• No results found

Learning Objectives: Quality Assurance (QA) is. Quality Assurance Procedures for Digital Radiography. Alternate definition of Quality Assurance (QA)

N/A
N/A
Protected

Academic year: 2021

Share "Learning Objectives: Quality Assurance (QA) is. Quality Assurance Procedures for Digital Radiography. Alternate definition of Quality Assurance (QA)"

Copied!
20
0
0

Loading.... (view fulltext now)

Full text

(1)

Quality Assurance Procedures for Digital

Radiography

Charles E. Willis, Ph.D., DABR

Associate Professor

Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center

Houston, Texas

Learning Objectives:

• Review components of a QA program and show how they apply to DR.

• Understand how some conventional tests should be modified for a digital radiographic system integrated into an electronic image management system.

• Identify key references and standards that can be useful in QA of DR.

Quality Assurance (QA) is …

• All activities that ensure consistent, maximum performance from physician and imaging facility (NCRP 99; 1988)

• Mandated in radiology by ACR Standards

• Often confused with Quality Control (QC)

• AKAAKAAKAAKA QI,CQI, PI, TQM = constantly seeking improvement

• Vehicle for providing highest quality medical care

Quality Assurance Quality Control Medical Maintenance (scheduled) (scheduled) (unscheduled) (unscheduled) (admin and technical (admin and technical support services) support services)

Are we operating the devices properly?

Are the devices, themselves, operating properly?

Are the devices properly supported?

(2)

Some traditional components of

a QA Program

• QA Committee

• Policies and Procedures

• Reject Analysis

• Radiologist Film Critique

• Operator QC Activities

• Service Events

• Technologist Inservice training

• Medical Physicist QC Activities

• Incident investigation/troubleshooting

Quality Control is …

• Most tangible aspect of QA

• “…a series of distinct technical procedures which ensure the production of a satisfactory product.”

• Four major aspects:

– Acceptance testing of new equipment or post major repair

– Establishment of baseline performance

– Diagnosis of changes in performance before radiologically apparent

– Verification of corrective action

Who is responsible for QC?

(“It takes a village …” Sen. H. Clinton, Health Care Expert)

• Physician responsible for clinical service is ultimately responsible

• Medical Physicist oversees the program • QC Technologist makes day-to-day

measurements, verify post-repair integrity • Service engineer carry out repairs, PM,

calibrations

“What’s my motivation?”

(unknown screen actor)

• Regulatory Compliance

– Title 12, Code of Federal Regulations (CFR) Part 20, Standards for Protection against Radiation

– State regulations http://www.tdh.state.tx.us/radiation/

• Standards of Care

– ACR Standard for Diagnostic Medical Physics Performance Monitoring of Radiographic and Fluoroscopic Equipment

– ACR Radiography and Fluoroscopy Accreditation Program

– NCRP Report No. 99 “Quality Assurance for Diagnostic Imaging”

– Nationwide Evaluation of X-ray Exposure Trends (NEXT)

– Reference Values1

• Providing the highest quality medical care

• MANAGING RADIATION DOSE!!!

1Gray JE, Archer BR, Butler PF, Hobbs BB, Mettler FA, Pizzutiello RJ, Jr.,Schueler BA, Strauss KJ, Suleiman OH, and Yaffe MJ.(2005) "Reference Values for Diagnostic Radiology: Application and Impact " American Association of Physicists in Medicine Task Group on Reference Values for Diagnostic X-Ray Examinations. Radiology; 235:354-358.

(3)

Many factors affect image quality and patient dose

Wolbarst. Physics of Radiology (1993) Table 19-1

X X Field size X X Scatter rejection X X SID X X (x) mAs X S (x) mA X (x) X kVp x x (x) Voltage waveform X x Beam filtration x (x) x Off-focus radiation X Focal spot size

Patient Dose Noise

Resolution Contrast

Factor

Where can we find instructions for how to

perform QC tests?

