryfor objects,place,andtemporalorder:adisconnectionanalysisoftheroleofthe medialprefrontalcortexandperirhinalcortex.JNeurosci2007;27:2948–57, http://dx.doi.org/10.1523/JNEUROSCI.5289-06.2007.

[29]MitchellJB, LaiaconaJ.Themedial frontalcortexandtemporalmemory: testsusingspontaneousexploratorybehaviourintherat.BehavBrainRes 1998;97:107–13.

[30]ChibaAA,KesnerRP,GibsonCJ.Memoryfortemporalorderofnewandfamiliar spatiallocationsequences:roleofthemedialprefrontalcortex.LearnMem 1997;4:311–7,http://dx.doi.org/10.1101/lm.4.4.311.

[31]Tam SKE,RobinsonJ, Jennings DJ,Bonardi C. Dissociations inthe effect of delay on object recognition: evidence for an associative model of recognition memory. J Exp Psychol Anim Behav Process 2013, http://dx.doi.org/10.1037/xan0000003.

[32]DixS,AggletonJA.Extendingthespontaneouspreferencetestofrecognition: evidenceofobject-locationandobject-contextrecognition.BehavBrainRes n.d.;99:191–200.

[33]NormanG,EacottMJ.Dissociableeffectsoflesionstotheperirhinalcortexand thepostrhinalcortexonmemoryforcontextandobjectsinrats.BehavNeurosci 2005;119:557–66.

[34]WilsonDIG,LangstonRF,SchlesigerMI,WagnerM,WatanabeS,AingeJA. Lateralentorhinalcortexiscriticalfornovelobject-contextrecognition. Hip-pocampus2013;23:352–66,http://dx.doi.org/10.1002/hipo.22095.

[35]SpanswickSC,SutherlandRJ.Object/context-specificmemorydeficits associ-atedwithlossofhippocampalgranulecellsafteradrenalectomyinrats.Learn Mem2010;17:241–5,http://dx.doi.org/10.1101/lm.1746710.

[36]Spanswick SC,Dyck RH. Object/contextspecific memory deficits follow-ing medial frontal cortex damage in mice. PLOS ONE 2012;7:e43698, http://dx.doi.org/10.1371/journal.pone.0043698.

[37]MumbyDG,PiterkinP,LecluseV,LehmannH.Perirhinalcortexdamageand anterogradeobject-recognitioninratsafterlongretentionintervals.Behav BrainRes2007;185:82–7.

[38]Langston RF, Wood ER. Associative recognition and the hippocam-pus: differential effects of hippocampal lesions on object-place, object-contextandobject-place-contextmemory.Hippocampus2010;20:1139–53, http://dx.doi.org/10.1002/hipo.20714.

[39]DuvaCA,FlorescoSB,WunderlichGR,LaoTL,PinelJP,PhillipsAG.Disruptionof spatialbutnotobject-recognitionmemorybyneurotoxiclesionsofthedorsal hippocampusinrats.BehavNeurosci1997;111:1184–96.

[40]ClarkRE,WestAN,ZolaSM,SquireLR.Ratswithlesionsofthe hippocam-pusareimpairedonthedelayednonmatching-to-sampletask.Hippocampus 2001;11:176–86,http://dx.doi.org/10.1002/hipo.1035.

(9)

[42]McTighe SM,Cowell RA,WintersBD, BusseyTJ, SaksidaLM.Paradoxical false memoryforobjectsafterbraindamage. Science2010;330:1408–10, http://dx.doi.org/10.1126/science.1194780.

[43]WhittE,HaselgroveM,RobinsonJ.Indirectobjectrecognition:evidencefor associativeprocessesinrecognitionmemory.JExpPsycholAnimBehavProcess 2012;38:74–83,http://dx.doi.org/10.1037/a0025886.

[44]Whitt E, Robinson J. Improved spontaneous object recognition follow-ing spaced preexposure trials: evidence for an associative account of recognition memory. J Exp PsycholAnim Behav Process 2013;39:174–9, http://dx.doi.org/10.1037/a0031344.

[45]AlbasserMM,DaviesM,FutterJE,AggletonJP.Magnitudeoftheobject recogni-tiondeficitassociatedwithperirhinalcortexdamageinrats:effectsofvarying thelesion extentandthedurationofthesampleperiod.BehavNeurosci 2009;123:115–24.

[46]MeunierM,BachevalierJ,MishkinM,MurrayEA.Effectsonvisualrecognition ofcombinedandseparateablationsoftheentorhinalandperirhinalcortexin rhesusmonkeys.JNeurosci1993;13:5418–32.

[47]Baxter MG, Murray Ea. Opposite relationship of hippocampal and rhi-nal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus 2001;11:61–71, http://dx.doi.org/10.1002/ 1098-1063(2001)11:1<61::AID-HIPO1021>3.0.CO;2-Z.