• AAPM Report 74: Quality Control in Diagnostic Radiology (2002)

• AAPM Monograph 20: Specification, Acceptance Testing and Quality Control of Diagnostic X-ray Imaging Equipment (1991)

• AAPM Monograph No. 30: Specifications, Performance Evaluations and Quality Assurance of Radiographic and Fluoroscopic Systems in the Digital Era (2004)

• AAPM Report 93 CR Acceptance Testing and QC (2007)

• IPEM Report 91 Recommended Standards for the Routine Performance Testing of Diagnostic X-Ray Imaging Systems (2005)

Medical Physicist’s Worst Nightmare

• “They’re installing the

new

DEMI-RAD™

system tomorrow.” • “We need you to come

tell us if it’s okay to use with patients.”

• “BTW, we’re

scheduling patients on it for Monday.”

Your first thoughts …

• “What the heck is a

DEMI-RAD™

?” • “How bad do I need this job?”

• “Where is that monograph from the AAPM 2004 Summer School?”

(4)

Is this a plausible scenario?

• 3 categories of DR plus CR • 17 DR manufacturers of 37 products plus 5+ CR vendors

• This was 4 years ago

What is “Acceptance”?

• Acceptance is a process whereby a customer determines whether …

– “newly installed imaging equipment is functioning as designed,

– “complies with regulatory standards, and

– “produces high quality images.1

• Data gathered during acceptance testing establishes a baseline for later quality control (QC) testing.

• There are legal, financial, and warranty consequences to acceptance.

1Gray JE and Stears JG “Acceptance Testing of Diagnostic x-ray Imaging Equipment: Considerations and Rationale” Specification, Acceptance Testing and Quality Control of Diagnostic X-ray Imaging Equipment. Seibert JA, Barnes GT and Gould RG. Eds American Association of Physicists in Medicine. Medical Physics Monograph No. 20. pp 1-9. (1994).

Acceptance testing is an opportunity …

To identify and resolve discrepancies

prior

prior

prior

prior

to clinical use

To become familiar with the controls

and operation of the equipment

For Continuing Education on new

technology and products

Advances in Digital Radiography: Categorical Course in Diagnostic Radiology Physics. Eds Samei E and Flynn MJ. RSNA 2003. 252 pp.

Acceptance testing (AT) could be as

simple as an inspection and inventory.

• Verification that what was purchased was indeed delivered and installed.

• Purchasing agent, radiological technologist, or biomedical engineer may not recognize missing critical components.

(5)

What about functional tests?

• May test all operator controls to determine if they function.

• May test the manufacturer’s claims of performance.

• May test specific performance that was crucial to the selection of this equipment.

– May or may not be contract provisions

– Ex: Throughput

• May test compliance/conformance with industry standards of practice.

– Ex: DICOM, IHE

• May test whether manufacturer’s installation instructions were followed.

• May collect “engineering data” for later reference.

Clinical Acceptability is the trump card!

• Any Diagnostic Radiographic Imaging System must produce images of sufficient quality to support clinical diagnosis at reasonable radiation dose to the patient.

– Physician defines diagnostic quality

– Regulatory bodies may define reasonable dose, else comparison to standard of care

• Humans must be able to safely operate the equipment

Machines that produce radiation are

subject to government regulations

• Irrespective of the detector technology, you must assess the degree to which the x-ray generator allows the precise and reproducible control of the primary imaging technique factors

– kilovoltage (kVp)

– tube current (mAs)

– exposure duration (msec)

• Evaluation of Automatic Exposure Control (AEC) devices differs because “consistent and reproducible Optical Density (OD)” is no longer an appropriate criterion!

– Christodoulou EG, Goodsitt MM, Chan HP, and Hepburn TW (2000) Phototimer setup for CR imaging. Med Phys 27 2652-2658.

• Evaluation of focal spot size (“measure me first!”)and “congruence”/positive beam limitation may differ

– Rong XJ, Krugh KT, Shepard SJ and Geiser WR (2003) Measurement of focal spot size with slit camera using computed radiography and flat-panel based digital detectors. Med Phys 30 1768-1775.

• Total filtration (HVL) and leakage radiation are measured the same.

Lesson #1: Tests that rely on the receptor to assess generator performance must be modified.

Non-invasive kVp measurement of a

DR system

Lesson #2. Tests that involve production of large amounts of radiation require protection of the image receptor.

No sensors in beam … Sensors in beam

(6)

It might be nice to have the DEMI-RAD™

service engineer present during testing

• To assist you with operation of the

machine

– Test modes

– Vendor-supplied tests

• To provide technical references such as the service manual or installation instructions

• To observe your measurements

– to “share the experience”

– in case of “questions” from the factory

• To correct deficiencies on-the-spot when possible

Let’s consider the “DEMI-RAD™”

system to be a “black box”

• Gain • Characteristic • Uniformity • Contrast • Sharpness • Noise • Artifacts • Dose DEMI-RAD™ Input Output

How can I test the imaging functions

of a “black box”?

• A fixed input should produce a specific output (aka Gain).

• Output should bear a specific relationship to input (aka Characteristic function).

• Input that is uniform in two dimensions should produce uniform output (aka Flat-field).

• Projected details will be represented in the output with a particular contrast and sharpness.

• Output will contain noiserelated to noise in the input and internal sources of noise.

• Output should be free from artifacts.

• Identical black boxes should produce similar output.

• Output should be free from signal from previous output (erasure).

• Output involves a penalty, that is, radiation dose to the patient

What is “output”?

• Could be laser-printed film

– Measure with densitometer

• Could be luminance from monitor

– Measure with photometer

• Could be digital values

– Measure with Region of Interest (ROI) or Pixel tool by viewer software

– Code values (CV) = Pixel values (PV) = grayscale values (GY) = quantization levels (QL)

• Could be derived indicator of exposure

• Includes “metadata” from the DICOM header

Must address calibration of both output device and measurement device before collecting acceptance data

(7)

Important information about DR acquisition

and processing is in metadata

• CR

vs.

DX object • Mandatory

vs.

optional

vs.

private tags • Automatic

vs.

manual entry of data • PACS interpretation of metadata

Lesson #3: Assessment of DR performance likely involves access to DICOM images

Gain

Set technique factors according to

manufacturer specification

Measure/calculate the radiation

exposure to the detector

Measure the output of the system

Complications

Auto-ranging

Bucky factor

Exposure indicators in Computed Radiography

– exposure delivered to detector

• Fuji

• S number, Sensitivity Number

• 1 mR at 80kVp => 200

• 200/S X

• Kodak

• EI, Exposure Index, (mbels)

• 1mR at 80kVp +1.5mm Al and 0.5mm Cu => 2000

• +300 EI = 2X and –300 EI = 1/2X

• Agfa

• lgM, logarithm of the Median of the histogram, (bels)

20 µGy at 75 kVp +1.5mm Cu => lgM= 2.56

• +0.3 lgM = 2X and –0.3 lgM = 1/2X

• Konica

• S value, similar to Fuji

Exposure indicators in Direct Radiography

– exposure delivered to patient

• GE

• DAP, Dose Area Product, dGy-cm2

• “ESE”, Entrance Skin Exposure, mGy, at 25 cm (default)

• Philips/Seimens/Thompson (Trexel)

• DAP

• EI, Exposure Index or Indicator, similar to S (Philips - exception)

• Canon (exception)

• REX, Reached Exposure Value, f(Brightness, Contrast)

• Hologics(semi-exception)

• Exam Factor, Center of Mass of log E Histogram, old

• DAP and “Accumulated Dose” for exam, new

• SwissRay

• mA, sec, field size, kVp, no exposure indicator, old

(8)

0 0.5 1 1.5 2 2.5 3 0.01 0.1 1 10 100 Exposure (mR) D en si ty (O D ) 1 10 100 1000 10000 In te n si ty (r e l) Film/screen PSL 1023

00.1 mR Raw Plate Exposure 1000 mR

High kV L=2.2, S=50 Over-Exposed Low kV, L=1.8, S=750 Under-Exposed E D R S ig n a l

DR has wide dynamic range (latitude)

Histogram re-scaling

Auto-ranging

Fuji Autora nging Spe cification

10 100 1000 10000 0.1 1 10 Expos ure (m R) S e n s it iv it y (S ) S=200, G=1.0 S=180, G=0.9 S=220,G=0.9 S=180, G=1.1 S=220, G=1.1 67% 67%

There is a documented tendency to

overexpose in CR and DR

• Oversight of exposure factor selection is impossible without an exposure indicator

Barry Burns, UNC Freedman M, Pe E, Mun SK, Lo SCB, Nelson M (1993) the potential for unnecessary

patient exposure from the use of storage phosphor imaging systems. SPIE 1897:472-479.