[48]Zola-MorganS,SquireLR,AmaralDG,SuzukiWa.Lesionsofperirhinaland parahippocampalcortexthatsparetheamygdalaandhippocampalformation produceseverememoryimpairment.JNeurosci1989;9:4355–70.

[49]MumbyDG,PinelJP.Rhinalcortexlesionsandobjectrecognitioninrats.Behav Neurosci1994;108:11–8.

[50]ClarkRE,ZolaSM,SquireLR.Impairedrecognitionmemoryinratsafterdamage tothehippocampus.JNeurosci2000;20:8853–60.

[51]WintersBD,BusseyTJ.Transientinactivationofperirhinalcortexdisrupts encoding,retrieval,andconsolidationofobjectrecognitionmemory.JNeurosci 2005;25:52–61,http://dx.doi.org/10.1523/JNEUROSCI.3827-04.2005. [52]NormanG,EacottMJ.Impairedobjectrecognitionwithincreasinglevelsof

featureambiguityinrats withperirhinal cortexlesions.BehavBrainRes 2004;148:79–91.

[53]Warburton EC,KoderT, ChoK,MasseyPV,Duguid G,Barker GRI,et al. Cholinergicneurotransmissionisessentialforperirhinalcorticalplasticityand recognitionmemory.Neuron2003;38:987–96.

[54]EastonA,EacottMJ.Recollectionofepisodicmemorywithinthemedial tem-porallobe:behaviouraldissociationsfromothertypesofmemory.BehavBrain Res2010;215:310–7,http://dx.doi.org/10.1016/j.bbr.2009.10.019.

[55]MumbyDG, GaskinS,GlennMJ,SchramekTE, LehmannH.Hippocampal damageandexploratorypreferencesinrats:memoryforobjects,places,and contexts.LearnMem2002;9:49–57,http://dx.doi.org/10.1101/lm.41302. [56]MitchellJB, LaiaconaJ.Themedial frontalcortexandtemporalmemory:

testsusingspontaneousexploratorybehaviourintherat.BehavBrainRes 1998;97:107–13,http://dx.doi.org/10.1016/S0166-4328(98)00032-1. [57]HannessonDK,VaccaG,HowlandJG,PhillipsAG.Medialprefrontalcortex

is involvedinspatialtemporalordermemorybutnotspatial recognition memoryintestsrelyingonspontaneousexplorationinrats.BehavBrainRes 2004;153:273–85,http://dx.doi.org/10.1016/j.bbr.2003.12.004.

[58]HoneyRC,WattA,GoodM.Hippocampallesionsdisruptanassociative mis-matchprocess.JNeurosci1998;18:2226–30.

[59]RescorlaRA.Stimulusgeneralization:Somepredictionsfromamodelof Pavlo-vianconditioning.JExpPsycholAnimBehavProcess1976;2:88–96. [60]PearceJM.AmodelforstimulusgeneralizationinPavlovianconditioning.

PsycholRev1987;94:61–73.

[61]HarrisJA.Elementalrepresentationsofstimuliinassociativelearning.Psychol Rev2006;113:584–605,http://dx.doi.org/10.1037/0033-295x.113.3.584. [62]HebbDO.Theorganizationofbehavior.NewYork:JohnWiley&Sons,Inc.;

1949.

[63]WagnerAR,LoganFA,HaberlandtK,PriceT.Stimulusselectioninanimal dis-criminationlearning.JExpPsychol1968;76:171–80.

[64]KaminLJ.Predictability,surprise,attention,andconditioning.In:CampbellBA, ChurchRM,editors.Punishm.AversiveBehav.NewYork: Appleton-Century-Crofts;1969.p.279–96.

[65]Bonardi C, Ward-Robinson J. Occasion setters: specificity to the US and the CS-US association. Learn Motiv 2001;32:349–66, http://dx.doi.org/10.1006/Lmot.2001.1089.

[66]Pearce JM, Hall G. A model for Pavlovian learning – variations in the effectivenessofconditionedbutnotofunconditionedstimuli.PsycholRev 1980;87:532–52.

[67]Haselgrove M, Robinson J, Nelson A, Pearce JM. Analysis of an ambiguous-feature discrimination. Q J Exp Psychol 2008;61:1710–25, http://dx.doi.org/10.1080/17470210701680746.

[68]AllmanMJ,Ward-RobinsonJ,HoneyRC.Associativechangeinthe represen-tationsacquiredduringconditionaldiscriminations:furtheranalysisofthe natureofconditionallearning.JExpPsycholBehavProcess2004;30:118–28, http://dx.doi.org/10.1037/0097-7403.30.2.118.