Gur D, Fuhman CR, Feist JH, Slifko R, Peace B (1993)Natural migration to a higher dose in CR imaging. Proc Eighth European Congress of Radiology. Vienna Sep 12-17.154.

How much exposure was used?

• Seibert, et al Acad Radiol (1996) 4: 313-318

– QA based on exposure indicator reduces doses

• Willis Ped Radiol (2002) 32: 745-750

– 33% dose reduction if exposure indicator target followed

(9)

Exposure Indicator

from image of calibrated stepwedge, REX adjusted until each step disappears

Canon CXDI-22 y = 115.08x - 9.1053 R2= 0.998 0 100 200 300 400 500 600 700 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Ex posure (mR) R e a c h e d E x p o s u re (R E X )

Characteristic function

• Vary the input

– Change mAs

– Stepwedge

• Measure output • Complications

– Digital Look-up Tables (LUT)

– Auto-ranging

– Energy dependence of code values: Beam hardening

Spectral dependence of

characteristic function

GE DR CT CHEST y = 1453.3x + 18.635 R2= 1 y = 1042x - 30.611 R2= 0.9998 y = 811.41x + 28.054 R2= 0.9996 y = 1425.2x - 47.347 R2= 1 0 2048 4096 6144 8192 10240 12288 14336 16384 0.000 5.000 10.000 15.000 20.000

Dete ctor Ex posure (mR)

C o d e V a lu e 80kVp no filter 80kVp 3/4" Al filter 125kVp no filter 80kVp 3/4" Al w/grid 80kVp no filter w/grid 125kVp no filter w/grid 125kVp LucAl w/grid Linear (80kVp 3/4" Al filter) Linear (125kVp no filter) Linear (80kVp no filter) Linear (125kVp LucAl

w/grid) AGFA Test Object 75 kVp +1.5 mm Cu, 47 µGy exit

(10)

Display processing curve for Chest

from ROI of each step of image of calibrated stepwedge

Canon CXDI-22 0 512 1024 1536 2048 0.01 0.10 1.00 10.00 Ex posure (mR) P ix e l v a lu e

“Linear” Display processing Look-up Table

(LUT) is actually log-linear

Canon (Linear) y = 199.14Ln(x) + 1233.7 R2= 0.9953 0 512 1024 1536 2048 0.01 0.10 1.00 10.00 Ex posure (mR) P ix e l v a lu e

REX depends strongly on Brightness

and Contrast setting!

Canon (Chest) 0 512 1024 1536 2048 0.01 0.10 1.00 10.00 Exposure (mR) P ix e l v a lu e Brightness 26, Contrast 12 Brightness 16, Contrast 10

Lesson #4: Assessment of Detector requires access to “for processing” image data as well as processed image data.

Flat-field

• Using large Source-to-image Distance (SID), produce a uniform input.

• Inspect and measure the uniformity of the output.

• Complications

– Heel effect: if possible, rotate detector 180o

– Backscatter: Pb backing or tabletop

– Fixed SID

Seibert JA, Boone JM, Lindfors KK. Flat-field correction technique for digital detectors. Proc. SPIEProc. SPIEProc. SPIEProc. SPIE 1998; 3336333633363336: 348-354.

(11)

Uncorrected DR image is inherently

non-uniform

How many defects are acceptable? Lesson #5: Assessing the receptor may require access to uncorrected image.

Non-uniformities are corrected by

“flat-fielding”

Artifacts related to gain and offset correction

GE DR Canon DR

Willis CE, Thompson SK and Shepard SJ. Artifacts and Misadventures in Digital Radiography. Applied Radiology pp. 11-20, January 2004.

(12)

(pretty darn uniform) (pretty darn …hmm)

(darn!) Lesson #6. A grayscale histogram is also helpful in assessing the receptor.

Contrast: what kind?

Contrast

– slope of detector characteristic

• Contrast resolution

– Detector ability to distinguish features of similar signal level

– Grayscale bit depth

• Contrast detectability

– Observer ability to distinguish features of similar signal levels

(13)

Same exposure conditions

Identical machine, same exposure conditions

Calibrated step wedge:

ROI indicates loss of latitude

SwissRay 0 512 1024 1536 0.01 0.1 1 10 Exposure (m R) P ix e l v a lu e 1s t Floor 2nd floor 10X 100X

LucAl Chest phantom w/QC object

(14)

Sharpness

• Spatial resolution

f(digital matrix size), i.e. pixel dimensions

Nyquist frequency = ½ sampling rate

(need two pixels to represent a line pair)

• Bar patterns oriented orthogonal to matrix, else 1.414 factor high

Leeds Test Object TODR[CR]

lpx=1/2d 2d 2d lpy=1/2d lpxy=1/d 2 lpx lpxy = 1/2d 1/d 2 lpxy = lpx 2 = d 22d lpx lpxy lpx2 = lpxy 2 d2

Where d is the del dimension …

Practical resolution is less than the

Nyquist frequency

• Factors besides sampling compromise

sharpness

– X-ray focal spot dimensions

– Blur in Indirect DR and CR

– Optical and mechanical imprecision in IDR and CR

– Afterglow in fast-scan dimension in CR

• Limit of resolution is where

Modulation Transfer

Function (MTF)

has

decreased to 10% AGFA CR Test Object

(15)

Noise

Primary, unavoidable source of noise in

radiographic imaging is quantum noise

Absolute magnitude of quantum noise

increases with D

Standard deviation of ROI is an

indication of noise

Complication

Non-linear Characteristic function

Combination of quantum noise and

anatomic noise limits low contrast detection

DR Image CT Image

When pixel value is proportional to log D,

SD of ROI should be proportional to D

-1/2

Noise indicators (simulation)

y = 2.795x-0.4937 R2= 0.9983 y = 0.0126x-0.4943 R2= 0.9982 0.1 1 10 0.1 1 10 Exposure (mR) S D p ix e l 0.001 0.01 0.1 S D m R /m R SD mR/Ave mR SD pixel Power (SD pixel) Power (SD mR/Ave mR) 1/SNR

Christodoulou EG, Goodsitt MM, Chan HP, and Hepburn TW (2000) Phototimer setup for CR imaging. Med Phys 27 2652-2658.

(16)

SNR should improve with exposure

ADC70 Noise Me a sure me nts

y = 2.4057Ln(x) + 19.987 R2= 0.9984 6 9 12 15 18 21 24 27 0.01 0.10 1.00 10.00 Expos ure (m R) S N R (d B ) A cceptance level at PS 7/29/1998 Log. (7/29/1998)

Variation in Exposure-dependent SNR is

improved by gain and offset calibration

0 50 100 150 200 250 0.1 1 10 100

Dete ctor Exposure (m R)

S N R 95% CI 95% CI A4 A6 E1 E2 A1 F12 I1 I10 C3 C1 C2 0 50 100 150 200 250 0.1 1 10 100 De tector Expos ur e (mR) S N R 95% CI 95% CI A4 E1 E2 I1 I10 A1 A6 C3 C1 C2 F12

Before calibration After calibration

Lesson #7. Performance data on large numbers of DR systems under simulated clinical conditions are needed to establish action limits

Eleven GE DR systems, LucAl Chest phantom at 125 kVp SNR from central ROI of “for processing” image

New artifacts

from the discrete

nature of DR

• Interference pattern between fixed grid lines and down-sampling rate for display

• Disappeared on zoom • Bad choices – Display default magnification factor

– Line rate of grid

Configuration management

(17)

Entrance Exposure

• Position representative material between tube and detector.

– CDRH phantoms

– ANSI/AAPM phantoms

– ACR Phantoms

– Acrylic/lucite blocks

– Cu or Al filter on collimator => scatter-free

• Use appropriate clinical technique settings.

• Use AEC if appropriate.

• Measure entrance exposure and record output.

• Compare to regulations, national trends, or reference levels.

Standardized Methods for Measuring Diagnostic X-ray Exposures. AAPM Report No. 31 July 1990.

Erasure

• Re-usable image media (RIM) • Consequences of poor erasure – “Ghost” structures – Noise • Immediately subsequent to normal exposure, produce image with no input and high gain setting. Inspect output.