[69]RescorlaRA.Simultaneousandsuccessiveassociationsinsensory precondi-tioning.JExpPsycholBehavProcess1980;6:207–16.

[70]RescorlaRA.Pavlovianconditionedinhibition.PsycholBull1969;72:77–94, http://dx.doi.org/10.1037/h0027760.

[71]PapiniMR,BittermanME.Thetwo-teststrategyinthestudyofinhibitory con-ditioning.JExpPsycholAnimBehavProcess1993;19:342–52.

[72]HallJF.BackwardconditioninginPavloviantypestudies.Reevaluationand presentstatus.PavlovJBiolSci1981;19:163–8.

[73]Holland PC, Lamarre J. Transfer of inhibition after serial and simul-taneous feature negative discrimination training. Learn Motiv 1984;15: 219–43.

[74]RescorlaRa.Superconditioningfromareducedreinforcer.QJExpPsycholB 2004;57:133–52,http://dx.doi.org/10.1080/02724990344000051.

[75]JenningsDJ,AlonsoE,MondragónE,FranssenM,BonardiC.Theeffectof stim-ulusdistributionformontheacquisitionandrateofconditionedresponding: implicationsfortheory.JExpPsycholAnimBehavProcess2013;39:233–48, http://dx.doi.org/10.1037/a0032151.

[76]Vogel EH, Brandon SE, Wagner AR. Stimulus representation in SOP: II. Anapplication to inhibition of delay. Behav Process 2003;62:27–48, http://dx.doi.org/10.1016/S0376-6357(03)00050-0.

[77]HallG,HoneyRC.Contextualeffectsinconditioning,latentinhibition,and habituation:associativeand retrievalfunctionsof contextualcues.JExp PsycholAnimBehavProcess1989;15:232–41.

[78]Blair CAJ, Hall G. Perceptual learning in flavor aversion: evidence for learnedchangesinstimuluseffectiveness.JExpPsycholAnimBehavProcess 2003;29:39–48.

[79]HoneyRC,GoodMA,ManserKL.Negativepriminginassociativelearning: evi-dencefromaserial-habituationprocedure.JExpPsycholAnimBehavProcess 1998;24:229–37.

[80]PavlovIP.Conditionedreflexes.NewYork:DoverPublications,Inc.;1927. [81]RescorlaRA.Experimentalextinction.IntJPsychol2000;35:109.

[82]GrovesPM,ThompsonRF.Habituation:adual-processtheory.PsycholRev 1970;77:419–50,http://dx.doi.org/10.1037/h0029810.

[83]SokolovYN.Perceptionandtheconditionedreflex.Oxford:PergamonPress, Ltd.;1963.

[84]KonorskiJ.Integrativeactivityofthebrain.Chicago:UniversityofChicago Press;1967.

[85]VinogradovaOS.Hippocampusascomparator:roleofthetwoinputandtwo outputsystemsofthehippocampusinselectionandregistrationof informa-tion.Hippocampus2001;11:578–98.

[86]AndersonMJ,JablonskiSA,KlimasDB.Spacedinitialstimulusfamiliarization enhancesnoveltypreferenceinLong-Evansrats.BehavProcess2008;78:481–6, http://dx.doi.org/10.1016/j.beproc.2008.02.005.

[87]Tam SKE, Jennings DJ, Bonardi C. Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal infor-mation in the absence of the CS. Exp Brain Res 2013;227:547–59, http://dx.doi.org/10.1007/s00221-013-3530-4.

References

Related documents

Patients with salt-wasting disease have the highest 17-OHP levels (up to 3000 nmol/L after corticotropin stimulation), followed by patients with simple virilizing disease, who

The aims of this study were to evaluate the availability of basic summary results of registered clinical trials in ovarian cancer in ClinicalTrials.gov, and the frequency

Exercise represents a useful non-pharmacological strategy for the treatment in type 2 diabetic (T2DM) patients, but high intensity exercise can induce a transient inflammatory state

industrial action against the savage cuts in the education budget and the proposed changes to teachers’ pensions. Conference calls on Northern Committee to review and assess the

• If you have two or more job evaluation schemes covering all, or nearly all, your employees, you could estimate equal value by using the more generic job evaluation scheme to

Not classified as Dangerous Goods according to the Australian Code for the Transport of Dangerous Goods by Road and Rail (ADG Code) (7th edition). Marine

Consequently, the major diurnal tide in Nares Strait is char- acterized by the northward progression of a single tidal wave from Baffin Bay to the Arctic Ocean (Figure 5b; the

Consedine, Insurance Commissioner of the Commonwealth of Pennsylvania, in his official capacity as Statutory Liquidator pursuant to the Liquidation Order, and Genworth Life