Anthropomorphic phantoms

• Approximate clinical subject • Complication: non-human histogram

Before calibration Post calibration

When is an anthropomorphic phantom not

anthropomorphic?

S = 895, L = 1.6 S = 283, L=1.8

“Lawyer” Phantom

(18)

Phantoms may not adequately represent

radiographic projections of human anatomy

Mah E, Samei E, Peck DJ “Evaluation of a quality control phantom for digital chest radiography” JACMP 2(2) 90-101.

Pass/fail criteria: How do you know?

• Government regulations

• Specifications and service manuals • Scientific literature

– Medical Physics, SPIE Proceedings, Journal of Digital Imaging

– Samei E, Seibert JA, Willis CE, Flynn MJ, Mah E, and Junck KL. Performance evaluation of computed radiography systems. Medical Physics 28(3):361-371, 2001. • Comparison with other devices or customer

experience

Summary of four additional tests

• Flat-field => Gain and uniformity

– Manufacturer’s conditions

– Measure exposure

• Calibrated Stepwedge => detector

characteristic, display processing, contrast, noise

• Bar patterns => spatial resolution • Erasure => “base plus fog” • Entrance exposure => patient dose

– Not an extra test!

A postscript on Quality Control …

Still necessary with digital radiography

Repeat acceptance tests periodically

and incidental to service events

Routine QC must be performed by

(19)

Institute processes to detect, correct,

report, and document errors.

• Check images before release and archive.

• Exercise vigilance over rejected images.

– Analyze reasons for repeated exams

– Take action based on the analysis

Perform and document cleaning and

maintenance on a regular basis.

Automated evaluations of the image receptor

What do you do with the QC data?

• Because systems are relatively new, manufacturers are uncertain about longitudinal data

• Lower limit for test is MTF @ 2.5 lp/mm = 17%

• CsI(Tl) is hygroscopic – columnar structure is degraded

• Both systems depicted required detector replacement A6 QAP data y = -0.0023x + 104.85 R2= 0.2349 15 16 17 18 19 20 21 22 23 24 25 3/20/036/28/0310/6/031/14/044/23/048/1/0411/9/042/17/055/28/059/5/05 Date S p ati a lM T F a t 2 .5 lp /m m XQi C1 y = -0.0052x + 218.2 R2= 0.8897 15 16 17 18 19 20 21 22 23 24 25 2/13/20029/1/20023/20/200310/6/20034/23/200411/9/20045/28/200512/14/2005 Date M TF @ 2 .5 lp /m m 3 years 2 years

(20)

Involve all local resources in a team

approach to the QC effort.

• Radiologist

– Ultimate responsibility for quality of images

– Department can provide only the lowest quality that is acceptable to radiologist

• Radiology Administrator

– Responsible for efficiency of imaging operations

• Radiology Lead Technologist

– First-line supervision of quality control operations

• Clinical Engineer

– Responsible for equipment life cycle management

• Medical Physicist

– No other person has image quality as first priority

References:

Comprehensive QC Plan for CR

References

Related documents

by an emphasis on narrative craft narrative craft, character , character development, and the use of literary tropes or development, and the use of literary tropes or with

 Participationinaphysicalactivityprogrammayhelp maximize postural balance due to increased muscle strength.Itmayalsodecreasetheriskofdeveloping mental

The implemented data science process provides several benefits as well as a novel and comprehensive approach: firstly, a ranking of a series of United States news

hydrophobic area upon ligand binding (Figure S1), but arises from a more favorable entropy of binding. There are two plausible explanations for this increased binding affinity: i)

All pairs will be shown in their respective divisions (i.e. junior, yearling or senior), the top pair from each division with compete for Overall Champion and Reserve Champion

The products analysed are the following: OPAL UK Diesel and Gasoline for parts of the oil industry, hollow glass and container glass as outputs of parts of the UK Glass industry,

According to the Journal of Neurosurgery, Infections in patients undergoing craniotomy: risk factors associated with post-craniotomy meningitis, their clinical studies indicated

This study shows that 71% respondents prefer the mobile phone handsets which have internet or browsing facility; 60% respondents favor multimedia facility of the